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Abstract
Purpose of Review “Target bias” is the difference between an estimate of association from a study sample and the causal effect in
the target population of interest. It is the sum of internal and external bias. Given the extensive literature on internal validity, here,
we review threats and methods to improve external validity.
Recent Findings External bias may arise when the distribution of modifiers of the effect of treatment differs between the study
sample and the target population. Methods including those based on modeling the outcome, modeling sample membership, and
doubly robust methods are available, assuming data on the target population is available.
Summary The relevance of information for making policy decisions is dependent on both the actions that were studied and the
sample in which they were evaluated. Combining methods for addressing internal and external validity can improve the policy
relevance of study results.
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Introduction

When identifying the most relevant information for policy
makers or clinicians looking to make a decision about how
to act in a particular population or for a particular patient, both
the actions being considered and the context to which they
will be applied matter [1, 2]. One hierarchy of study designs
places results from randomized controlled trials (RCTs) at the
pinnacle of the pyramid of evidence because RCTs minimize
internal bias due to confounding by design through random-
ization [3]. Setting aside the fact that RCTs may still suffer
from internal biases other than confounding bias, RCTs often
are conducted in highly selected study samples that may yield

a very different context than the target population in which the
decision is being made. This mismatch of context in and com-
position of the trial sample and the target population is a key
component of external bias, which is undervalued in this ev-
idence hierarchy.

Lest we forget how much the target population matters, we
present two examples: (1) estimates of the effect of medication
assisted therapy (buprenorphine/naloxone), motivational
interviewing, and motivational incentives on substance use
would have been very different—typically less effective and
no longer statistically significant—had trials testing these in-
terventions been conducted in samples that were more repre-
sentative of all treatment-eligible persons in the US [4]. (2)
Estimates of the (adverse) effect of antidepressants on suicidal
ideation or behaviors in depressed youth may have been
overstated in trials that under-enrolled or explicitly excluded
youth at the highest risk for these outcomes [5, 6].

The term target validity has been proposed to describe the
total difference between the estimate of association obtained
in a particular study sample and the true effect in the target
population of interest [7••]. Target bias is the sum of internal
bias and external bias. We loosely define internal bias as the
difference between the estimate of association in the study
sample and the true effect in the study sample and external
bias as the difference between the true effect in the study
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sample and the true effect in the target population. Although the
moniker “target validity” is new, the concept has been previously
described in the education, social sciences, and policy literature
[1, 6, 8, 9]. The concept of target validity encourages epidemiol-
ogists to take threats to external validity as seriously as they have
traditionally taken threats to internal validity, to integrate consid-
eration of both internal and external validity when evaluating the
strength of available evidence for informing a particular decision
in a particular population, and to better evaluate the tradeoffs
between experimental and observational studies [9]. This is in
contrast to the common view that external validity is secondary
to, or contingent on, internal validity [10].

Although threats to internal validity are well-known to ep-
idemiologists (e.g., confounding bias, information bias),
threats to external validity are less well-understood.
Focusing on the external validity of RCTs is a beneficial heu-
ristic in that (1) the sampling mechanism into a trial, including
inclusion and exclusion criteria, is often explicit and thus so
are differences between the trial sample and the target popu-
lation; (2) we know quite a bit about the implicit sampling
mechanisms into trials (e.g., under-sampling of older people
and people of minority race/ethnicity) thanks to previous re-
search [11–14]; and (3) we can pretend that bias due to con-
founding negligible and can thus assume that the majority of
the differences (bias) between the estimate of association in
the sample and the target (population) average treatment effect
(TATE) of interest is due to lack of external validity. That is,
we assume the estimate of association in the sample is a good
estimate of the sample average treatment effect (SATE), but
the SATE is a poor approximation of the TATE. Despite the
relative inattention paid to external validity, the assumptions
required for external validity may be quite strong [15•].

