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Abstract
Purpose of the Review Increasing access to large-scale genetic datasets in population-based studies allows for genetic association
studies as a means to examine previously known and novel relationships among complex traits. In this review, we discuss two
widely used approaches to leverage genetic data to study the links between traits: Genome-wide genetic correlation and
Mendelian Randomization (MR) studies.
Recent Findings Both genetic correlation and MR studies have provided important novel insights. However, although they are
less sensitive to many sources of bias present in traditional, observational epidemiology, they still rely on assumptions that in
practice might be difficult to assess. To overcome this, development of novel methods less sensitive to these assumptions is an
active area of research.
Summary We believe that as population-based genetic datasets grow larger and novel methods allowing for weaker forms of
current assumptions become available, genetic correlation and MR studies will become an integral part of genetic epidemiology
studies.

Keywords Mendelian randomization . Genetic correlations . GWAS . Pleiotropy

Introduction

Genome-wide association studies (GWAS) have generated
thousands of single-nucleotide polymorphism (SNP)-trait as-
sociations. These results have already provided several new
insights into disease etiology, and they provide initial clues for
further investigations [1]. In addition to being a successful tool

for identifying individual risk factors for disease, GWAS have
also offered novel approaches to obtain novel insights into
shared etiology across traits. For example, the estimated
genome-wide genetic correlation between Estrogen Receptor
(ER)+ and ER− breast cancer is modest (rg = 0.60) [2], similar
to the genetic correlation between lung and head and neck
cancer (rg = 0.57) [3]. This is in agreement with findings from
GWAS, where ER+ and ER− breast cancer share some, but
not all, genome-wide significant variants [2]. They also agree
with observational studies [4] demonstrating differential ef-
fects of non-genetic risk factors for ER+ and ER− breast can-
cer and highlight the importance of considering etiological
heterogeneity across disease subtypes. Furthermore, GWAS
can allow us to revisit associations in observational epidemi-
ology. For example, by substituting observational measures of
a trait with its genetic predictors, we can partially overcome
inherent issues in observational epidemiology such as con-
founding and reverse causation. Such Mendelian
Randomization (MR) studies (see below) have provided evi-
dence against a causal role of high-density lipoprotein (HDL)
cholesterol in coronary artery disease (CAD), despite evi-
dence of an inverse relationship in observational studies [5, 6].
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In this review, we will discuss two popular genetic ap-
proaches that help increase our knowledge about associations
between traits: genome-wide genetic correlation andMR stud-
ies. The overarching goal with genome-wide genetic correla-
tion analysis is to quantify the correlation of effect estimates
across SNPs between two traits, while the goal with MR stud-
ies is to leverage genetic information to estimate a causal
effect of one trait on another. Here, we will describe these
two approaches in more detail, including their advantages
and disadvantages, and also discuss their similarities and dif-
ferences. Throughout the manuscript, we will focus our dis-
cussion on two-sample designs, that is, when the two traits of
interest have been assessed in two independent populations
[7]. For example, a two-sample genetic correlation (or MR)
study assessing the relationship between body mass index
(BMI) and prostate cancer would use BMI GWAS summary
statistics from the UK Biobank and prostate cancer GWAS
summary statistics from the PRACTICAL consortium, where
there is no overlap between UK Biobank and PRACTICAL
participants.

Genetic Correlation Studies

Genetic correlation studies estimate the correlation in allele
effects between two traits across causal SNPs in the genome.
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where bk is the per-allele effect of SNP k from a multivariable
regression of trait Y1 on all SNPs in an infinite sample from a
given population and ck is the same for trait Y2. In practice,
when the sample sizes for studies of Y1 and Y2 are typically
smaller than the number of SNPs to be analyzed, multivariable
regression cannot be used to estimate bk or ck; additional as-
sumptions are needed [8]. When individual-level data is avail-
able, the genome-wide genetic correlation between two traits
can be estimated using bivariate genome-based restricted
maximum likelihood (GREML) analysis [9] on GWAS data
of independent individuals as implemented in the widely used
GCTA software [10]. In the absence of individual-level data,
genetic correlations between two traits can be estimated by the
increasingly used cross-trait LD score regression (LDSC)
[11••]. LDSC relies on the fact that SNP-specific association
statistics include the effects of all SNPs in linkage disequilib-
rium (LD) with that SNP. Thus, for a polygenic trait, SNPs in
high-LD regions will on average have higher χ2 statistics than
SNPs in low-LD regions. We can estimate the genetic corre-
lation between two traits using the relationship
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, where βj and γj is the effect size

