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Abstract

Purpose of Review We set out to review the current state of science in neuroprediction, using biological measures of brain
function, with task based fMRI to prospectively predict response to a variety of treatments.

Recent Findings Task-based fMRI neuroprediction studies are balanced between whole brain and ROI specific analyses. The
predominant tasks are emotion processing, with ROIs based upon amygdala and subgenual anterior cingulate gyrus, both within
the salience and emotion network. A rapidly emerging new area of neuroprediction is of disease course and illness recurrence.
Concerns include use of open-label and single arm studies, lack of consideration of placebo effects, unbalanced adjustments for
multiple comparisons (over focus on type I error), small sample sizes, unreported effect sizes, overreliance on ROI studies.
Summary There is a need to adjust neuroprediction study reporting so that greater coherence can facilitate meta analyses, and
increased funding for more multiarm studies in neuroprediction.

Keywords Depression - Prediction - fMRI - Networks - Cognitive behavioral therapy - Psychopharmacology

Introduction
The State of Neuroscience and Clinical Care in MDD

Major Depressive Disorder (MDD) is a brain disease, or
heterogeneous set of brain diseases. It can lead to tempo-
rary or permanent disruptions in emotions, problem solv-
ing, attention, motivation, and sleep. MDD also has a high
prevalence, now with lifetime estimates at nearly 20% [1].
Indeed, the majority who experience a depressive episode
will re-experience the illness within 2 years, with some
estimates at 80% recurrence [2—4]. Moreover, it is becom-
ing increasingly clear that environmental and “endoge-
nous” risk factors for MDD become evident in childhood,
even if the majority of individuals who have these risk
factors do not express illness.
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It is surprising, then, that so little knowledge exists about
how to prevent or treat MDD. The research expenditure for
MDD has paled in comparison to other diseases that are rarer
and less costly — MDD is estimated to result in a 500 million
dollar loss of productivity and earnings per year in the US
alone. Current treatments for MDD have limited success,
and no clinical predictors of treatment response exist that
could be used on the individual patient level. Unfortunately,
longitudinal studies that might better illustrate the risk and
expression factors for MDD are expensive and difficult to
maintain using standard extramural funding cycles, so only a
limited number of studies have followed samples
longitudinally.

One particular challenge for treatment identification and
prediction is that MDD is a highly heterogeneous condition
that can present with any number and severity of symptoms
for treatment identification and prediction. For example, one
of the best-studied mechanisms for mood disorders is the
Hypothalamic Pituitary Adrenal (HPA) access. Yet even this
well-established model has led to a highly heterogeneous set
of reports, and recent failure of multiple clinical trials for HPA
axis modifiers [5—13]. To this end, one could consider MDD
as a multidimensional condition, as the neural underpinnings
of any of the symptoms are (a) shared with many other con-
ditions, and (b) supported by unique and integrated neural
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circuits [14]. The Research Domain Criteria (RDoC) is one
framework by which the field has begun to deconstruct the
substrates that are potential risks for MDD, or that might be
adversely affected by MDD.

A related challenge is that treatment for MDD has almost
uniformly consisted of repurposed treatments for alternative
conditions, or accidental findings. Of these treatments, there is
not a clear understanding of the mechanisms by which they
work. For example, SSRI action happens over the course of
hours, whereas the treatment effect is not evident for weeks
[15]. More recently, alternative treatments like repetitive
TMS, magnetic seizure therapy, and ketamine have enabled
us to imagine and test different pathways and mechanisms for
MDD [16, 17]. Furthermore, large clinical trials like I-SPOT
have solidified some pathways on treatment response [18es,
19¢¢], and EMBARC holds promise for new insights [20]. It is
perhaps a time for some critical reflection and discussion.

