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Abstract
Purpose of Review  Sensory over-responsivity (SOR) is an excessively unpleasant response to or avoidance of sensory stimuli, 
e.g., sound and light, which is prevalent among individuals with autism spectrum disorder (ASD). Despite its negative impacts 
on personal and social lives, knowledge about the occurrence of and mechanisms underlying SOR is inadequate. This review 
of studies on SOR in ASD summarizes the evidence on the close relationship of SOR with prenatal and genetic factors and 
presents information on neural mechanisms underlying SOR.
Recent Findings  Emerging studies have reported that SOR symptoms are related to abnormal structural connectivity in the 
brain, particularly decreased inter-hemispheric connectivity in subcortical regions (the thalamus and basal ganglia) and 
increased intra-hemispheric connectivity in the basal ganglia, especially in the right cerebral hemisphere, and with an enlarged 
amygdala. In the resting state, functional connectivity between the pulvinar and primary sensory regions, the basal ganglia, 
the limbic system (the amygdala and hippocampus), the temporal cortex, the prefrontal cortex, and sensorimotor regions is 
enhanced, while structural and functional connectivity between the thalamus and cortex is diminished.
Summary  These findings indicate that the functional abnormalities associated with SOR are probably due to reduced top-
down regulation, which inhibits the reorientation of attention from external stimuli, thereby causing difficulty in filtering 
out and/or integrating sensory information and then lowering inhibition in generating excessive responses to the incoming 
sensory stimuli.
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Background

Autism spectrum disorder (ASD) is a widespread neu-
rodevelopmental disorder marked by stereotyped and 
repetitive patterns of behavior and impairments in social 
communication and interaction [1]. Sensory abnormalities 
have been reported in as high as 90–95% of individuals 
with ASD [2–4] and in approximately 16% of the general 
population [5] and only 8% of the subjects in a sample 
of 8-year-old children without ASD [6]. Despite the high 
prevalence of sensory abnormalities in ASD, their occur-
rence and underlying mechanisms are not yet fully under-
stood. The extent of sensory abnormalities has been found 
to be associated with the severity of autistic traits, such as 
repetitive behavior [7, 8] and stereotyped behavior [8–11].

Sensory features of ASD have received growing atten-
tion over the past two decades from specialists in a wide 
range of fields [12, 13]. The Diagnostic and Statisti-
cal Manual of Mental Disorders, 4th Edition, already 
acknowledges the abnormal preoccupation with sensory 
aspects of the environment manifested by individuals with 
ASD (DSM-IV). As per the DSM-V published in 2013 [1], 
sensory reactivity is now included among the diagnostic 
criteria for ASD. There are three types of sensory response 
patterns: sensory over-responsivity (SOR, or sensory 
hyper-reactivity), sensory under-responsivity (SUR, or 
sensory hypo-reactivity), and sensation seeking (unusual 
sensory interests) [14]. Unusual interest shown by indi-
viduals with ASD in sensory aspects of the environment 
is already acknowledged in the Diagnostic and Statistical 
Manual of Mental Disorders, 4th edition (DSM-IV). In 
2013, the DSM-V added sensory reactivity to the diagnos-
tic criteria for ASD Sensory features can be classified into 
three sensory response patterns: sensory over-responsivity 
(SOR, refers to sensory hyper-reactivity), sensory under-
responsivity (SUR, refers to sensory hypo-reactivity), and 
sensation seeking (unusual sensory interests) SUR refers 
to the lack of awareness of certain stimuli or slow response 
to sensory inputs such as sounds or spoken language [15, 
16]. Conversely, SOR refers to the subjective experience 
of and hyper-reactivity to sensory overload that would 
typically not be regarded as troublesome to individuals 
without SOR [11, 16, 17]. In individuals with ASD, SOR 
has been reported to be more common than SUR, with 
prevalence ranging from 56 to 79% [18–20], and to affect 
almost all sensory modalities [2, 12, 21]. In fact, numer-
ous individuals with ASD have more than one sensory 
response pattern.

Researchers have proposed theoretical frameworks such 
as the “weak central coherence” theory [22••], the “tem-
poral binding deficit” hypothesis [23••], and the “excita-
tory/inhibitory imbalance” model [24••] to account for the 

SOR phenomenon. A common theme across these frame-
works is that SOR is related to abnormal development of 
neuroanatomical structures crucial for processing visual, 
auditory, or tactile information [25, 26]. SOR is a form of 
sensory modulation disorder that falls within the sensory 
processing disorder umbrella[14]. SOR is a low-neuro-
logical-threshold-passive self-regulation method used in 
response to sensory stimuli, according to Dunn’s model 
of sensory processing [27•]. Because of their heightened 
sensitivity to their surroundings (caused by a lower-than-
average neurological threshold), people with SOR often 
adopt a passive self-regulation strategy, choosing instead 
to remain in the current situation and respond to it as it 
unfolds. In some cases, they may aggravate responses 
to sensory input. Children with SOR to sounds may, for 
instance, cover their ears or request silence.

