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Abstract The field of therapeutic focused ultrasound
neuromodulation has made great advances in the last few years.
While no clinical trials of focused ultrasound neuromodulation
are yet underway, several human experiments have recently
been conducted. There are many potential uses of this new
technology, including treatment of numerous psychiatric and
neurologic disorders, as well as a brainmapping tool for discov-
eries in basic science. In this review, we examine recent re-
search data on the use of focused ultrasound in neuronal tissue,
animal models, and humans. We also investigate ideal parame-
ters for neuromodulation as well as potential mechanisms.

Keywords Focused ultrasound - Neuromodulation -
BRAIN - Imaging - Treatment

Introduction

Therapeutic focused ultrasound uses low energy sound waves
that pass through the skin and skull without surgery, and can be
focused with precision essentially anywhere in the brain to
modulate neural activity. This type of highly targeted, yet
non-invasive, neuromodulation offers the possibility of new
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therapies for numerous neurologic and psychiatric conditions
including epilepsy, depression, anxiety disorders, and traumat-
ic brain injury. While no clinical trials of therapeutic focused
ultrasound neuromodulation have yet been conducted, in the
past few years, it has moved even closer to becoming a reality.

A few years ago, we wrote a review summarizing the state
of focused ultrasound neuromodulation, arguing that the field
was ready for first-in-human studies. Experiments in multiple
animal models demonstrate that focused ultrasound (FUS) is
highly focused, safe, and effective at neuromodulation. Sub-
sequently, several studies have been published on focused
ultrasound neuromodulation in humans.

The need for a technology like FUS is large and other non-
invasive neuromodulation techniques—such as repetitive
transcranial magnetic stimulation (rTMS) and transcranial di-
rect current stimulation (TDCS)—are beginning to be utilized
more broadly for treatment of neurologic or psychiatric disor-
ders. Other forms of non-invasive neuromodulation—such as
electroconvulsive therapy (ECT)—have been used for de-
cades. However, these all suffer from limitations in terms of
either spatial specificity, or are not useful as a general tool for
neuromodulation. A general tool for neuromodulation may
not only lead to new therapies but also new ways of diagnos-
ing as well as opening new pathways for scientific discovery.

rTMS cannot be focused in three dimensions, and thus is
limited to superficial targets. Similarly, TDCS also cannot be
focused, nor can ECT. And while rTMS and TDCS appear to
have many general applications, ECT, while very effective at
treating depression, does not appear to generalize to other
applications.

In contrast to other technologies, ultrasound (US) can be
focused in three dimensions in a highly targeted manner. It
also appears to not be disease specific and thus generalizable
to many different conditions. FUS’s ability to precisely mod-
ulate region-specific brain activity may translate into safe and
long-lasting therapeutic applications.
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Repeated use of suppressive FUS may have a long-term
effect, just as repeated use of TMS can have a long-term
neuromodulating effect in depression. We envision that after
using an MRI for initial targeting, subsequent treatment can be
done in a doctor’s office.

There are many potential uses of this exciting new technol-
ogy. Aside from treating disorders, it is possible that FUS
could be used in pre-surgical mapping as well as diagnosis
of various disorders, and as a brainmapping tool for discover-
ies in basic science. The last several years have seen great
advances in expanding applications, understanding of mecha-
nisms, and even the first human testing (Table 1).

FUS Neuromodulation in Humans

In our previous review [14], we discussed the early evolution
of focused ultrasound neuromodulation, beginning with the
first attempts to study ultrasound’s effect on neuronal tissue
in the 1920s [15] and progressing through until today. Even
nearly 60 years ago, Fry predicted that focused ultrasound
(US) would have a major impact on neurology, including sur-
gical treatments [16], as well as for investigating structure and
function of brain circuitry [17]. While early studies of focused
ultrasound primarily centered on high-intensity ultrasound for
tissue ablations, in the last decade, there has been a surge in
research on low-intensity focused ultrasound, not for surgery
but for neuromodulation.

