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Abstract Working memory (WM) is an essential neuropsy-
chological system that supports complex cognitive processes.
Transcranial direct current stimulation (tDCS) uses electrical
current to modulate brain activity and may serve as a tool for
studying or even enhancing WM. Here, we review the recent
research that has explored the effects of tDCS on WM in
healthy young adults, older adults, and patient populations.
We also discuss several recent meta-analyses that have exam-
ined the efficacy of tDCS as a WM intervention. While a
majority of the papers reviewed suggest that tDCS can mod-
ulate WM, this effect is highly inconsistent. These seemingly
conflicting results may be driven by differences in study de-
sign, tDCS protocol, or inter-individual differences. Future
research should systematically vary stimulation parameters,
combine tDCS with neuroimaging, and account for individual
differences in order to accurately assess the value of tDCS as a
way to study and enhance WM.
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Introduction

Working memory (WM) is a neuropsychological system that
allows information to be manipulated and maintained tempo-
rarily in service of complex cognitive processes including
goal-directed behavior, learning, and problem solving [1].
Dysfunction of WM is often observed in healthy older adults
[2–4] and is a hallmark of several neurological disorders in-
cluding schizophrenia [5], attention-deficit/hyperactivity dis-
order [6], and Parkinson’s disease [7]. Because of its impor-
tance to cognition, a wide variety of interventions have been
developed to prevent, cease, or even reverse WM decline,
albeit with mixed results [8–10]. Despite some progress with
current pharmacological, cognitive training, and behavioral
interventions, there remains a pressing need for efficient inter-
ventions that can generate consistent and long-lasting benefits
in WM.

One potential candidate is non-invasive brain stimulation,
specifically transcranial direct current stimulation (tDCS).
Because tDCS is relatively inexpensive, safe, and easy to ad-
minister, interest in tDCS as a cognitive enhancement tool has
grown rapidly over the last decade. This interest spans basic
scientific and clinical research; however, significant progress
is needed in identifying optimal stimulation parameters and
understanding the underlying neural mechanisms affected by
tDCS [11]. Despite these and other challenges, the potential to
modulate activity exogenously and facilitate cortical plasticity
offers exciting opportunities to build upon neuroimaging ob-
servations, strengthen causal claims, and craft interventions
for vulnerable and healthy populations. Here we provide an
overview of tDCS followed by a focused review of the effects
of tDCS on commonWM task performance in healthy young
adults, healthy older adults, and clinical populations.
Additionally, we highlight a few seminal meta-analyses, dis-
cuss the current limitations of using tDCS to study cognitive
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processes, and propose future directions for research
employing tDCS to influence WM.

Transcranial Direct Current Stimulation

tDCS belongs to a family of non-invasive brain stimulation
techniques that exploit electrical and magnetic principles to
modulate neural activity exogenously (see [12•] for review).
Although systematic investigations of its effects date back to
the mid-1900s [13, 14], tDCS experienced a resurgence in
interest in the early 2000s driven by advances in neuroimag-
ing, transcranial magnetic stimulation (TMS), and safety stan-
dards [15]. In the past two decades, over 1000 papers have
been published on the use of tDCS.

Administering tDCS

Traditionally, tDCS is administered by passing a weak con-
stant electrical current through two electrodes housed in
saline-soaked sponges. One sponge is fastened to the subject’s
scalp over a region of interest while the other (sometimes
referred to as the reference) is placed over another cortical
region or a non-cortical location such as the cheek or arm.
The electricity generated by a battery-powered direct current
stimulator flows from the anode electrode to the cathode elec-
trode. Stimulation is generally applied for 10–30 min; howev-
er, the effects of tDCS have been shown to last as long as
several hours [16], and multisession stimulation has been
shown to result in improvements on cognitive tasks that are
evident months after the intervention [17, 18]. Variations in
current strength, electrode size, and stimulation duration mod-
ify the Bdose^ of stimulation and have been shown to modu-
late responsiveness to tDCS [19]. Importantly, increases in
current density, which are determined by electrode size and
current amplitude, increase the depth of the electrical field
generated potentially resulting in a non-linear relationship be-
tween stimulation and its effects [19]. In a seminal study,
Nitche and Paulus [20] showed that applying a weak positive
or negative electrical current over the motor cortex increased
or diminished cortical excitability, respectively, as measured
by motor-evoked potentials. Thus, anodal stimulation is gen-
erally thought to increase neural excitability while cathodal
stimulation is thought to inhibit neuronal activity. However,
as discussed below, inconsistent results supporting this as-
sumption have led to a call to eschew this simplistic under-
standing of polarity effects (see [21]).

