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Abstract Our understanding of the underlying neurobiology
for mood disorders is still limited. We present an integrated
model for conceptualizing and understanding mood disorders
drawing upon a broad literature. This integrated model of
emotion processing and regulation incorporates the linguistic
constructs of the Research Domain Criteria (RDoC) initiative.
In particular, we focus on the positive valence domain/circuit
(PVC), highlighting recent reward research and the negative
valence domain/circuit (NVC), highlighting rumination.
Furthermore, we also illustrate the Cognitive Control and
Problem Solving (CCaPS) circuit, which is heavily involved
in emotion regulation, as well as the default mode network
(DMN) and interactions between circuits. We conclude by
proposing methods for addressing challenges in the develop-
mental study of mood disorders, including using high-risk
design that incorporates risk for many disorders.
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Introduction

Neuroimaging and behavioral research in mood disorders is
coalescing on a transdiagnostic, heterogeneous framework for

understanding risk mechanisms leading to the expression of
mental illness. The present review expands upon a conceptual
framework for depression and related mood disorders offered
by Phillips and colleagues [1, 2], presents our integrative model
for salience, valence, and executive networks in mood disor-
ders, and adds detail for valence as well as explicit points of
measurement and intervention. In addition to reviewing recent
literature highlighting the relevance of positive and negative
appraisal systems as they relate to dysfunction in mood disor-
ders, we expand on the fundamental and interactive role of
cognitive control in the expression of disease. We also touch
upon recent research on the default mode network (DMN) as it
relates to our model and circuit-based function.

This model for executive and salience networks in mood
disorders (Fig. 1) offers a dynamic account of how multiple
risk factors lead to mood disorders, including major depres-
sive disorder (MDD) and bipolar disorder (BD). Similar to
current diagnostic systems, individuals who meet criteria for
MDD may have fundamentally divergent risk and protective
factors leading to the same mood disorder. As a simple exam-
ple, those with melancholic depression share few symptoms
with individuals displaying atypical depression. As such, it is
unwise to expect that the neural and behavioral bases
supporting these subtypes would be the same or even similar.
Our model is based on research denoting the brain circuits
involved in emotional processing, cognitive control, and in the
mind’s “default” state, as well as the interactions between
these circuits and burgeoning evidence that the behaviors
and supporting circuitry evidenced in mood disorders are
disrupted. We incorporate terminology used by the National
Institutes ofMental Health (NIMH) Research Domain Criteria
(RDoC) initiative, with a primary focus on salience networks
(SN) including positive and negative valence circuits (PVC
and NVC, respectively), cognitive systems including
Cognitive Control and Problem Solving (CCaPS), and the
DMN.
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The PVC and NVC are rapid, efficient feature detectors
that tag emotional, salient, and novel stimuli for further clas-
sification and processing [3–5]. These salience and valence
processing steps help rapidly filter significant amounts of
external and internal stimuli. In contrast, the CCaPS network
is a slower, often more deliberate circuit that can engage in the
modulation or regulation of emotion [6, 7••, 8]. Moreover,
there are intermediate stages of processing and response prep-
aration where learned experience and habits can form pre-
potent response tendencies to certain types of external and
internal stimuli and milieus. From a disease expression stand-
point, overlearned response tendencies and emotional regula-
tion need not all be dysfunctional. Environmental contribu-
tions and interactions between environment and genetic pre-
dispositions can vary the risk for and expression of disease
dramatically. A mood disordered and healthy individual could
have the exact same neural and behavioral profile, yet differ
only in environmental stressors. This traditional stress–diathesis
model is not well integrated into neuroimaging studies of mood
disorders, nor has a multi-risk diathesis stress framework con-
sistently been applied. The model presented here allows for

fundamentally different loadings in the neural and behavioral
risk factors observed in any mood disorders (AMD) relative to
non-disordered groups.

The NVC and PVC consist of overlapping fronto-limbic
networks supporting the detection of salience and valence
processing [9]. The NVC is comprised of the ventral, central,
and lateral amygdala, portions of the orbito-frontal cortex
(OFC), and the posterior nucleus accumbens, which may also
be more responsive to negative stimuli [10]. The NVC re-
sponds rapidly with low signal discrimination ability [11–13]
and pre-activates learned response contingencies [12, 14, 15].
For example, the well-known fight or flight mechanism as a
nearly automatic response contingency set that can be trig-
gered in tens of milliseconds.