The specificity of and mechanisms underlying SOR in 
ASD are still under investigation. In this paper, we present 
a review of behavioral and clinical studies that have reported 
plausible neural mechanisms underlying SOR in individuals 
with ASD.

Prenatal and Genetic Influences on SOR

Studies have revealed that prenatal and genetic factors play 
a role in SOR-related symptoms. A study found that infants 
and toddlers who were small for gestational age manifested 
SOR-related behaviors more frequently than their typically 
developed counterparts [28]. Another study reported that 
subnormal neuroplasticity of premature babies [29] was 
associated with SOR. However, Keuler et al. (2011) did not 
find a wide spectrum of prenatal factors that significantly 
contributed to SOR symptoms in toddlers [30].

Changes in the internal environment during the prenatal 
period, such as intake of medication or alcohol, increase hor-
mone production due to excessive stress [31, 32]. Increased 
secretion of testosterone in pregnant women [33] has been 
consistently shown to negatively affect neurodevelopmental 
outcomes in typically developed children without ASD. In 
children with ASD, mutations in genes encoding neuroli-
gin-3 [34] and gamma-aminobutyric acid receptor subunit 
beta-3 [35] have been proven to be substantially linked to 
SOR-related symptoms, as these mutations disturbed the bal-
ance of gamma-aminobutyric acid (GABA) [36, 37] and glu-
tamate [38, 39] in the brain. Imbalanced synthesis of GABA 
and glutamate, particularly the latter, results in excessive 
inhibitory or excitatory responses to sensory stimuli [24]. 
A recent magnetic resonance (MR) spectroscopy study 
reported close relationships between the GABA concentra-
tion in the cerebral cortex and visual perceptual functions 
of children with ASD. Compared with typically developed 
children, ASD children were found to have lower GABA 
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concentrations in the visual cortices, which were associ-
ated with a stronger sensitivity to visual stimuli [40]. The 
mechanisms underlying the possible influences of GABA 
and glutamate imbalance, changes in brain structures, and 
modulations in neural functions on SOR in ASD are dis-
cussed below.

Possible Neural Mechanisms Underlying SOR

(1)	 Sensory, emotion, and motor processing

Neurophysiological abnormalities may explain the prob-
lems encountered by children with SOR when exposed 
to sensory inputs [41]. To understand the neural mecha-
nism underlying SOR in ASD, it is important to under-
stand normal sensory to motor processing (the process 
from receiving sensory input to executing the motor and 
emotional response) in the brain. Wickens and Carswell 
(2012) suggested that sensorimotor processing includes 
three components: sensory, emotion, and motor process-
ing (Fig. 1) [42••]. During sensory processing, sensory 
inputs first reach the short-term sensory store for tempo-
rary storage [43]. Selective attention allocates attentional 
resources to decode, discriminate, and organize the sen-
sory input captured in sensory processing [44], and then 
to motor processing to select and generate an appropriate 
response to the sensory signal (Fig. 1) [45]. Emotion pro-
cessing involves the awareness and appraisal of the experi-
ences associated with incoming sensory information [46]. 
One study suggested that experiences arouse the emotion 
attached to related prior events stored in long-term memory 
[47]. In general, the generation of motor responses to the 

sensory input involves four steps: response selection [48, 
49], response preparation [48, 50], response initiation [50], 
and response execution [49].

There are many neural substrates associated with sen-
sory, emotion, and motor processing. Sensory inputs 
arrive in the sensory organs, such as eyes and ears, and 
are converted into electrical signals that are further propa-
gated to the thalamus and sensory cortices via the mid-
brain for sensory processing (Fig. 2) [51]. The electrical 
signals also travel to the amygdala and anterior insula, 
which are parts of the salience network (SN) for emotion 
processing [52]. Both the anterior insula (AI) and dorsal 
anterior cingulate cortex (dACC) within the SN contrib-
ute to the emotional processing of sensory stimuli [53]. 
Depending on the purpose of processing, sensory inputs 
may or may not be consolidated into long-term memory, 
which is subserved by the hippocampus and amygdala 
[54]. In addition, the SN has been shown to be implicated 
in motor responses [55]. The prefrontal cortex plays a 
crucial role in subserving working memory for maintain-
ing the sensory input for further processing [56]. The 
thalamus, pre-supplementary, supplementary and primary 
motor cortex, and cerebellum mediate the different stages 
of motor processing [57, 58]. Abnormalities in any of 
these brain regions, such as abnormal activation or con-
nection, are likely to cause SOR.