Despite the specter of unmeasured confounding in observa-
tional studies, they have generally (despite some notable excep-
tions) returned similar results as subsequent randomized trials
investigating the same exposures [16]. That is, for many expo-
sures, particularly those that could be randomized, internal valid-
ity of observational studies may be better than is often assumed.
Additionally, observational studies do not tend to have as strict of
inclusion and exclusion criteria as trials, making them potentially
more similar to the target populations we might be interested in.
However, the external validity of observational studies is still
potentially of concern, given the increasing use of “big data,”
administrative databases, and pooled or collaborative cohort
studies, which rely on samples that arise from sampling mecha-
nisms that are myriad and unclear [17].

Formal Frameworks for External Validity

Threats to target validity associated with internal validity (e.g.,
confounding bias) have been extensively described. We de-
fine internal bias as the difference between the association

measured in the sample, E[Y| A = 1, S = 1] − E[Y| A = 0, S =
1], and the SATE, E(Ya = 1 − Ya = 0| S = 1). Here, we use Y to
denote the outcome, A to denote treatment received, S = 1 to
denote membership in the study sample, and Ya to denote the
outcome Y that would occur if treatment a were assigned (the
potential outcome).

Next, we informally define and describe key threats to ex-
ternal validity, since these threats have been less frequently
explored in the literature. There are at least three reasons that
the SATE may not equal the TATE (we will wait to formally
define this latter quantity until later in this section, for reasons
that will become clear), including:

& There are modifiers, Z, of the effect of treatment, and the
distribution of those modifiers is different in the study
sample and the target population [1, 8, 18–20, 21•,
22–24];

& The version of treatment (including details of how the
treatment is delivered) impacts the effect of treatment,
and the distribution of the versions of treatment is different
in the study sample and the target population [25]; and

& There is interference (one persons’ exposure impacts an-
other persons’ outcome), and the patterns of interference
differ between the two populations.

It is (typically implicitly) assumed that sample membership
or trial participation itself, S = 1, does not have a direct effect
on the outcome [21•]; that is, if sample membership was itself
an intervention (e.g., if the act of being observed as part of
being in the study changes participants behavior in a way that
changes the outcome not directly through receipt of the inter-
vention), the “versions” of treatment in the study sample and
the target population would differ, and reason 2 above would
lead to differences between the SATE and the TATE [25].

The majority of work done on external validity of study re-
sults has focused on differences in the distribution of effect
modifiers—that is, external biases related to sample composition.
The magnitude of the external biases related to sample compo-
sition is a function of the probability of selection into the sample,
the heterogeneity of treatment effects, and the association be-
tween sample membership and effect modifiers [1, 18, 24].
Existing frameworks for describing this problem, determining
identifiability of the TATE, and defining estimators of the
TATE are more similar to one another than they are different.
A key feature of these all of these frameworks for defining ex-
ternal validity, however, is that the target population needs to be
well-characterized (theoretically enumerable). Moving forward,
formainly logistic but sometimes theoretical reasons, we split out
external validity into “generalizability” and “transportability.”

“Generalizability” refers to the situation in which our study
sample is a proper subset of the target population, but the
study samplemay ormay not be a simple random sample from
the target population. That is, the TATE of interest is E(Ya = 1
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− Ya = 0), or the effects in a target population of which the
study sample are members. If the study sample is a simple
random sample of the target population, results from that
study are generalizable to the target population in expectation.
Multiple methods are available to adjust for the situation in
which the study sample is not a simple random sample of the
target population under two key assumptions: mean ex-
changeability between the sample and the target population,
E[Ya| Z, S = 1] = E[Ya| Z] for every a∈A; and positivity of trial
participation, P(S = 1| Z = z) > 0 for all z such that P(Z = z) > 0
[21•, 22]. Again, Z is the set of modifiers that are associated
with sample membership; however, it is worth noting that all
covariates that are associated with the outcome will be effect
measure modifiers on at least one scale. The positivity as-
sumption implies that tractable generalizability problems
(i.e., situations in which estimation of a TATE is possible
from a study sample because identifiability can conceivably
be met) are those that do not require extrapolation beyond the
characteristics of the persons in the study sample [21•]. The
practical implication of the positivity assumption is that in
order for trials to hope to provide good information about
the expected TATE, they must enroll a full spectrum of pa-
tients; for example, trials conducted only in adults < 50 years
old cannot provide information about the effect of interest in a
target population that includes all adults without making the
(strong) assumption that age does not modify that effect.