for SNP j on trait Y1 and trait Y2, respectively; ρg is the genetic
covariance; M is the number of SNPs; N1 and N2 are sample
sizes for trait Y1 and Y2, respectively; Ns is the number of
overlapping samples; ρ is the phenotypic correlation between

overlapping samples; and l(j, c) is the LD score of SNP j,

defined as l j; cð Þ≔ ∑
k∈c

r2 j; kð ÞÞ [12]. The genetic covariance

ρg is estimated by the slope obtained from a linear regression
of βjγj on l(j, c). We can obtain l(j, c) from external reference
databases such as 1000 Genomes [13], with the caveat that the
genetic ancestry between the study samples and reference
panel needs to match. To obtain the genetic correlation rg,
we can normalize the genetic covariance ρg by the estimated

SNP heritabilities for the two traits: rg ¼ ρg
h2g1h

2
g2
, where h2g1 and

h2g2 are the SNP heritabilities for trait Y1 and Y2, respectively

[11]. LDSC is attractive in that it allows for overlap of indi-
viduals between studies and is computationally fast. In fact,
even in situations when individual-level data is available,
LDSC might be preferable due to computational feasibility.
However, LDSC is less precise than GREML analysis and
requires that the external LD reference panel matches the
study population [14]. Genetic correlation analyses assume
each of the traits under study has a genetic component, so

traits with no convincing evidence that h2g >0 should not be

included in these analyses.
Both GREML and LDSC are more powerful when the true

genetic architecture across traits is polygenic with many caus-
al SNPs of low effect. In contrast, if the genetic architecture is
driven by a few SNPs with large effects, it can be more effi-
cient to only analyze those. It is important to note that a neg-
ligible genome-wide genetic correlation does not necessarily
negate local genetic correlations between two traits. This
might happen if the genetic correlation between two traits is
positive in some regions of the genome but negative in others.
Thus, it might be of interest to complement any genome-wide
genetic correlation studies with local genetic correlation anal-
yses to obtain a more in-depth understanding of the genetic
overlap between two traits. Local genetic correlations can be
estimated using ρ-HESS, which relies on GWAS summary
statistics and an external LD panel [15•]. In contrast to
LDSC, ρ-HESS requires information about any phenotypic
correlation and sample overlap between two traits, which
can be estimated by LDSC. For a more in-depth review of
genetic correlation studies, please see van Rheenen et al. [16].

Genetic correlations can be difficult to interpret, as they
can be consistent with several different causal structures
(Fig. 1). As an example, assume that we observe a genetic
correlation between traits Y1 and Y2. The observed genetic
correlation not only could be due to a causal relationship
between Y1 and Y2 (Fig. 1a), but could also be due to their
shared association with an (un)observed risk factor X
which is also associated with G (Fig. 1b). For example,
the observed genetic correlation (rg = 0.57) [3] between
lung (LC) and head neck cancer (HNC) likely reflects (at
least partially) the underlying genetic association with
smoking HNC←Gsmoking→ LC. Another example is the
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observed genetic correlation between HDL and CAD
which may be mediated by triglycerides (T): HDL←G→
T→CAD. In this case, the observed genetic correlation
between HDL and CAD does not reflect a causal relation-
ship between HDL and CAD, but rather the pleiotropic
effects on G on HDL and T. The genetic correlation be-
tween two traits can also be driven by multiple common
causes, of which some can have opposite effect on the two
outcomes (Fig. 1c). In this case, the genome-wide genetic
correlation may be negligible since some genetic loci will
show positive genetic correlation between Y1 and Y2,
while some will show negative genetic correlations.
Thus, if the genetic correlation analysis was restricted to
the loci in either G1 or G2, the magnitude could differ from
0. This is a situation where calculating local genetic corre-
lations [15] can be particularly useful, as it would allow for
identifying specific loci that are correlated due to individ-
ual shared common causes (e.g., X1, Fig. 1c).