In parallel, the PVC comprises subcortical regions such as
the nucleus accumbens, ventral pallidum, basal ganglia, and
OFC [16, 17]. The PVC responds fairly rapidly, with low
signal discrimination, and relies upon and is predicated toward
developing learned contingencies. The PVC is somewhat
subordinate to the NVC, in that its responses and functioning
can be subverted under threat, and it responds more slowly

Fig. 1 Model for executive and
salience networks in mood
disorders illustrating the
preferential processing for
positive stimuli (positive valence
circuit; PVC) in healthy controls
(HCs), which leads to a larger
available repertoire of approach
behaviors and enhanced
regulatory capacities [through
Cognitive Control and Problem
Solving (CCaPS)] for appraisal,
reappraisal, and the appropriate
selection of alternative responses.
In mood disorders, including
major depressive disorder (MDD)
and bipolar disorder (BD), the
preferential strength of the PVC is
diminished and so is CCaPS
regulatory capacity, whereas the
negative valence circuit (NVC)
and related avoidance behaviors
are strengthened and over-
represented. The PVC may be
over- or under-utilized in BD and
MDD, respectively
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[18]. Depending on the valence, salience, and intensity of a
given stimuli, appropriate response contingencies from short-
and long-term memory are recalled and drawn upon [19].
Approach and/or avoidance responses are selected from
amongst pre-potent responses, unless CCaPS is substantially
engaged [20, 21]. Thus, the PVC and NVC reside in partially
overlapping brain regions, but represent distinct processing
streams [9, 10, 22], and are thought to work in dynamic
opposition.

The NVC and PVC interact with fronto-parietal circuits
involved in cognitive control (CCaPS) and working memory
(WM), which normally modulate these circuits and assist in
selection of the appropriate response. The CCaPS circuit
incorporates a number of regions involved in processing,
regulating, and developing learning contingencies that can
be incorporated into the present repertoire activated by PVC
andNVC. In fact, one of the primary functions of this circuit is
to minimize the complex processing that is required in the
future [23]. The ability to distill complex environmental sets,
integrate those with internal needs, and allow for rapid and
efficient signal detection and response preparation, can place
an individual at significant advantage over peers. Regions of
the prefrontal cortex (PFC) organize and select behavior from
response contingencies based upon prior knowledge, learning,
and experience. Disruptions or damage to connections be-
tween the anterior cingulate cortex (ACC), including the
dorsal ACC (dACC), and prefrontal regions have been found
to be relevant to depression and diminished cognitive control
[24]. Expectations and cost–benefit analyses also play a role in
decision making, particularly from the medial and lateral
OFC [25], providing an integration node between CCaPS
and PVC/NVC. Furthermore, CCaPS can be inhibited by
elicitation of emotional responses, either positive or neg-
ative [26]. One can conceptualize that NVC has hard-
wired capabilities that in a moment may interfere with
and trump PVC and CCaPS function. A number of studies
have investigated emotional interference effects, although
these are methodologically complex and often confound-
ed. We highlight interactions between the PVC, NVC, and
CCaPS later in this review.

In addition to disruptions in task-related CCaPS and
salience (PVC and NVC) circuits in mood disorders,
there is also more recent mood disorder literature
highlighting disruptions in the DMN, which is a “resting
state” network devoted to internal thought and mainte-
nance processes (e.g., memory consolidation). The DMN
is a large-scale network of regions implicated in self-
oriented thought patterns [27–29], including rumination
[30–32]. Other large-scale intrinsic networks that interact
with the DMN include the CCaPS (executive) and PVC/
NVC (salience) [33]. Disrupted interactions within and
between these networks are hypothesized to support the
pathophysiology of MDD [34–36].

Current Research on Negative Valence Domain/Circuit
(NVC) Disruption in Mood Disorders

Behavioral studies of NVC abnormalities in depression have
often focused on mood congruent memory biases [37–39],
negative processing biases [40–42], memory priming [43, 44],
face emotion processing [45], and interference effects [46]. A
majority of these studies indicate that depressed individuals
have difficulty in correctly classifying facial stimuli [45, 47,
48], and exhibit negative memory bias, which is one of the
largest effect sizes in comparisons between depressed and
non-depressed groups [49].