The Promise of Neuroprediction in MDD

Given the many challenges toward understanding factors in-
volved in risk for and expression of MDD, neuroscientists
have designed experiments as bottom-up tests of response in
MDD. The idea was to understand what neural mechanisms
and pathways mediate or predict (neuroprediction) response
for some individuals, so that specific treatments could be
targeted for certain individuals. First, there was a hope that
neuroprediction might illuminate the mechanisms by which
standard treatments effect change in MDD, and for whom.
Second, there was also hope that different treatments might
have different predictive capacity based upon regions and net-
works [21e]. Indeed, there is mounting evidence that brain
activity is better than standard clinical measures at predicting
treatment outcome [19<e, 22, 23]. Unfortunately, neither of
those hypotheses has led to any clear breakthroughs as of
yet — what makes for significant prediction at the group level
may not be specific enough to transfer to the individual patient
[24ee].

In addition, in many studies, samples that are eligible for
MDD imaging trials tend to be younger, more highly educat-
ed, less severely ill, absent many other medical and clinical
comorbidities, and with lower body mass index. Each of these
factors alone, and in combination, results in a far greater like-
lihood of a better treatment response [25]. In contrast, studies
of treatment resistant depression (TRD) are plagued by vari-
able definitions of MDD treatment resistance, and more het-
erogeneous, chronic representations of the illness [26-30].
How might we integrate these disparate results?

Predicting Treatment Response in MDD

By our reckoning, there are well over 60 studies that have
attempted to use neuroimaging measures to predict treatment

response (See Table 1 for a subset of just task-based fMRI
studies). The majority of these studies have been open-label,
unblinded medication trials, many of which are discussed in
two separate meta analyses [31, 32] and three recent review
articles [33ee, 34, 35]. These studies include a near term pre-
diction of reduction or resolution of depressive symptoms,
typically over 4—16 weeks.

Prediction studies fall into four broad categories of RDoC
domains — negative valence processing (e.g., emotion reactiv-
ity, attentional bias), positive valence processing (e.g., re-
ward), cognitive control and working memory (e.g., inhibitory
control), and resting. In addition, the methodologies for mea-
surement of brain function are multifaceted, including EEG,
MRI, fMRI (also including ASL, rs-fMRI, ALFF, ICA tech-
niques), PET, SPECT, and fNRIS. We focus in this review on
task-based fMRI, the predominant strategy, especially since
other reviews have included PET, ASL, EEG, and rs-fMRI.
One of the main differences across studies is whether whole
brain vs region of interest analyses were used. Moreover, dif-
ferent studies have used different thresholds for significance,
which, when combined with variable and often small sample
sizes (see below) results in an investigator/team effect outside
the effects of measurement. Finally, though, the median num-
ber of subjects is about 20 (see Table 1), which limits the
nature of accuracy in regression models [24¢e, 36]. Or for
example, in t test comparisons of responders vs non-re-
sponders, for example, if a majority of those enrolled will be
treatment “responders” then the clinically more meaningful
group (non-responders) are underweighted within the model.
Overall, these considerations and variations render integration
and interpretation challenging.

Existing Studies and Networks in Treatment
Prediction in MDD

Some early studies, reviews, and meta-analyses have
honed in on key neural circuits involved in neuroprediction
of treatment response [31-34], and we will only briefly
retouch upon these here, offering a network-based frame-
work for interpretation. The utility of a “key region” (KR)
predictive model is balanced by the reality of the level of
precision in the data (smoothness), the nature of network-
based functioning, and realizations that there is more scan-
ner noise in a given region, particularly for fMRI. For
example, the ability to replicate an exact KR is not the
same as replicating a performance or self-report predictor
in the standard sense of replication. Differences in scan-
ners, software, preprocessing pipelines (including choices
made regarding realignment, slice-timing, normalization,
standard templates, smoothing kernel), and quality control
procedures, substantially adds to variability in 3D coordi-
nate system replication, beyond the assessment of the ef-
fect size. An alternative strategy might be to employ some
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additional smoothing function when a meta analytic tool,
such as GingerAle, is employed. As a result, here we orga-
nize the regions by virtue of recent network parcellations. For
simplicity, we focus on the three-network model of Menon and
colleagues (see Table 1), while acknowledging that other re-
searchers choose to parcellate networks and subnetworks dif-
ferently [37].