In contrast, “transportability” has been used to refer to the
situation in which our study sample and target population are
not overlapping [25–27]. That is, the TATE of interest is
E(Ya=1 − Ya=0| S= 0); we are interested in the effect in a set of
persons who were NOT members of the study sample or the
complement to the study sample in the set of individuals created
by combining the study sample and the target population.
Transportability, then, may involve extrapolation to a different
context [26]. Another definition of transportability that has been
put forward is the “extension of inferences from [a] trial to a
target population that includes participants who are not part of
the trial-eligible population” [28]. Here, the implication is that the
TATE of interest is E(Ya=1 − Ya=0), but the positivity assump-
tion is not met. This definition of transportability explicitly in-
volves extrapolation beyond the characteristics of the persons in
the study. Transportability, then, appears to require stronger as-
sumptions than generalizability from a theoretical sense.

Confusingly, the term “transportability” (or “transportability
weights”) has also been used occasionally to describe methods
for extending inference from a study sample to a target population
to which the study sample belongs (a “generalizability” problem,
as defined above), when data on the entire target population is
unavailable or the particular subset of the target that participated
in the study is not enumerable [27]. For example, we may have a
trial of antihypertensive treatment conducted in a sample of adults
with hypertension living in the United States (US) but no data on
the full target population (all adults with hypertension living in the

US). Instead, we may have data on a random or representative
sample of the target population. Large governmental surveys often
serve this purpose (e.g., NHANES). In this situation, we do not
want to “generalize” to the population represented by the union of
the data from the study sample, denoted S∗= 1, and the target
population (or a sample of the target population), denoted S∗= 0.
The TATE of interest is no longer E[Ya=1−Ya=0], but rather it is
E[Ya=1−Ya=0| S∗= 0]. Thus, sometimes even when we are theo-
retically generalizing results, we might use methods that were
designed for “transportability” [19].

Assumptions and Identifiability

A set of assumptions sufficient to identify the TATE parallel a
sufficient set of assumptions for identification of the SATE. In
addition to mean exchangeability between the sampled and
unsampled members of the target population perhaps conditional
on covariates and positivity, we assume treatment version irrele-
vance (also called causal consistency) or the same distribution of
versions of treatment in the study sample and the target population;
no interference or the same patterns of interference in the study
sample and the target population; no measurement error including
of all Z variables; and correct causal model(s) specification [22].

Barenboim and Pearl proposed the use of “selection dia-
grams,” an extension of directed acyclic graphs (DAGs), for
encoding assumptions about causal relationships in the sample
and in a distinct target populations and then determining
whether a TATE is identifiable from the available data [26].
As long as the characteristics that differ between the two pop-
ulations are all pre-treatment covariates, the assumptions suf-
ficient for generalizability and transportability, and sufficient
sets of covariates for mean exchangeability between the sam-
ple and the target population, coincide [29].

Assessing the Generalizability
or Transportability of Effects

Important limitations of existing study results for guiding policy
or treatment decisions as related to inclusion of key populations
in public health and medical research have been qualitatively
recognized for some time [14, 30–38]. Quantitative assessments
of the differences between a study sample and target population
improve the rigor of such exercises and include, for example,
reweighting the sample by the inverse probability ofmembership
in the sample and then comparing the differences in characteris-
tics of the weighted sample and the target population using stan-
dardized mean differences [39, 40]. However, for any (qualita-
tively or quantitatively observed) differences in sample compo-
sition to result in external bias, those characteristics that differ
between the study sample and target population(s) of interest
must also modify the treatment effect [5].
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Any predictors of the outcome are likely to modify the
treatment effect on at least one scale. This implies that
assessing the generalizability or transportability of effects
not only requires specifying the target population to whom
one would like to make inference but also the scale on which
one would like to report results. There are mathematical argu-
ments supporting the idea that odds ratios are the least hetero-
geneous measure of association, while risk differences are
most heterogeneous; however, absolute measures of effect
are arguably most meaningful from both a public health and
etiologic perspective.