Functional MRI (fMRI) studies of NVC among individ-
uals with mood disorders have focused heavily on the pro-
cessing of emotion [50–52], emotionally evocative para-
digms related to harsh/negative faces, complex visual scenes
and images, films, autobiographical memories, social rejec-
tion, and semantic stimuli, some of which may be personally
relevant [49, 53–59]. Disruptions to NVC include elevated
amygdala, subgenual cingulate, and insula response to threat
and diminished capability of those with mood disorders to
regulate these responses. This domain is pertinent to our
discussion because emotional appraisal and physiological
reactivity to emotional stimuli and emotion induction are
distinctly different in depressed than in control groups [11,
14, 50]. Furthermore, disruption in neurophysiological re-
sponse to emotion stimuli is reversible with successful treat-
ment [50, 63, 64]. In fact, the NVC is the most heavily
researched in mood disorders and a number of reviews are
available that cover these in detail [60–62]. As such, the
NVC subdomains are not reviewed exhaustively here, rather
we focus on one rapidly emerging aspect of the NVC,
rumination.

A recent focus of study within the NVC is the construct of
rumination, which falls within the Loss domain of the RDoC
framework. Rumination is a perseverative negative thought
pattern that involves passively dwelling on negative feelings
[65]. The learned behavior and underlying neural signature of
rumination represents a maladaptive habit. The development
of this response style prior to full maturation of the PFC may
result in a tendency to use avoidance strategies rather than the
selection of responses requiring executive functioning such as
problem-solving and approach-related behaviors. These pat-
terns may result in a recurrent form of chronic depression that
derails healthy emergence into adulthood.

Rumination impairs functional behavior by leading an indi-
vidual to become stuck in thought and blocks the approach of
action [66], leading to the proposal that rumination represents a
transdiagnostic mechanism in the development of psychopa-
thology [67••]. Rumination remains elevated following remis-
sion from depression, is associated with lower levels of treat-
ment response, prospectively predicts severity and duration of
depressive episodes (for a review, see [65]), and mediates the
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effect of negative life events on subsequent affect [68].
Rumination hinders the reciprocal and dynamic interchange
between cognitive and emotional states [69]. For example,
rumination interferes with effective problem-solving [70] and
instrumental behavior [71]. Preliminary studies have linked
rumination to the DMN.

Research specific to the DMN, including studies with
resting state fMRI (rs-fMRI) and task-based approaches, have
evaluated the neural correlates of rumination among adults
with active MDD [30–32]. Task-based fMRI studies have
demonstrated correlations between regions of the DMN, par-
ticularly the dorsomedial PFC (dmPFC), and self-report rumi-
nation [30]. Additional studies have examined the neural
correlates of rumination among healthy adults [30], and one
study has linked functional connectivity of DMN to self-
report rumination among currently depressed adolescents
[72•].

Rumination has also been explored in relation to loss
anticipation within the NVC using monetary incentive delay
(MID) tasks. For example, adults with remitted MDD
(rMDD) demonstrated lower superior frontal gyrus (SFG)
activation during loss anticipation and less inferior and SFG
activation during loss outcomes [73•]. Self-report rumination
was negatively correlated with SFG activation during loss
outcomes in the rMDD group. The degree of SFG
hypoactivation was associated with rumination, suggesting
that abnormal prefrontal responses to loss may reflect a
trait-like vulnerability to MDD. Prospective research con-
ducted with 200 adolescents enrolled at age 12 or 13 years
found that higher levels of baseline rumination were associ-
ated with decreases in selective attention and attentional
switching at follow-up [74]. As such, rumination processes
can detract from, interfere with, or undermine problem solv-
ing and control circuit processes.