Salience and Emotion Network Within the concept of a three-
network model, there is one network that prioritizes process-
ing and reacting to information that has a high salience level,
including self-relevant and often emotionally-laden stimuli.
As a result, it can be difficult to dissociate what could be
considered emotional and not salient, and even more challeng-
ing to segregate out those experiences that might be self-
relevant but somehow not salient. One can imagine, then, that
these categorizations do not lend themselves to a transparent
set of questions or answers within neuroimaging research. As
such, we combine these two highly overlapping concepts into
one broad network. The key nodes involved in this broad
network are amygdala, subgenual cingulate, dorsal cingulate,
ventral striatum, and anterior insula (possibly more ventral).
The rostral and subgenual anterior cingulate have been impli-
cated in prediction studies across modality and task [24ee, 25,
31, 34, 38, 39]. The amygdala has been a much trickier region
to study (more heavily targeted, but inconsistent results) in
prediction of response [19¢¢, 40—42]. The insula has also been
observed in a few task paradigms [32, 43, 44]. Within studies
of reward, ROI approaches have been very common, with
hypoactivation in ventral striatum and subgenual cingulate
as predictors of poor treatment response [45-47].

Cognitive Control Network The cognitive control network
(CCN), is thought to be a large subnetwork within the “task-
positive” network. It is thought to prioritize processing of
information in relation to planning, organization, sequencing,
stopping and starting, and processing of mental operations.
Key nodes are the dorso-lateral prefrontal cortex (DLPFC),
the inferior parietal lobule, and dorsal anterior cingulate. Of
the few studies that have employed cognitive control or work-
ing memory studies, the importance of the right DLPFC in
treatment prediction has been reported in several studies, pri-
marily cognitive control and working memory tasks [18ee,
24 38, 48]. Notably, many negative valence studies have
also reported DLPFC activation as a predictor of treatment
response [39, 49-52]. It is possible and even likely that emo-
tion regulation engages cognitive control regions to aid in
managing the emotional response, even if it is somewhat un-
clear about the level of volitional control a particular patient or
control participant might have over such regions.

Default Mode Network (DMN) The DMN is a distributed neu-
ral network encompassing a large amount of medial cortex,

proximal to both anterior and posterior aspects of the medial
prefrontal cortex. It also includes nodes within medial and
lateral temporal and parietal cortex. It is thought to represent
a host of functions including memory, self-referential thought,
theory of mind [37]. Because DMN is a task-negative net-
work, it has been relatively understudied in task domains,
yet it does routinely activate in prediction of treatment re-
sponse for affective paradigms [34, 50, 53-55]. The medial
prefrontal cortex is a frequently reported predictor in fMRI
task-based studies, and includes/extends into rostral cingulate,
mostly for emotion perception/processing studies, primarily in
emotion perception, processing and regulation tasks [50, 51].
The most ventral aspect of the posterior cingulate, extending
into posterior hippocampus, is a reported predictor for both
cognitive and affective paradigms [50, 55, 56]. The anterior
hippocampus, has also been reported as a predictor, primarily
in emotion processing studies [49].

Other Regions Surprisingly, visual cortex and cerebellum ap-
pear also in such task-based fMRI studies, irrespective of
mechanism [24ee, 31, 34, 38, 49]. Not surprisingly, these re-
sults are often under-specified and under-discussed.
Potentially due to the lack of theory regarding the potential
contributions of these regions to MDD, such findings never-
theless cause us to pause in making assumptions about net-
work or KR specificity in neuroprediction, and require further
study.