One advantage of tDCS is the easy application of a place-
bo, or sham, condition built into many stimulators. Naïve
subjects in parallel studies are effectively blinded to condition
(i.e., unaware of whether or not they are being activated stim-
ulated) [22] while some subjects in cross-over design studies
have been shown to correctly identify conditions, albeit

somewhat unreliably [23]. tDCS is also relatively safe.
Documented side effects are minor, benign, and fleeting.
tDCS has been used safely in studies of children and adoles-
cents with few, minor adverse events reported [24]. Currently,
the most commonly reported side effects include itching or
tingling sensations at the electrode site, mild headache, burn-
ing sensation, and discomfort. However, there is a selective
reporting bias such that nearly half of the studies examined in
one review did not report the presence or absence of adverse
events [25, see also Tables 1 and 2].

Proposed Mechanisms of tDCS

Despite the limited understanding of the underlying mecha-
nisms of tDCS, the potential to modulate activation exoge-
nously and increase neuroplasticity has far-reaching implica-
tions for cognition and behavior. Unlike TMS, which uses
strong magnetic fields to disrupt brain activity directly, tDCS
uses weak electrical fields that slightly modify the neural
membrane potential making neurons more or less likely to fire
[12•]. Current modeling indicates that conventional tDCS is
less focal than TMS, and can affect cortical regions distant
from the electrode [73]. Importantly, tDCS seems to work
via two mechanisms: one that acts during stimulation and
the other that acts following stimulation [74]. Consequently,
attention should be paid to whether a study employs an online
protocol, in which task performance is measured while receiv-
ing stimulation, an offline protocol, in which task performance
is measured following stimulation, or some combination of
the two.

During stimulation, tDCS is thought to act by modulating
neuronal resting membrane potential in a polarity-specific
manner. In this conceptualization, anodal stimulation depolar-
izes resting membrane potentials, thereby increasing firing
rate, whereas cathodal stimulation hyperpolarizes resting
membrane potentials, making them less likely to fire [75].
Following stimulation, the reverberating effects of tDCS are
thought to rely on modulation of glutamatergic synapses
which may, in turn, result in long-term potentiation (LTP)
and long-term depression (LTD) acting in the previously stim-
ulated regions [74]. tDCS-induced plasticity is modulated by
acetylcholine, serotonin, and dopamine neurotransmitter sys-
tems and therefore may be governed, in part, by genetic poly-
morphisms [74, 76••, 77]. Beyond intracortical interneuron
communication, tDCS has been shown to modulate cortico-
cortico and cortico-subcortical functional connectivity [78,
79].

Recent Advances

Recently, modifications to the administration of tDCS aim to
diversify its use as a neuromodulation tool and address short-
comings. These modifications have included high-definition
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tDCS (HD tDCS), transcranial alternating current stimulation
(tACS), and transcranial random noise stimulation (tRNS).
Improvements in focal stimulation have been achieved by
using high-definition tDCS, which involves a number of
smaller, gel-based electrodes (approx. 12 cm2) applied strate-
gically in a ring around an area of interest (see [80] for de-
tailed treatment). Whereas much initial research focused on
stimulating the motor cortex, HD tDCS reportedly facilitates
visual perception [81] and verbal learning [43] when applied
to occipital and fronto-temporal regions, respectively. While
HD stimulation combined with neuroimaging is needed to
determine the extent of current dispersion, HD tDCS may
help identify casual roles for specific brain regions and may
be a safer, inexpensive alternative to TMS.

tACS entails the application of symmetrical oscillatory
stimulation which has been shown to modulate and entrain
cortical oscillations as measured by frequency bands (see [82]
for review). tACS of the left dorsolateral prefrontal cortex
(lDLPFC) can entrain gamma oscillations resulting in greater
WM improvements at higher loads than those found using
traditional tDCS [83]. Like tDCS, tACS may work by mod-
ulating neural membrane potential. Thus far, these changes
appear not to have plasticity-inducing effects, thereby limiting
the potential utility of tACS as a tool for cognitive interven-
tion [84].