The neuromodulatory effects of FUS have been demon-
strated numerous times in recent studies in multiple animal
models. Based on pulse parameters, studies have shown that
FUS can stimulate or suppress neural activity. FUS stimula-
tion previously discussed includes stimulation of hippocampal
slices [18], as well as motor cortex [19]. FUS has also been
shown to suppress visual-evoked potentials [19], and even
epileptic activity [20]. These varied effects and applications
illustrate the potential of low-intensity focused ultrasound pul-
sation (LIFUP) to be a general neuromodulation tool.

Furthermore, and perhaps most importantly, FUS can be
effective at neuromodulation without causing tissue damage
[12, 18, 19, 21]. No studies have shown that FUS induced
tissue damage in the absence of heating, unless they utilized
contrast agents to enhance cavitation effects [14]. Therefore,
FUS appears safe, even at intensities several times higher than
the FDA limit for diagnostic ultrasound (720 mW/cm, [15]).

Based on the safety profile of FUS, in our previous review,
we recommended that human experiments should be conduct-
ed. Subsequently, three ultrasound neuromodulation experi-
ments in humans have been reported within the last 2 years.

One human study at the University of Arizona looked at the
therapeutic use of transcranial ultrasound on mood and affect.
This study utilized a standard clinical ultrasound device.
While they did not specifically use focused ultrasound, the

results may still be applicable [1¢]. Participants were volunteer
patients suffering from chronic pain. The ultrasound probe
was applied by a physician to the scalp over the posterior
frontal cortex, contralateral to maximal pain. The ultrasound
machine itself was operated by a separate investigator, which
allowed this study to be conducted in a double-blind fashion.
Transcranial ultrasound was administered in standard B-mode
for 15 s. Before and after treatment, subjects completed sub-
jective reports on pain and mood. All subjects received both
US and placebo in a randomized order. The results showed
that brief US exposure led to improvement in mood and global
affect that persisted for at least 40 min.

A second set of studies on humans examined the effect of
transcranial focused ultrasound on evoked potentials, and the
ability to enhance sensory discrimination. In these studies,
FUS was administered to the scalp over somatosensory cortex
during concurrent stimulation of the median nerve. The results
showed that FUS significantly decreased amplitude of several
stimulus-evoked potentials [2¢]. In addition, FUS altered EEG
dynamics of intrinsic EEG activity as well as in evoked po-
tentials in a frequency-band dependent manner [22]. These
results illustrate that FUS stimulation can modulate brain elec-
trical activity.

This study also demonstrated that FUS neuromodulation of
somatosensory cortex had an effect on perception. When sub-
jects were asked to discriminate between touch stimuli on their
hands, FUS improved both spatial and temporal
discrimination.

Importantly, this study did not report any adverse events
despite using a spatial-peak, temporal-average intensity (Isp)
of 8.6 W/cm [15], which is an order of magnitude greater than
the FDA limit for Ly, for diagnostic US imaging of 720 mW/
cm [15]. Although, the spatial-peak pulse-average intensity
(Isppa) of 23.87 W/cm [15] is well below the FDA limit for
diagnostic US imaging of 190 W/cm [15]. The study cautious-
ly utilized short duration sonications (0.5 s) in order to prevent
thermal damage. However, these FDA limits are for diagnos-
tic US imaging only. No such limits exist for FUS
neuromodulation. Because the FDA does not have pre-
defined limits for FUS neuromodulation, these data are useful
in helping determine what FUS doses can be considered safe.

Recently, Yoo [23] presented a third human study that
targeted somatosensory cortex. All subjects participating in
the study reported sensations of movement. The results further
demonstrate the ability of FUS neuromodulation to affect hu-
man perceptions.

While all of the above studies aimed to target specific lo-
cations in the human brain, none of them utilized functional
imaging as a confirmation that the target region was affected.
The lack of functional imaging makes it difficult to document
where the focus of stimulation was located, and further show
that activity in this region was in fact modulated. While the
study from Legon et al., which utilized EEG, provided some
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amount of this information, EEG does not have a good 3D
spatial resolution. Further studies would benefit from utilizing
MR guidance with fMRI feedback to clarify targeting and
document the effect of neuromodulation.