Recent studies have even looked at comparative and integra-
tive prediction of different neuroimaging approaches [24e, 57].
The goal is to obtain a treatment prediction accuracy of >95%
(binary question of whether this particular patient will achieve
remission) so that such predictors could be used in treatment
prescriptive studies. More importantly, using combined/
comparative treatment studies could identify highly accurate
moderators and mediators of treatment response, so that a pre-
scriptive clinical imaging design could be planned. The results
of such studies could inform newer guided clinical trials where
the key outcome is time to remission. If we could reduce the
median time to wellness by weeks or even months, a consider-
able degree of the “burden” of depression could be reversed.

One recent study by our group combined behavioral, task-
fMRI, and task-fMRI with independent component analysis in
an integrative predictive model that achieved 89% accuracy in
prediction of treatment response, including steps with cross
validation [24¢¢]. Medial and lateral prefrontal cortex synchro-
nization of activation during errors was a positive predictor of
degree of treatment responsiveness, and accuracy of predic-
tion significantly increased when combined with poorer be-
havioral inhibitory control and increased activation in several
prefrontal regions. In addition, one of the I-SPOT reports sug-
gested that hypo-reactivity in emotional stimuli within the
amygdala was successful in predicting treatment response
with 75% accuracy [19e].
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Predicting Risk and Disease Course

Another potential use of neuroimaging studies in MDD is to
predict disease course or recurrence of illness. Of the studies
that have been conducted, initial results are interesting and
potentially promising. However, there are relatively few stud-
ies of this type. The distinction between risk and disease
course studies, is that they study individuals over a longer
period of time (e.g., 6 months up through decades of follow-
up), and the goal is to predict a distant event. The likelihood
that such studies will yield a positive predictor is quite modest.
In fact, this weakened predictive capacity is compounded by
attrition, and further limited by the tendency for negative stud-
ies to go unpublished [58], and the difficulty in publishing
replication studies (see below for more details).

A prior review identified biological markers of vulnera-
bility in at-risk youth [59]. Despite the many challenges of
publishing longitudinal data, investigator variability in
task/physiological/measurement probes that were used,
and the marked cost of longitudinal studies, this review
noted that there were a significant number of biological
predictors that were reported by more than one group. For
example, EEG measured alpha band power, P300, and fron-
tal asymmetry all demonstrated some degree of hereditary
convergence. Studies that use fMRI measures to predict
outcome are few and far between. Recently, the longitudi-
nal assessment of manic symptoms (LAMS) multisite
group suggested that self-report and neuroimaging markers
could account for 28% of variance in future manic symp-
toms [60]. This study followed 78 at risk youth for an av-
erage of 15 months and using cingulum connectivity and
connectivity from the ventral striatum to the parietal cortex
as predictors. Another study used cross-hemispheric con-
nectivity from subgenual anterior cingulate seeds within a
psychophysiological interaction analysis during a self-
blame task. Surprisingly, though, the resilient group (no
MDD recurrence) was different from the healthy control
group, whereas the group with recurrent MDD did not no-
ticeably differ from the HC group [61]. Recurrence was
predicted with 75% accuracy in this sample. A final exam-
ple of the utility of fMRI in the prediction of treatment
response comes from a study of anterior cingulate volume,
which predicted 52% of variance in future depression
scores, along with other relevant clinical data [62]. While
these studies are encouraging, more are needed. As an ex-
ample of what might be conducted in future studies, a recent
paper used discrete-time Markov Chain with finite states
(based upon 1 year of monthly self report questionnaires)
to define latent symptom classes in 209 adults with bipolar
disorder [63+¢]. These repeated measures type analyses
with MDD combined with biological measures in patients
with MDD could be very helpful for predicting future states
and course of illness.
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Open Label Studies, Placebo Response
and the Specificity of Clinical Prediction

The majority of predictive studies in MDD with fMRI have
been open label studies. Those who have longstanding interest
in clinical trials have questioned the internal validity of open
label, one-arm predictive studies, because there is no compar-
ison treatment, the treatment is not blinded, and there is no
placebo control. We agree that single arm studies have chal-
lenges for specificity of prediction — but if replicated these
studies still may offer some prescriptive value. We highlight
the importance of the control group to evaluate effects of time
and maturation independent of the treatment condition [64].