Current Research on Positive Valence Domain/Circuit
(PVC) Disruption in Mood Disorders

Reward and reward anticipation are recent foci areas when
studying the PVC. Within this context, one important dis-
tinction is between reward anticipation or appraisal, that is,
the “motivational” aspect (i.e., “wanting”) of rewards, and
response to delivered rewards, that is, the “consummatory”
aspect (i.e., “liking”) [75••]. Studying the relationship be-
tween reward systems and affect dysregulation is very prom-
ising, as positive affect is an emotional state elicited by
reward and similar processes [76]. In recent years, behav-
ioral studies of PVC disruptions in mood disorders have
focused heavily on a deficient PVC model that, for example,
conceptualizes anhedonia as disruption in reward consum-
matory processes, and apathy as disruption in anticipation of
reward.

Patients with MDD tend to show apathy and anhedonia as
well as hypoactivation of fronto-striatal circuits. Reward sys-
tem abnormalities have also been found both in adult [77] and
adolescent populations with MDD [78], leading to a charac-
terization of “hypo-sensitivity to rewards” in MDD, with
hypo-activation in ventral striatum (VS)/PVC [79, 80]. In fact,
a recent study with adolescents with MDD found reduced
reward-related activity in the right caudal ACC, caudate, and
OFC during high-risk/high-gain trials [81]. Similarly, [78]
found decreased activation in the caudate and inferior OFC
during both reward anticipation and response in 9–17 year
olds with MDD. It is noteworthy that this pattern of dysfunc-
tion involving decreased striatal activation may be a promis-
ing candidate bio-marker for depression as it was found also in
10- to 14-year-old girls with high familial risk for depression,
relative to a low-risk group, during anticipation and receipt of
reward during an MID task [82]. PVC studies have shown the
most progress in potentially predicting BD and distinguishing
between MDD and BD [83].

Current Research of Cognitive Control and Problem
Solving (CCaPS) Disruption in Mood Disorders

Behavioral studies of CCaPS on executive functioning, work-
ing memory (WM), and regulatory abnormalities in depres-
sion have focused more heavily on traditional neuropsycho-
logical tests of executive functioning. Executive functioning
deficits have been reported in MDD and to a greater extent in
BD, although not consistently so [45, 84, 85]. Executive
functioning measures have also been found to be predictive
of treatment response in depressed patients [86–88] and of
everyday functioning [89•]. Interestingly, studies of behavior-
al inhibition (BI) in depression have shown increased inhibi-
tion or withdrawal behavior in depressed patients [90, 91, 92].
Some studies suggest that these difficulties exist even in the
remitted state [93], including amongst younger remitted indi-
viduals with an MDD history [94]. A recent meta-analysis
suggests that even in rMDD, effect sizes for performance
differences in CCaPS measures may be moderate to large,
including the Trail Making Test B (d=0.48) and Stroop inter-
ference (d=0.74) [95••].

Recent fMRI studies have employed the Stroop Color
Word Test [96], and variations of what has been called the
Emotion Stroop [96–98]. WM paradigms have also been used
widely, but they are slightly different than the regulatory
difficulties in MDD [99, 100]. Measuring behavioral regula-
tion, including response styles to a difficult cognitive task,
may simulate real-life difficulties in behavioral and emotional
regulation experienced by depressed patients [101], as evi-
denced by our and others’ recent work [102, 103]. Our work
with parametric Go/No-Go tasks [6, 103] suggests that regu-
latory mechanism may play a key role in the etiology,
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maintenance, and resolution of depression. More recently, a
study in recurrent MDD demonstrated hypoactive right supe-
rior and dorsal medial PFC (dmPFC) for errors of commission
relative to healthy comparison subjects [104•]. This
hypoactivity was also present when visual negative feedback
was given that a response was too slow for correct hits. In
addition, more rapid normalization of the hypoactivation in
the dACC extending into dmPFC was present in a subset of
individuals who did not have recurrence of MDD within
one year. A larger recent study with a Stroop task reported
fronto-parietal hypoactivation in unmedicated MDD patients
relative to healthy controls, in the context of atypically non-
different group performance across color and incongruent
trials [105•].