Refining Parameters and Expanding Applications

While human experiments have shown the feasibility of trans-
cranial focused ultrasound neuromodulation in humans, ani-
mal experiments continue to clarify ranges of usefulness of
FUS parameters in different animal models using a variety of
methodologies.

Research has even extended to non-human primates. In
macaques, FUS administered to the left frontal eye fields dur-
ing an antisaccade (AS) task significantly modulated AS la-
tencies, in particular delaying ipsilateral AS [4].

Animal work has also demonstrated even wider-ranging
applications for focused ultrasound. In anesthetized rats,
FUS applied to thalamus decreased the time to emergence of
voluntary movement as well as reflexive response to pinch
[3]. This suggests that FUS may be useful in treating disorders
of consciousness such as vegetative state.

FUS can also help grow new neurons. In one study, focused
ultrasound with microbubbles increased hippocampal
neurogenesis in adult mice [8]. This has implications for any
neurodegenerative disorder, and particularly Alzheimer’s.
Other studies have also shown that FUS can even impact
neural cell growth and morphology [24].

More realistic models have led to better approximation of
focal pressure and size [25], and animal work has demonstrat-
ed that FUS can have excellent targeting. For example, fo-
cused ultrasound in rats caused increase in glucose metabo-
lism with high spatial specificity [6]. In addition, while the
size of the acoustic focus is generally described as the full-
width at half maximum (FWHM), this same group found that
the neuromodulatory area of FUS is much more localized, and
is better approximated to be full-width at 90 % maximum. The
neuromodulatory area was 3.7 mm in cross-sectional diameter
and 5.6 mm long, compared to the FWHM, which was
6.5 mm in diameter and 24 mm in length. Thus, the
neuromodulatory area was almost half the diameter and one-
fourth the length of the conventional size of the acoustic focus
[7]. Even within the tiny mouse motor cortex, it is possible to
stimulate rostral and caudal regions separately [10].

Due to physical principals, the lower the frequency of US,
the larger the focal area. And yet, higher frequency US signal
experience severe attenuation by the skull. One group found a
clever possible workaround. Using two transducers of approx-
imately 2 MHz (2.25 and 1.75 MHz), they were able to create
“modulated focused ultrasound,” which had an effective fre-
quency of 500 kHz, but a very small focus [26]. They were
able to modulate the mouse brain with very high spatial

@ Springer

specificity. However, while this is an interesting technique, it
may not be as effective in human applications, as frequencies
above approximately 700 kHz get extremely attenuated by the
human skull.

While high spatial specificity is clearly evident, there is still
a wide disagreement about the minimum intensity necessary
for neuromodulation. One group stimulated the somatomotor
areas of the rat brain to observe tail movement. Despite sys-
tematically altering several parameters, including tone burst
duration, center frequency of the ultrasound transducer, duty
cycle, and stimulus duration, the lowest effective Iy, was
2.5 W/cm [15], which is still 3.5 times higher than the FDA
limit [5]. It is becoming more and more clear that FUS
neuromodulation has a mechanical mechanism, and is thus
pressure dependent [11]; yet it is unclear what the ideal pres-
sures and intensities are. While several groups find that
neuromodulation requires stimulation above the FDA diag-
nostic intensity limit [10], several other groups have achieved
effective stimulation below the limit of 720 mW/cm [1e, 3, 12,
13, 15], and some have found that much lower intensities still
work, even well below 720 mW/cm [15, 4, 9]. While depth of
anesthesia likely plays a role [11], it cannot fully explain the
wide disparity in values. Nor can it be explained by transcra-
nial attenuation.

There is also a disagreement about the relative effective-
ness of pulsed vs continuous stimulation. While most groups
used pulsed sonication, one group found that continuous son-
ication was slightly more effective [27]. Although for contin-
uous US their sonication durations were quite short, ranging
from 20 to 480 ms. However, regardless of the ideal parame-
ters for FUS, all these studies agree that effective
neuromodulation can be achieved without tissue damage.