Finally, tRNS is a form of tACS that employs currents at
random frequencies (0.1–640 Hz) resulting in LTP-like
changes [85]. Unlike tDCS, tRNS is not sensitive to current
flow, is NMDA-receptor independent, and is easier to blind
[85, 86]. When compared to tDCS, tRNS has been shown to
result in larger improvements in visual learning [87] and larg-
er suppression of tinnitus symptoms [88]. Despite these prom-
ising recent findings, tRNS research is in its infancy and more
work is needed to determine the optimal circumstances for
using tRNS.

tDCS and Working Memory

Studies examining the effects of tDCS on WM are summa-
rized in Tables 1 and 2. It is widely accepted that the dorso-
lateral prefrontal cortex (DLPFC) plays a crucial role in WM
function [89]. Accordingly, most studies place electrodes of
interest over regions that correspond to DLPFC location (BA
9/46; International 10-20 system: F3 or F4). The present re-
view is limited to studies that employed a well-established
WM task or variant. These include digit span forward and
backwards, in which participants repeat number strings of
increasing length in forward or reversed order [90], Corsi
Block forward and backwards, which uses block locations
to examine visuospatial WM [90], letter-number sequencing,
which requires participants to organize a random series of
numbers and letters into ascending order [90], the SternbergT
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task, in which participants hold a varying number of items in
mind and then judge whether or not a probe is in the remem-
bered list [91], and the N-back task, which requires partici-
pants to match a current item and one presented a specified
number of trials before [89].

Single-Session tDCS and Working Memory

Most tDCS research has been conducted on young, healthy
adults and the effects on WM performance have been mixed.
Several studies find that anodal tDCS applied to F3 results in
improved WM performance [26, 31, 35, 36, 44], others find
improvements in response time but not accuracy [41, 43, 47;
but see 32], while still others find no effect of stimulation on
performance [30, 42, 46, 50]. The seemingly contradictory
results may have various origins including differences in stim-
ulation parameters and task difficulty across studies. For ex-
ample, Martin et al. [39] examined the effect of offline versus
online anodal stimulation of F3 on an N-back task with adap-
tive difficulty within individuals. Online stimulation applied
during adaptiveN-back training resulted in significantly larger
WM gains on a test the following day compared to offline
stimulation before training. In another study [34], 1-mA, but
not 2-mA, stimulation resulted in response time improve-
ments on a 2-back task, with the greatest improvements pres-
ent 40 min following stimulation. In addition to stimulation
differences, differences in task demand may influence the ef-
fectiveness of tDCS. Recently, Wu and colleagues [49] found
that anodal tDCS over rDLPFC resulted in improvements to
spatialWMonly in the most demanding condition (backwards
Corsi recall with motor interference). Similarly, anodal stim-
ulation over lDLPFC appears most effective in high-demand
tasks [33, 40].

In a recent comprehensive meta-analysis, Horvath and col-
leagues [92••] reported finding no reliable effect of single-
session tDCS on any of a number of cognitive tasks, including
WM tasks. These results, however, run contrary to meta-
analyses conducted by Hill et al. [93••] and by Brunoni and
Vanderhaselt [94•]. Hill and colleagues [93••] examined the
effects of tDCS onWMperformance, specifically. They found
that offline anodal stimulation results in improvements inWM
response times and trends towards increased accuracy in
healthy adults. In another meta-analysis, Brunoni and
Vanderhaselt [94•] specifically examined the effects of non-
invasive brain stimulation of DLPFC on N-back performance.
The authors reported results similar to Hill and colleagues
[93••]: a significant improvement in WM response time, but
not accuracy, following tDCS. Hill [93••] suggests that the
discrepancies between their meta-analysis and Horvath’s
meta-analysis could be due to differences in power. Hill’s
meta-analysis included a larger number of WM studies com-
pared to Horvath’s which parsed 53 cognitive studies into
smaller subsamples (2 to 6 studies each) based on stimulation

parameters and cognitive task. Price and Hamilton [95] have
criticized this approach, claiming that running separate analy-
ses on subsamples may yield results that are insufficiently
powered to allow for meaningful interpretation. Horvath noted
that their null effects arose from data from healthy young
adults after a single-session of tDCS and suggested that
tDCS administered in other populations, or over multiple ses-
sions, may yield different results.