Placebo-controlled designs have several challenges and
merits, as there are opportunities in these designs to distin-
guish treatment specific and more generic effects of help-
seeking and return to wellness. The role of placebo responding
is an important consideration in treatment prediction model-
ing. Many studies suggest that placebo responding can be
nearly as good as the effects of an active treatment [20, 65].
These studies have led to concerns about the biological spec-
ificity and clarity of diagnoses and treatments, including with
MDD. They have also led to broader concerns with specificity
of treatments for MDD.

More recently, our group has focused on whether placebo
responding is in fact distinct in any way from response to a
standard psychiatric medication [66]. Notably, the individuals
who are most responsive to a suggestive placebo effect are
also the ones who show the greatest responsiveness to a psy-
choactive treatment had greater u-opioid release during place-
bo in the nucleus accumbens. The EMBARC study should
also be able to address this question in some detail.

Psychometric considerations beyond placebo include natu-
ral resolution of illness, regression to the mean, and the close
links between hopefulness, behavioral activation, and placebo
responding [65]. Continued innovation is needed to better
understand placebo response, and perhaps how placebo might
be marshaled to facilitate, enhance or extend the effects of
psychoactive medications and psychotherapies. In summary,
although we agree that single arm studies clearly have chal-
lenges for specificity of prediction, if replicated these studies
still may offer some prescriptive value.

Power, Clinical Significance, Effect Sizes,
and Adjustments for Multiple Comparisons

There is continued misunderstanding within the imaging field
(although it is not relegated solely to imaging studies) about
the role of statistical adjustment of accepted type I error rate,
the relationships of statistical threshold adjustment to chances
for replication, and whether such one-off studies can actually
diminish the type I error without negatively compromising a
scientific line of inquiry. Statisticians often counsel on the
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careful selection of a p value to balance out the nature of a
false positive, type I error, vs a type 11, negative error [36, 67].
In addition, the concept of meaningfulness of a significant
effect — does it help us to understand illness, treatment with
areasonable degree of precision and effect size, is often lost in
the discussion [64, 68]. We hope to illustrate that the concerns
about type I error are valid, but that they have mislead re-
viewers and the field into a p value war that can only sacrifice
type Il error, clinical significance - and will very likely reduce
the capability of time tested strategies like replication and
meta-analysis. Figure 1, Panel A is an actual illustration of
the relationship between sample size and statistical signifi-
cance using GPower. We set alpha at .005, as our experience
suggests that this threshold has a balance between statistical
stringency and clinical significance. To achieve significance
with an alpha of .005 and power of .80, an effect size of 1.25
(very large) is needed with equal samples of 20. This means
that many comparison studies are underpowered for large and
medium effect sizes, they would have a higher likelihood for
non-significance in this scenario (type Il error). This is partic-
ularly troubling, as the vast majority of medical treatments
have small to moderate effect sizes (Fig. 1, Panel B). So,
would we counsel throwing away the baby with the
bathwater?

This illustration enables us to see what types of effect sizes
would be significant with a given sample size. This is
compounded by the reality that large effect sizes may be no
more or less likely to replicate than very large effect sizes. This
creates an unhealthy tension between whole brain analyses
and ROI analyses. There may be a temptation to only report
ROI analyses to avoid undergoing adjustments for multiple
comparisons. Including ROI only analyses - limits the ability
to conduct meaningful meta-analyses across many studies.
This challenge is compounded, because few groups are capa-
ble and motivated toward carrying out treatment studies with
biological markers.