Mechanism of Neuromodulation

Several studies have been conducted to clarify mechanisms of
action of focused ultrasound neuromodulation. The
neuromodulatory effect appears to be mediated through me-
chanical interaction with the tissue [28]. In one study, focused
ultrasound was used to modulate conduction of action poten-
tials along an axon. This study showed that action potential
amplitude and velocity were reduced proportional to the cu-
mulative radiation force, thus pointing to a mechanical
mechanism.

In particular, the neuromodulatory effect likely comes
through cavitation within the lipid bilayer of the neuron cell
membrane [29, 30]. Studies suggest that the physical pressure
changes of the ultrasound beam actually move the lipid bilay-
er, and altering the space within bilayers, causing changes in
membrane capacitance. Additionally, other fluid-mechanical
properties may also play a role [31].
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Some evidence suggests that FUS causes direct activation
of neurons and synaptic vesicle release [21], while other evi-
dence suggests that it does not directly activate neurons but
rather increases neuronal excitability [9]. Further work is nec-
essary to determine the exact effect of TUS on neuronal
activity.

Neurochemical changes are also important to consider.
While changes in neurochemistry may not be the primary
mode of action of FUS, its effects on membranes alter the
release of neurotransmitters. Evidence shows that FUS can
modulate levels of various neurotransmitters. Using microdi-
alysis, combined with FUS focused on the thalamus of rats,
two studies from the same group demonstrated that FUS in-
creased the concentrations of extracellular dopamine (DA)
and serotonin (5-HT) [12] while decreasing extracellular
GABA [13].

Conclusion

We need to continue with animal experiments that can clarify
parameters, mechanisms of actions, and possible but yet un-
known hazards of FUS use. However, we need to proceed
with carefully designed safety and efficacy studies that could
be conducted in populations where possible future benefits
outweigh the risks. Some of those studies that stay under the
FDA limits for diagnostic US could be conducted under IRBs
supervision as in Hameroff, Yoo, and Legon studies. A human
clinical trial is currently under way at UCLA testing the safety
of a single-element transducer. Although, new generations of
brain-stimulating FUS devices, possibly utilizing multi-array
designs, may offer better targeting.

Initial targeting may need to use structural and functional
MRI to document the focus position and response within the
brain. It is possible to do targeted focused ultrasound outside
an MRI environment using MRI data and optical tracking
[32]. While these methods were developed with rodents, they
could easily be translated to humans. This type of image guid-
ance offers the possibility of multiple FUS treatments in an
office setting, not requiring an MRI, improving the feasibility
of repetitive FUS similar to rTMS.

Despite the exciting possibilities of clinical trials, so far, no
focused ultrasonic neuromodulation devices have yet been
approved by the FDA. The approval process will most likely
be tedious depending on the ultrasound intensity necessary for
effective neuromodulation or brainmapping. So far, human
experiments have utilized intensities under the FDA guideline
for diagnostic ultrasound and were subthermal. If the intensi-
ties can stay under the FDA limits for diagnostic ultrasound,
the process will likely be shorter.

It would be helpful to clearly differentiate the different
types of therapeutic focused ultrasound. Low-intensity fo-
cused ultrasound pulsation (LIFUP) is administered

intermittently and subthermally for the purpose of
neuromodulation. By contrast, high-intensity focused ultra-
sound (HIFU) is administered continuously and produces
heating of the brain tissue utilized in surgical ablation. The
current studies suggest that LIFUP could be used in humans
therapeutically. However, if intensities need to be above the
FDA guidelines for diagnostic US or will become thermally
noxious (e.g., increase regional brain temperature by 2-3° C),
the safety of human experiments will need to be thoroughly
evaluated and possibly the FDA and the scientific community
would need to develop new safety guidelines for therapeutic
neuromodulatory focused ultrasound.
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