Multiple-Session tDCS and Working Memory

As highlighted by Horvath [92••], tDCS effects may need to
accumulate across multiple sessions to be observed consis-
tently in cognitive tasks. To date, only a handful of studies
have used multiple sessions of tDCS to influence WM perfor-
mance in healthy, young adults. Anodal stimulation of
lDLPFC across two [52] and four [54] sessions did not result
in WM improvements on N-back tasks. Martin et al. [53]
examined the effect of ten sessions of anodal tDCS to
lDLPFC administered while performing a WM training task
(adaptive dual N-back) on training-task performance as well
as on WM measures completed before and after the interven-
tion. Online tDCS resulted in more accurateWMperformance
during stimulation, but did not increase post-stimulation per-
formance on either the WM training task or the untrained
tasks. In a more recent study, however, Richmond and col-
leagues [55] found that compared to sham stimulation, ten
sessions of anodal tDCS to lDLPFC during verbal WM train-
ing resulted in significant improvement on the trained task.
Further, active stimulation resulted in significant improve-
ments on untrained WM tasks compared to a no-contact con-
trol group. However, there were no differences between active
and sham groups or between sham and no-contact control
groups on the untrained tasks. Importantly, Richmond and
colleagues [55] employed a montage in which the cathode
was placed over another cortical region (rDLPFC), unlike
Martin and colleagues [53], who placed the cathode in an
extracephalic position (right deltoid) to avoid confounding
potentially inhibitory effects. This raises the intriguing possi-
bility that the excitatory effects of the anode depend on inhib-
itory effects of the cathode over other, perhaps competing
regions to improve WM.

Clinical Populations

WM dysfunction is a symptom often associated with neuro-
logical and neuropsychiatric disorders. tDCS has been report-
ed to successfully enhance motor and cognitive function in
disorders such as Parkinson’s disease, aphasia, and neglect
(see [96•] for review). tDCS has been shown to improve
WM performance in people recovering from stroke [70], peo-
ple diagnosed with Parkinson’s disease [67], and people with
schizophrenia [68, 69]. However, tDCS has shown no effect
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on WM performance in people suffering from traumatic brain
injury [71], temporal lobe epilepsy [72], or Alzheimer’s dis-
ease [59]. In a preliminary meta-analysis, Hill and colleagues
[93••] examined the effects of tDCS on WM performance in
neuropsychiatric patient cohorts, including depression,
Parkinson’s disease, and schizophrenia. Unlike healthy adults,
who exhibited improvement from offline stimulation, neuro-
psychiatric patients only showed significant improvements in
WM accuracy with online stimulation. The authors speculate
that, because patient populations have abnormalities in the
balance of excitation and inhibition, stimulation during task
may be necessary to adequately modulate this balance.
However, it is worth noting that this meta-analysis collapsed
across multiple types of neuropsychiatric disorders; patient
populations may differ in responsive to tDCS.

The most extensive work to date on tDCS in patient
populations has been in depression. Similar to patterns
observed in healthy individuals, the results are inconsis-
tent. Several studies employing multiple lDLPFC anodal
stimulation sessions reported no effect on WM perfor-
mance in depressed individuals [62, 64, 65], whereas
other multisession stimulation studies using similar stim-
ulation parameters reported significant improvements
[63, 66]. Moreover, studies by Moreno et al. [60] and
Oliveira et al. [61] on depressed participants found WM
improvements after just one session of lDLPFC anodal
stimulation. The studies reporting tDCS effectiveness on
WM in depressed individuals had notably younger par-
ticipants (Mage = 26.5–46.4) than studies in which the
intervention was ineffective (Mage = 45.6–52.4) suggest-
ing that age may interact with depression to affect tDCS
efficacy.

Older Adults

Research examining how tDCS affects cognition in healthy
older adults (65+) is relatively sparse. This is surprising be-
cause tDCS is thought to promote cortical plasticity [74], and
aging is characterized by a decline in plasticity [97] making
tDCS a potential promising intervention for cognitive aging.
However, a recent meta-analytic review conducted by
Summers and colleagues [76••] collected 25 separate studies,
published over the last 5 years, and found a robust enhancing
effect of anodal tDCS on cognitive processes in the elderly.
Specifically, anodal tDCS enhanced performance on memory/
WM tasks with an observed effect size of 0.45. Additionally,
stimulation applied before task and to cortical regions other
than DLPFC showed the largest effects [76••]. Another review
focused specifically on WM in older adults found similar re-
sults [98•] suggesting that tDCS may serve as an effective
WM intervention in the elderly.