(2)	 Neural abnormalities associated with SOR in ASD

SOR in ASD is related to increased activation in the 
thalamus and brain areas subserving primary sensory pro-
cessing (e.g., auditory, visual, and somatosensory cortices) 
as well as salience detection and attention (e.g., the insula 
and amygdala) (Fig. 3) [59•, 60•]. In addition to attention 

Fig. 1   Summary of sensory-motor processing which has sensory, emotion, and motor components from the detection of the sensory input to 
make a response
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and sensory processing, three studies have found that the 
core facets of SOR in normal individuals are associated with 
deep sensory integration (e.g., in the prefrontal cortex, pre-
cuneus and inferior frontal gyrus), enhanced empathy and 
emotionality (e.g., involving the claustrum, anterior insula, 
amygdala, and cingulate cortex), and preparation for action 
(i.e., involving the premotor region as well as dorsolateral 
and medial prefrontal cortices) [61–63].

(3)	 Functional connectivity abnormalities — the thalamus 
and amygdala

The thalamus is a subcortical neural substrate func-
tionally connected to the insula and somatosensory, 
motor, and premotor areas of the cortices [64]. It is 
essential for the transmission and integration of sensory 
information in the brain [65]. Children with sensory pro-
cessing disorders, including SOR, have been found to 

have reduced structural connections between the cor-
tex and thalamus, and decreased functional connections 
among the primary sensory regions and thalamus, com-
pared with typically developed children [66, 67]. These 
findings are consistent with the aberrant intrinsic thala-
mus connection observed in ASD participants. [68]. In 
contrast, Cerliani et al. (2015), based on resting-state 
functional magnetic resonance imaging (fMRI), reported 
increased functional connections among primary sen-
sory regions and the thalamus as well as basal ganglia. 
These differences in the results of the three studies may 
be due to the use of different sample populations (all 
individuals with sensory disorders vs. individuals with 
ASD) and/or the different age ranges of the participants. 
It is also possible that the brain itself can do its best to 
control and reinforce the functional connection when it 
needs to function, even though the fundamental struc-
tural connection is weakened.

Functional connectivity between the thalamus and sen-
sorimotor regions is reduced in children and adolescents 
with ASD, while it is strengthened between the thalamus 
and the right temporal cortex [69]. During sensory pro-
cessing (when exposed to slightly unpleasant tactile and 
auditory stimuli), adolescents with ASD and SOR showed 
reduced functional connection between the thalamus and 
cortex, according to a fMRI research [70•]. Reduced 
thalamocortical connectivity has been hypothesized to 
reflect impaired top-down regulation in ASDs with SOR 
[71], making it more challenging for those with the dis-
order to ignore irrelevant sensory data, integrate sensory 
data, and exercise selective inhibition and focus on rel-
evant information [70•]. Individuals with ASD are more 
likely to feel overwhelmed by irrelevant stimuli or while 
receiving several stimuli simultaneously, which is consist-
ent with sensory gating hypotheses showing abnormali-
ties in sensory gating and selective attention of sensory 
stimuli [4].

Among the thalamic nuclei, the pulvinar appears to 
play a unique role in regulating and integrating sensory 
information [72, 73] and selective attention [74]. Individu-
als with ASD have been shown to have increased connec-
tion between the pulvinar and the temporal cortices, pre-
frontal cortex, and sensorimotor regions [75]. Compared 
with healthy controls, adolescent with ASD demonstrated 
increased activation in the pulvinar in response to slightly 
unpleasant tactile and auditory stimuli [59•, 60•]. In par-
ticular, individuals with ASD and SOR showed increased 
connectivity between the pulvinar and the putamen, hip-
pocampus, and right amygdala [70•]. Another study found 
that individuals with ASD had larger right amygdala vol-
umes than left amygdala volumes [76•]. The increased con-
nection between the amygdala and pulvinar has been pro-
posed to be responsible for the negative emotion associated 

Fig. 2   Summary of neural substrates and their connectivity subserv-
ing sensory-motor processing. Neural substrates of the salience net-
work are grouped within the blue dotted-line circle. The thalamus 
(shaded in blue) plays a prime role in sensory processing, while the 
amygdala (shaded in grey) plays a prime role in emotion processing 
and behavior selection
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with SOR. Taken together, the increased thalamocortical 
and pulvinar–amygdala connectivity in ASD offers plau-
sible explanations for why excessive attention to distract-
ing sensory stimuli is likely to be associated with negative 
emotion when processing the stimuli.