A brief comment on adjustments for multiple comparisons.
We contend that the unbalanced concern about p value adjust-
ments, with multiple comparisons in mind, has created a
mindset in authors, reviewers and editors that is not conducive
to evaluating the relative merits of false positives vs true neg-
atives. There is already a tremendous bias against publication
of negative results, often referred to as the file drawer effect.
Well-funded labs are left to resort to publishing in paid
journals, if they choose to publish the findings at all. Less-
well funded labs resort to planting summary results in chapters
and reviews, with sparse and under-evaluated methods. No
matter the outcome, the lack of published negative studies
substantially limits the benefits of meta analytic and qualita-
tive review techniques.

Finally, an unadjusted p value for a new treatment
(exploratory) should be viewed differently than an unadjusted
value for a known treatment. There is currently a focus on

rapid fail clinical trials at the NIMH. A strict evaluation of
merit based upon adjusted p value may result in type II error
— a promising treatment may be relegated to the dust heap. An
evaluation based upon effect size with confidence estimates
around the effect size, combined with rapid extension into a
replication sample, can help balance type I vs type II error.
Moreover, before the rapid extension to multisite trials, it is
wise to require a semi-independent replication at a separate
site. An extension of R61 to R33, could be followed by a
second R33 (or even concurrently run, perhaps a new R mech-
anism) in an independent lab with input from the PI and team
from the R61/R33.

Neuroprediction in the RDoC Era: Current Directions
and Recommendations

The emergence of the RDoC era has placed the question of
treatment effect sizes and specificity squarely in the cross-
hairs. There are many non-specific effects of intervention;
effects of therapeutic alliance, intervention time, effort toward
change, regression to the mean, placebo effects, natural reso-
lution of illness, etc. Each of these can contribute to significant
“improvement” that is not related to the specific mechanisms
of treatment (e.g., domain). RDoC highlights this tension be-
cause it shows how many diseases may have common and
overlapping domains of illness — therefore they may also have
common pathways to wellness [69—73]. Anxiety and depres-
sion may share similar negative valence domain disruptions,
whereas only depression might have positive valence domain
dysfunction.

To date, the study of clinical predictors has tended to overly
rely on a categorical-polythetic diagnostic nomenclature (e.g.,
DSM-IV) constricting tests to one disorder, often testing the
therapeutic response in terms of rigid measures of symptom
change — these are inevitably tied to categorical diagnostic
systems. Given the heterogeneity of major depression and
dimensional nature of symptomatology, neuropredictors of
treatment response may elucidate distinct and shared path-
ways that interact with particular interventions. Therefore,
testing the discriminant and construct validities of several
RDoC domains and dimensions (e.g., reward, threat
responding, loss, affect regulation) linked to circuits in exper-
imental designs that examine response to interventions with
different mechanisms of action (e.g., pharmacotherapy, psy-
chotherapy, neuromodulation) can lead to new insights.

The convergence of anxiety and depression symptoms and
effected domains suggests that there may be parallel predictors
in treatment response. The RDoC initiative has encouraged us
to frame our understanding of treatment mechanisms and pre-
dictors to have the broadest impact on the care of patients with
major depression and other internalizing psychopathologies
(IPs [74]). More specifically, the RDoC framework is ground-
ed on three postulates of high relevance to neuroprediction: 1)
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IPs as mental illnesses are disorders of brain circuits (e.g.,
amygdala-frontal circuitry); 2) tools of clinical neuroscience
(e.g., functional neuroimaging, electrophysiology, etc.) can be
used to test and advance biosignatures that will guide treat-
ment; 3) brain-based predictors can be enhanced by a multi-
modal approach that incorporates different units of informa-
tion that are likely to moderate or mediate neural predictors
[75]. This framework has the potential to catalyze research
that will address knowledge gaps that have hindered progress
in incorporating biological predictors into clinical practice.
Additionally, accumulating data from the literature and our
teams suggest brain regions implicated in the brain pathophys-
iology of a disorder or even in treatment-mediated change
may not be the same regions that predict treatment response
[35, 76°+, 77]. For example, those factors that contribute to
risk of illness are thought of as endophenotypes. Those that
mediate the treatment response are considered treatment