Current Research of Circuit Interactions in Mood
Disorders

The dynamic interaction of NVC (typically increased in
mood disorders) and PVC (decreased in MDD, in-
creased in BD), and CCaPS (decreased in mood disor-
ders) has been difficult to quantify in many studies. For
example, if individuals are studied in active states of
mood disorder, the circuits are already perturbed to a
greater extent than what might or could be observed in
the euthymic state, let alone the interactions between
them. A shift away from PVC in depression might
suggest a change in the regulatory skills in depressed
patients [106, 107]. On the contrary, reduced behavioral
regulation, associated with altered fronto-striatal activa-
tion, has been found in BD and MDD during response
inhibition and WM tasks [108, 109, 110]. However,
unlike MDD, BD is typically characterized by increased
reward-seeking behavior [111]. Yet another pattern of
relationship between reward–control systems is the one
presented by individuals with “BI” who exhibit in-
creased inhibition but also hypersensitivity of PVC,
possibly as part of their hyper-vigilance to novelty and
environmental cues [112•].

An important concept is that in internalizing disor-
ders, disrupted appraisal of positive or negative contin-
gencies may directly affect functioning of the CCaPS
circuit. A promising way to look at the altered relation-
ship between PVC and control processes is cognitive
flexibility in the presence of reward contingencies. This
is conceptually captured in the feedback arrows from
CCaPS to PVC and approach behavior contingencies
(Fig. 1). A probabilistic reversal learning study found
that 6- to 17-year-old adolescents with BD showed
worse accuracy than healthy controls. This occurred
while learning the association between a reward and a
stimulus within a pair of stimuli that were presented

repeatedly, and while reversing their learned responses
after the new reward object had been switched [113].
Similar results were found in adults with BD [114],
suggesting developmental continuity in these deficits.
Importantly, these dysfunction patterns seem specific to
BD [115], in that impaired probabilistic reversal learn-
ing was found specifically in BD adolescents, while
adolescents with MDD, severe mood dysregulation
(SMD), and anxiety did not differ significantly from
healthy adolescents.

Interesting results have also been obtained when
looking at reward-related processes at the interface with
decision-making in terms of a bias for immediate
rewards. Studies with healthy adults found that hyper-
activation of VS and reduced PFC activation correlated
with preference for immediate rewards [116] .
Developmental studies found that increased fronto-
striatal activation with development correlates with de-
creased delay discounting [117, 118]. Recent studies
found that both adult patients with MDD [119] and
with BD [120] exhibit steeper discounting during a
delay discounting task relative to healthy controls.
Altogether, these results suggest altered appraisal of
future rewards in MDD and BD that may have impli-
cations for treatment approaches. Of course, it is possi-
ble that the neural mechanisms of discounting may be
different across MDD and BD, and during different
developmental stages.

These findings illustrate conceptual and practical in-
teractions between PVC and CCaPS circuits, in addition
to the more well-known NVC and CCaPS links de-
scribed in prior studies. Parameterized designs that cap-
tured presence/absence of PVC/NVC priming and vari-
able degrees of CCaPS may help toward understanding
interactions between the circuits, and the dynamic irreg-
ularities that more closely approximate experiences of
those with mood disorders. This would be particularly
relevant to test in both active and remitted states.

Developmental Considerations in the Study of Mood
Disorders

About 50 % of adults with mental disorders have illness onset
by age 14 years [121], suggesting that developmental models
of mental illness are important in the evolution of psychiatric
illness. The PFC and associative areas of the brain keep
maturing until late adolescence [122] and are therefore more
vulnerable to trauma and delayed or otherwise abnormal
development. It is possible that there are developmental dif-
ferences in the emergence of these circuits. Are there circuit-
based strengths and in/efficiencies? If so, what are the inter-
actions between these circuits? If there is developmental
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consistency in the aberrant functioning or interactions be-
tween these circuits, this neurophysiological consistency
may help in the identification of predictors of illness or early
onset. For instance, developmental studies show earlier devel-
opment and more prominent influence of NVC and PVC in
early adolescence and that through late-adolescence, as the
PFC matures, CCaPS also improves and PVC decreases [123,
124]. In contrast, the NVC matures relatively early in devel-
opment. Modulation of NVC and PVC byCCaPSmaymature
well into adulthood. Researchers have yet to fully understand
the mechanisms functioning to derail healthy cognitive devel-
opment in emerging internalizing disorders, specifically the
interactions between NVC, PVC, CCaPS, and DMN circuits.
We believe it is clear that these circuits and their interactions
as they function in the development of mood disorders remain
critical areas for future inquiry.