Many of these meta-analyses and reviews are limited by the
paucity of research focused specifically on tDCS and WM in

older adults. For example, the Summers et al. [76••] review
combines both long-term memory andWM into a single mod-
erator variable. Individual studies of tDCS and well-accepted
WM tasks, like the N-back task, often provide mixed results.
Nilsson and colleagues [57] examined the effect of 1- and
2-mA single-session anodal stimulation to lDLPFC on 3-
back performance in older adults. Anodal stimulation did
not affect WM accuracy or response time during or after
stimulation, regardless of stimulation amplitude. In con-
trast, Seo et al. [58] found that older adults who received
anodal stimulation to this region performed better on a
verbal N-back task, when compared to participants who
received sham. Berryhill and Jones [56] found anodal
tDCS improves WM performance, but only in highly ed-
ucated older adults, suggesting that perhaps differences in
participant characteristics and demographics may contrib-
ute to the observed inconsistent tDCS effects in older
adults. Studies employing multiple stimulation sessions in
older adults have also yielded a complex pattern of results.
Whereas one recent study indicated that ten sessions of
anodal lDLPFC stimulation coupled with cognitive training
resulted in greater WM improvements immediately follow-
ing stimulation, compared to those who received sham
stimulation [17], another study employing a similar design
found no effect [18]. In both studies, however, older
adults who received active anodal stimulation maintained
WM improvement at follow-up (7 days–1 month), com-
pared to older adults who received sham stimulation, sug-
gesting a potential role for tDCS in long-term maintenance
of training benefits.

Methodological Issues and Other Challenges

In a recent review, Trembley and colleagues [99•] found
that studies of tDCS applied to DLPFC reported inconsis-
tent changes in WM performance. Anodal stimulation to
left DLPFC resulted in increases in WM performance in
some research and declines in WM performance in others.
They observed a similarly discrepant pattern across studies
using cathodal stimulation to this region. Inconsistent out-
comes across studies could stem from differences in study
design, stimulation parameters, and participant inter- and
intra-individual differences. Notable methodological differ-
ences include electrode montage, current density and du-
ration, online/offline stimulation, number of stimulation
sessions, sham/active comparison condition, parallel/
crossover design, washout period, age range, WM task,
task difficulty, and participant/experimenter blindness to
the stimulation conditions. Many of these differences are
evident in Tables 1 and 2. The next section outlines ad-
ditional issues that should be considered when designing
or interpreting the results of a tDCS study.
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Assumptions of Polarity

Anodal stimulation is theoretically associated with excitation,
whereas cathodal stimulation is linked to inhibition. However,
according to recent evidence, these polarity-specific assump-
tions, based primarily on initial research in the motor cortex,
are violated in both motor and non-motor regions [21]. While
the effects of tDCS on the human motor cortex can be mea-
sured directly with a combination of TMS and observed
motor-evoked potentials, to date assessing tDCS effects on
non-motor cortex relies on the performance of tasks hypothe-
sized to depend on the underlying brain regions. That is, as-
sessment of tDCS effects on non-motor cortex are indirect and
thus more subject to uncontrolled variability. In their meta-
analytic review, Jacobson and colleagues [21] noted that the
anodal/excitation cathodal/inhibition dichotomy is primarily
observed in motor studies and rarely (probability=0.16) ob-
served in cognitive studies. This disparity is driven by the lack
of observed cathodal/inhibition effect, rather than the anodal/
excitatory effect, which is more robust. The authors suggest
that difficulty finding the cathodal/inhibition effect may stem
from the fact that higher-order cognitive tasks depend on com-
plex, multinode networks that are more widely distributed.
This makes it more challenging to determine the critical site
or loci where stimulation will be most effective. Cognitive
processes may also compensate for inhibition to certain corti-
cal regions, which could contribute to inconsistent outcomes
from cathodal stimulation.