(4)	 Structural connectivity abnormalities

Duan et al. (2020) and Cardon et al. (2017) reported 
that children with ASD showed reduced structural con-
nectivity between the right and left hemispheres through 
the thalamus compared to typically developing children 
[76•, 77•]. Within the subcortical regions of individu-
als with ASD, Duan et al. (2020) found decreased con-
nectivity between left nucleus accumbent and the right 
globus pallidus and between the right nucleus accumbent 
and left globus pallidus, whereas an increased structural 
covariance among the adjacent regions in the right glo-
bus pallidus. These abnormalities in connectivity may 
contribute to SOR symptoms, as these neural substrates 
play important roles in transmitting incoming informa-
tion received from the sensory organs. For instance, the 
weakened connectivity between the two hemispheres sug-
gests that sensory cortices do not communicate as well 
as required, leading to failure in integrating the sensory 
inputs for initiating adaptive responses. Reduced white 

matter integrity has been reported to lead to problems 
with the synchronization of action potential transmission, 
which is crucial for sensory processing and multisensory 
integration [67].

(5)	 Summary of possible neural mechanisms underlying 
SOR in ASD

Our review of studies on attention and emotion reg-
ulation in ASD revealed an association between atten-
tion, neural substrates, and SOR, providing a plausible 
explanation of SOR from the perspective of connectivity 
among neural substrates. The specific findings are listed 
below. First, in individuals with ASD and SOR, resting-
state functional connections are enhanced between the 
thalamus, sensory cortex, and amygdala. Involvement of 
these neural substrates in ASD with SOR suggests that 
SOR is associated with increased attention and emo-
tional response to sensory stimuli. Second, abnormali-
ties in structural connectivity leading to weaker connec-
tions between the left and right hemispheres and stronger 
connections within the respective hemispheres (between 
the ipsilateral thalamus and amygdala) lead to excessive 
attention to emotion stimuli and lack of timely commu-
nication and cooperation between the hemispheres. This 
prevents adequate regulation and integration of sensory 

Fig. 3   Abnormal neural substrates and specific functional and structural networks related to sensory over-responsiveness in individuals with 
ASD
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information in the brain, leading to the output of excessive 
emotional responses and, consequently, more severe SOR 
symptoms in ASD. Thus, the possible neural mechanism 
underlying SOR in ASD can be summarized as follows: 
the abnormalities of functional and structural connectivity 
in the brain of individuals with ASD inhibits proper top-
down regulation and integration of sensory inputs, lead-
ing to increased attention to extraneous sensory stimuli 
during sensory processing and, as a result, the output of 
excessive emotional response to these stimuli.

Conclusion

Our review revealed that SOR in ASD is associated with the 
following abnormalities in brain connectivity: (i) reduced 
inter-hemispheric structural covariance connection across 
subcortical areas and enhanced intra-hemispheric structural 
covariance connection, which is thought to cause symptoms 
of weak central coherence [77•]; (ii) increased structural 
covariance in the right cerebral hemisphere, which is associ-
ated with the theory of hemispheric functional lateralization 
[78]; and (iii) increased functional connection between the 
thalamus, sensory cortex, and amygdala and decreased func-
tional connection between the thalamus and cortex, leading 
to reduced top-down regulation from the cortex to thalamus; 
this causes difficulty in filtering out and/or integrating sensory 
information and failure in selective inhibition and attention 
to external stimuli, causing lowered inhibition in generating 
excessive responses to the incoming sensory stimuli [70•]. 
The implications of these findings for the future of interven-
tion research and development for children with ASD and 
SOR are substantial. Instead of working to restore normal sen-
sory processing, effective interventions should instead train 
individuals to better manage their attention and emotional 
responses to outside stimuli [59•, 60•]. There are already 
effective interventions that teach coping strategies to individu-
als with ASD in order to decrease their anxiety [79, 80]. Due 
to the high prevalence of co-occurrence of anxiety and SOR 
in these individuals, it may be useful to adjust these therapies 
to focus on SOR [81]. More investigation into SOR’s mecha-
nistic underpinnings is needed to inform the development of 
more efficient therapies and treatment strategies for ASD.
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