@ Springer

targets. Those factors or biological markers that predict
treatment response could be endophenotypes. They could
also be treatment targets. They could, however be inde-
pendent treatment predictors, and be unrelated to
endophenotypes or treatment targets. RDoC studies with
a focus on specific domains of dysfunction (e.g., treat-
ment targets and/or endophenotypes), may in fact best
highlight (or even expand) treatment predictors across
multiple illnesses and domains. Thus, continued focus
on mechanisms for endophenotypic risk is likely a differ-
ent path than the advancement of biomarkers toward pre-
cision medicine (treatment targets or predictors).

Conclusions and Recommendations

We have attempted to cover a few important issues in
neuroprediction studies in MDD. To our view, there are two
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Table 2 Reporting
Recommendations for
Neuroprediction Studies

ROC curves

Effect sizes

Standardization of treatment response

Validation of biomarkers

Omnibus, multimodal prediction strategies

Reporting results at p <.005 with modest
cluster size correction (e.g., k> 50)

Reporting total number of analyses conducted

and family wise error

Using comparison treatments that are expected
to have a different mechanism of action

Use of ROC curves enables a quick easy understanding of the
clinical relevance of a prediction variable or model.

Reporting effect sizes can help translate to clinical
meaningfulness (cohen’s d, or Z score, suggest including
confidence intervals).

Use of reliable change index or multiple measures (e.g.,
pre-to-post percent reduction on both self-report and
clinician-report) standardizes reporting and interpretation

Training-testing splits or cross-validation for internal
validation; testing predictor performance on data sets
collected from different laboratories for external validation

Newer prediction tools can adjust for the imbalance between
number of predictors and number of subjects, adjust for the
impact of non-normal distributions with outliers.

Supplemental Tables with whole brain, partially adjusted
results, guided by clinical effect sizes, not multiple
corrections. These will enable users to integrate against a
uniform standard for meta-analysis

Report the number of a priori analyses and the adjusted
Familywise Error rates. This allows the reader to better
integrate the likelihood of false positive errors.

Even if the interaction between treatment arm and predictors
is not significant, it can provide meaningful pilot
information for future studies of differential mechanism
and effectiveness trials.

few studies of the neurobiological predictors of and mecha-
nisms involved in treatment response, even of accepted clini-
cal treatments. Neuroprediction studies offer several windows
into disease, illness expression, processes of recovery, and
maintenance of wellness. We recommend that concerted effort
be focused toward collections of patients with internalizing
disorders, often referred to as repositories. These repositories
of eligible and interested patients can then be tested with dif-
ferent RDoC paradigms, with sufficient sample sizes, using
different treatment strategies, with the idea that accumulated
knowledge will improve the matching of treatments to patients
for optimal outcomes. In the meantime, a great deal will be
learned about how our treatments work, and for whom.

We close with some additional recommendations for uni-
formity in reporting for neuroprediction studies (Table 2).
These can be considered as additional and complementary to
already existing reporting guidelines (e.g., COBIDAS [78¢¢]),
with a specific focus on data that will assist in evaluating
clinical specificity, meaningfulness, and can contribute to me-
ta analyses. We highlight again, that such reporting guidelines
do not and cannot protect against a failure to replicate. They
can only guide better implementation of replication studies,
increased rigor. Moreover, we add that replication studies
should carefully consider challenges of overfitting, p-hacking,
and spatial alignment challenges. A poorly executed replica-
tion study (by sample size, design, inclusion and exclusion

criteria, treatment fidelity) has the potential for great harm.
As the number and types of therapies for internalizing disor-
ders has expanded, including many different potential mech-
anisms, we harbor optimism that we will move the needle
forward, toward better and more precise treatment matching.
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