State-Dependent Effects

tDCS does not directly depolarize neurons, but instead ap-
pears to modulate the neuronal membrane, thereby changing
the likelihood of firing. Therefore, the effects of tDCS are
influenced by the state of the cortical region to which stimu-
lation is applied [99•]. Because responsiveness seems to be
largely governed by baseline cortical excitability, Bexcitatory^
anodal stimulation applied to a region that is highly active
may cause a reversal of the anticipated effect, instead resulting
in inhibition [100]. Consequently, the type of task and task
difficulty become particularly important variables.
Compounding the complexity of this issue, variability in time
of day, strategy, and fatigue can also influence the state of a
network [99•].

In studies that used offline stimulation, instructions to par-
ticipants ranged from sitting quietly to completing complex
tasks, which could in principle lead to different responsiveness
to tDCS. Consistent with this possibility, Carvalho et al. [29•]
found that two cathodal stimulation sessions separated by a
break improved WM task performance when compared to
cathodal stimulation followed by anodal stimulation or two
sham stimulation sessions. The authors interpret these results
to suggest that modulation of baseline activity affects the

subsequent effects of tDCS on behavior. Regarding online
stimulation, the same task may elicit different patterns of ac-
tivity across participants. For example, compared to healthy
young adults, older adults and schizophrenic patients show
hyperactivation of rDLPFC when successfully completing
moderately challengingWM tasks [101, 102]. For this reason,
identical electrode montages may have different behavioral
consequences across populations.

Individual Differences in Responsiveness

Two studies have documented large inter-individual differ-
ences in tDCS responsiveness with less than half of the par-
ticipants demonstrating the anticipated response [103, 104].
Research employing a combination of neuroimaging and cur-
rent modeling finds that individual differences in physiology
and anatomy, including skull morphology, fiber orientation,
fat tissue, and cerebrospinal fluid, may modify the locus and
extent of cortex stimulated by the same montage [76••]. Using
individual structural MRI data to model current density, Kim
et al. [37•] found that the participants exhibiting WM im-
provements had significantly larger current density than those
who did not show improvements. Furthermore, older adults’
electric fields have been shown to be 30 % weaker, on aver-
age, compared to their younger counterparts [76••]. This has
important implications for tDCS responsiveness in older
adults or any other group with different electrical fields than
healthy young adults. Other individual differences, including
genetic polymorphisms (e.g., BDNF [105]; COMT [106]),
hormone levels, and neurotransmitter levels, have been shown
to interact with tDCS to influence research outcomes (see
[107] for review). These results underscore the important role
of individual differences in tDCS efficacy and highlight the
need for more accurate, individualized current flow modeling.

Conclusion

Inconsistent results have led to questions of whether or not
tDCS is an effective neuromodulation tool for manipulating or
enhancing WM. Interpretations of current findings are limited
by small sample sizes and sparse replications. Future research
should aim not only to replicate previous research but to ex-
tend it by evaluating systematic variations in stimulation pa-
rameters, such as current density and montage. Study design
factors need to be investigated, such as task difficulty, number
of stimulation sessions, and on- vs. off-line stimulation.
Furthermore, additional research is needed to improve our
understanding of how underlying neurobiological mecha-
nisms impact the outcome of tDCS. Multimodal studies com-
bining tDCS with neuroimaging may elucidate how different
montages modulate specific brain regions; these studies may
be used to create more detailed individualized current flow
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models. Stimulation of a particular region may cause diffuse
changes in multiple regions, so researchers must be cautious
when using tDCS to link regions to functions [76••]. To ad-
dress this limitation, research should be conducted that com-
pares active stimulation montages to one another, in addition
to sham stimulation. Given the potential promise of
stimulation-driven WM enhancement in older adults, we en-
courage more researchers to explore the long-term effects of
tDCS on cognition. Also, thorough documentation and
reporting of adverse effects and participant awareness/
blindness to condition is prudent and critical to evaluating
study outcomes. Finally, we note that the value and signifi-
cance of the foundational studies discussed in this review are
not weakened by the challenges highlighted above. As
Richard Feynman once said, BWe scientists have a way of
dealing with such problems. We ignore them, temporarily^
[108]. Researchers have already demonstrated the consider-
able promise that tDCS holds for improving WM.We suggest
that time to address these challenges is upon us.
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