Methods to Account for External Bias

In Design

The best way to ensure target validity in expectation would be
to randomly sample the study sample from the target popula-
tion (ensuring external validity in expectation), then randomly
assign treatment to members of the study sample. Random
sampling of the target population would ensure the sample is
representative of the target population on both measured and
unmeasured covariates, in expectation. However, random
sampling of the target population is often not possible for
logistical, ethical, or practical reasons [41–44]. One design
option to improve the generalizability of trial results is purpo-
sive stratified sampling [45, 46] or pragmatic or practical clin-
ical trials that tend to have less restrictive inclusion and exclu-
sion criteria [47, 48]. However, while pragmatic trials these
are more likely to be generalizable than traditional efficacy
trials, they are still not expected to yield study samples that
perfectly reflect the target population. Furthermore, many
questions about generalizability and transportability of study
arise after the research has been conducted with reference to a
new target population. It is far more efficient to use existing
study results to estimate or approximate the TATE in each of
these new target populations than it would be to conduct new,
separate trials in all possible target populations of interest.

In Analysis

Just as methods exist to account for non-random treatment
assignment (e.g., regression adjustment, propensity score
methods including weighting, g-computation or standardiza-
tion, and doubly robust methods), methods exist to account for
non-random sampling into the study sample. Most of these
methods are analogous to those used to account for confound-
ing and selection bias. Broadly, these methods can be grouped
into methods based on modeling the probability of the out-
come, methods based on modeling the probability of sample
membership, and doubly robust methods that combine the two
approaches [21•, 24, 49, 50].

Outcome model-based approaches to account for sample
composition of a trial typically involve estimating subgroup-
specific treatment effects from the sample and the averaging
them by the proportion of the target population in each of
those subgroups. Pearl termed this the “post-stratification for-
mula.” Fundamentally, the formula looks just like Robins’s g-
formula [51], where rather than estimating the average treat-
ment effect by averaging over the distribution of covariates in
the sample, we average over the distribution of covariates in
the target population. One outcome model-based approach to
generalizing study results is to model the outcome as a flexible
function of observed covariates using data from the study
sample and then predict outcomes for all members of the tar-
get population under each treatment of interest. This has been
done using parametric regression models [52] and machine
learning methods [53, 54].

Alternatively, the treatment effect can be estimated in the
study sample that has been weighted to look like the target
population. Specific details regarding the construction of these
sample membership weights depends on whether we envision
the problem as one of transportability or generalizability, both
theoretically, but also practically. If we have a dataset enumer-
ating the target population and also the specific members of
the target population who were selected into the study sample
(a generalizability problem both theoretically and practically),
the weights are simply the inverse of the probability of sample
membership for everyone in the sample and zero for everyone
else. If, on the other hand, the study sample is not a subset of
the target population (a transportability problem theoretically)
or data on the target population and the study sample are not
linkable (a transportability problem practically), we turn to a
different set of weights. Data on the study sample and the
target population may not be linkable if we only have data
on a sample of the target population (e.g., from a sample
survey), or we do not have data on which members of the
target population were included in the sample (e.g., from ad-
ministrative records) [55•]. “Transportability” weights are the
inverse of the odds of sample membership for everyone in the
sample and zero for everyone else [19, 27].

In both generalizability and transportability problems,
weights are typically estimated using predicted probabilities
from a sample membership model, with generalizability
weights akin to propensity score weighting (inverse probabil-
ity of exposure weighting) and transportability weights resem-
bling those for estimating the average treatment among the
treated (ATT) [56]. Applications of sample membership
weighting methods have been most prevalent in the literature
(relative to outcome model-based methods) [18, 24, 57].