Along with potential developmental delays or dysfunction-
al interactions, there is other evidence that stable temperament
patterns from early childhood related to NVC carry over with
development and affect CCaPS by means of interacting with
PVC. Some of the more informative developmental studies
are with individuals with “BI”, which denotes NVC hyper-
sensitivity. These children present with vigilance to novelty,
sensitivity to approach–withdrawal cues, and social withdraw-
al. Independent studies link reward hyper-responsivity to BI,
adolescent anxiety, and dopamine gene variants [125].
Moreover, BI participants who had been assessed since infan-
cy on measures of BI showed, relative to non-inhibited ado-
lescents, increased striatal response patterns to social cues,
such as during anticipation and receipt of positive and nega-
tive feedback from novel peers that were classified as being of
high or low interest [112•]. This pattern suggests NVC over-
reactivity to salient social cues in BI. Similar patterns in BI
were also found in a study with monetary rewards [126],
possibly suggesting overactive PVC also. Overactive PVC,
but only in response to gain versus loss, was also found in a
pediatric population with generalized anxiety disorder; how-
ever, they did not show the BI profile of NVC over-reactivity
to salient social cues [127]. These studies, while preliminary,
suggest the need for additional longitudinal studies that may
capture more precisely how early-life temperament can pre-
dict altered NVC and PVC responses in both social and non-
social contexts, and in different populations such as inhibited
versus disinhibited individuals.

Summary, Integration, and Future Steps

The present review highlights critical crossroads and future
directions for mood disorders research. We highlight concep-
tual challenges toward understanding the dynamic role of
PVC and NVC, their interactions with CCaPS circuits, and
the relationship of these circuits with the DMN. These circuits

have a basis in the psychological, theoretical, and animal
literature, and are borne out in brain imaging, lesion, and
related studies, including functional connectivity analyses.
Finally, these circuits are encapsulated within the RDoC
framework of the NIMH, the goal of which is to provide
dimensional targets for treatment and measurement of post-
treatment change.

These circuits also provide an opportunity to conceptualize
variations within disorders such as MDD, as well as phases of
BD, and potential differences between MDD and BD. A
substantial number of studies suggest increased NVC activa-
tion in MDD and BD groups. A potentially non-overlapping
set within each group also exhibits diminished CCaPS func-
tion, which is related to treatment outcome, potential for
relapse, and degree of life functioning. In contrast to these
relative similarities in NVC and CCaPS dysfunction, initial
studies suggest some amount of dissociation in the PVC
system across mood disorder groups. A substantial proportion
of those with BD exhibit PVC hypersensitivity, whereas a
substant ia l number of those with MDD exhibi t
hypoactivation.

An important challenge for consideration is the develop-
ment of these systems through childhood, adolescence, and
young adulthood. Evaluating these circuits, the interactions
between them, and the impact upon behavior requires careful
designs that incorporate parametric evaluations of the
presence/absence of NVC/PVC challenge and with and with-
out significant involvement of the CCaPS. To do so, future
models must incorporate substantial variability in the amount
and degree of development of these circuits. For example,
there is evidence that normative adolescent development re-
sults in relative dominance of NVC and PVC over CCaPS in
childhood that is reversed for most as they transition into mid
to late adolescence and adulthood. A delay in this transition
may be difficult to characterize and quantify, and to some
extent may overlap substantially in ill, at-risk, and no-risk
groups. This critical window is an optimal area for study focus
and primary and secondary prevention.

Finally, high-risk designs are one key area of continued
study that can be successfully pursued using the proposed
model. We can optimize the identifiable and measurable neu-
ral markers that can differentiate between different illnesses,
and subsequently predict the illness progression. For example,
one novel study [128••] identified a neurophysiological mark-
er (i.e., elevated at-rest activity in left mid-frontal EEG) that
prospectively predicted conversion from cyclothymia or BD
Type II to BD Type I over a 4.7-year follow-up. It will also be
fruitful to consider the extent to which neural and behavioral
markers are shared across a number of illnesses. There is
reason to suspect that high-risk studies for substance abuse
and for MDD and BD might recruit from the same high-risk
populations, allowing for pooling of resources and enhanced
power. Such multi-risk group designs fit well into the RDoC
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framework and the highlighted circuits within our model of
CCaPS, NVC, and PVC dysfunction in mood disorders.
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