In order to implement the methods described above, one
must find an appropriate secondary data source on the target
population of interest, which can be quite challenging to do in
practice [58]. First, the data must include comparable mea-
sures on a sufficient set of covariates, such that the assumption
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of mean exchangeability between the sample and the target is
met. Sensitivity analyses are possible if data on effect modi-
fiers are missing in the target population, or in both data sets,
for example by specifying plausible distributions of those ef-
fect modifiers and the strength of the effect modification [59,
60]. Second, one must assume that the population data are
either a random sample of the true target population of interest
or a complete census. However, many promising sources of
publicly available data come from complex surveys, like the
National Survey on Drug Use and Health (NSDUH), where it
is known that study participants were not in fact randomly
sampled [61]. Simply transporting RCT results to survey sam-
ples like NSDUH without properly accounting for the sam-
pling methodology will result in biased estimates of the
TATE. In other words, generalizations may be accurate for
the NSDUH study sample but not for the population
that the NSDUH sample represents. Recent methodolog-
ical work has addressed this by determining how to
incorporate survey weights from population data into
existing generalizability methods [62].

Novel Study Designs to Account for External
Bias

Two particularly novel study designs have been demonstrated
in real-world data to account for external bias and explicitly
assess the plausibility of some of the key assumptions (de-
tailed above).

Nesting Trials Within Clinical Cohorts

If trials obtain permission from participants to link to their
medical record data or if trials are nested within medical sys-
tems such that trial participants are identifiable within the
population of patients who would have been eligible to par-
ticipate in the trial, there are unique study design possibilities.
Most basic is the potential for the methods described above to
be used to generalize trial results to the broader target popu-
lation [19, 22, 28, 49]. Alternatively, if the treatment under
study is available outside of the trial, trial results that have
been generalized to the cohort could be compared with the
estimated effect of treatment in the cohort based on observa-
tional data [63]. Generalized trial results would be expected to
differ from the truth if the adjustment set did not include a
sufficient set of modifiers, while the association between ex-
posure and outcome estimated in the target population directly
using non-randomized treatment would be expected to
differ from the truth if the adjustment set did not in-
clude a sufficient set of confounders [63–67]. If results
from the two approaches are similar, we can have more
confidence in the estimate of the TATE [21•, 63]. This
is an example of triangulation of study results [68].

Leveraging Lack of Treatment Availability Outside a
Trial

If at least one arm of the trial (treatment A = a) is currently
available in the target population, the assumption of “mean
generalizability” or “mean exchangeability over S” [21•] can
be partially evaluated by comparing generalizing the out-
comes from the trial under treatment to observed outcomes
under treatment a in the target population [69]. A major dif-
ference between the generalized and observed outcomes im-
plies that the generalized treatment effect for treatment a ver-
sus a′ is likely to differ from the true TATE. This type of
analysis is particularly useful when studying a novel treatment
where the placebo or standard of care arm of the trial is the
only (currently) available treatment in the target population. In
such cases, comparing the generalized outcomes in the place-
bo arm of the trial to the observed outcomes in the target
population gives a sense of whether the (partial) conditional
exchangeability assumption over S is likely to have been met.
This approach has been demonstrated in education [24] and
health using contemporaneous controls in the general popula-
tion before broad availability of the treatment under study
[70]. It has also been demonstrated using historical controls
when estimating the effects of experimental medical treat-
ments for terminally ill patients available under “right to try”
laws [71]. Critically, this method only tests for a failure to
transport or generalize. Even if the generalized outcomes
and observed outcomes in the target population are identical
under a, there is no guarantee that the generalized outcomes
under treatment a′ will equal the unobserved outcomes in the
target population under a′.

Conclusions

The utility of an estimate for informing a public health
decision is a function of how accurately it maps to the
causal effect of interest in the relevant target population
[2]. Recent work on target validity has focused on in-
creasing awareness of impact that external bias has on
overall bias. Valid estimates of effect for relevant target
populations are attainable given rich descriptive data on
target populations, and new methods for extending re-
sults from one study sample to another population, un-
der the set of assumptions described above. The
strength of assumptions under which such an extension
is possible is a function of how different the study
sample and target population are from one another with
respect to covariates that modify the effect of treatment.
Although representativeness (of a study sample with re-
spect to the target population) may not be necessary for
all studies [41–44], the distribution of covariates in the
sample and the target population should, at a very
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minimum, be considered when answering policy-
relevant questions. Methods are available to account
for differences in measured covariates between a study
sample and target population and should be carefully
implemented when drawing population inferences from
non-representative samples.
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