Mendelian Randomization Studies

MR studies assume that genotypes are distributed random-
ly with respect to any confounders between a potential risk
factor X and an outcome Y [17]. To assess the causal effect
of X on Y, we use genetic variants (Gx) that have been
robustly associated with X as a proxy for X (robustly often
translates to genome-wide significant). We then test for

association between the instrumental variable Xg and Y,
where Xg can be described as the “genetically predicted
X.” Naturally, the stronger genetic component that X has,
the more representative Xg can be. As more SNP-trait as-
sociations are identified through GWAS and other large-
scale genetic association studies, the instrumental variables
that serve as proxies for X are becoming stronger, increas-
ing the statistical power of MR studies. For the primary
analysis, we recommend to include only SNPs that have
shown association with X on a genome-wide significant
level in the target population. Here, “target population”
refers to a population similar to the MR study population,
where the outcome Y is measured. For example, if the MR
study population is of Asian ancestry, we recommend to
use SNPs that have been associated with the risk factor X
on a genome-wide significant level in an Asian population,
or, if Y is assessed in postmenopausal women, we recom-
mend selecting Gx to be SNPs associated with X in post-
menopausal women. Choosing genome-wide significant
markers helps alleviate “weak instrument bias,” which oc-
curs when either the instrument is not associated with the
exposure at all or the instrument-exposure association is
measured imprecisely. However, even in the absence of
weak instrument bias, genetic instruments are often mod-
estly correlated with exposures: even though we can be
confident that the association between the instrument and
exposure is not a chance sampling error and that we are
estimating that association accurately, the correlation can
still be small (correlations under 0.3 are common). This has
implications for power and the interpretation of non-
significant MR tests of exposure-outcome associations,
which may reflect limited power rather than absence of a
causal effect of exposure on outcome, see [18, 19] for dis-
cussions of power calculations for MR studies.

MR studies typically assume a linear model for Xg as a
function of SNP genotypes: X g ¼ ∑

k
bkGk , where bk is the

per-allele effect of SNP k on X. Although initially proposed
in the setting where X and Y are both measured on the same
set of subjects, recent studies have taken advantage of the
availability of summary statistics from large GWAS of X
and Y—the sample sizes from consortia of studies that have
measured either X or Y often far exceeds the sample size of
studies where both X and Y have been measured [20]. The

ratio estimate (bβ ) of the effect of X on Y using summary

statistics on genetic variants k = 1,..., K can be calculated as bβ

¼
∑
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where ck is the per-allele effect of SNP k on Y,

and σYk is the standard error for ck. The standard error for bβ is

given by se(bβ ) =
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q
. Under certain assumptions as

Fig. 1 Potential sources of genetic correlation. a Traits Y1 and Y2 share a
common causeX under genetic control. b Trait Y1 causes trait Y2. c Traits
Y1 and Y2 share two common causes, X1 and X2, one of which has the
same directions of effect on both traits, the other of which has opposite
directions. In this case, the genome-wide genetic correlation may be close
to 0, although when restricted to the loci in G1 or G2 the magnitude could
be away from 0
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discussed in this section [21], bβ can then be interpreted as the
causal effect on Y associated with one unit change in X.

Although MR studies alleviate some shortcomings with
observational studies—notably they are robust to unmeasured
confounding between X and Y and reverse causation—they
come with caveats. In addition to the requirement that there
exist robust genetic predictors of X, MR studies also assume
that there is no confounding factor that affects both Gx and Y
(e.g., population stratification). One of the largest concerns
withMR studies in practice is the assumption of no pleiotropy,
that is, Gx can only be associated with Y through X and not
through any other pathway. As more genetic associations are
discovered, widespread pleiotropy (i.e., the same SNP is as-
sociated with multiple traits) is becoming more apparent.
Thus, the more genetic variants included in an MR study,
the higher risk of introducing bias due to pleiotropy. In a
situation where Gx is also associated with C, another risk
factor for Y, we can no longer assume that Gx affects Y only
through its association with X, and thus, one of the fundamen-
tal assumptions of MR studies is violated. Since traditional
MR approaches rely on the assumption of no pleiotropy, na-
ively applying standard inverse-variance weighted approaches
for polygenic traits is subject to bias. For example, a naïveMR
analysis of age at menarche and breast cancer risk showed no
evidence of association (Odds Ratio (OR) = 1.00, 95% confi-
dence interval (CI) = 0.96–1.05) [22]. However, given the
known shared genetic basis between BMI and age at menar-
che [23], the authors further adjusted their MR analysis for
genetically predicted BMI and observed evidence for a causal
inverse association between age at menarche and breast cancer
(OR = 0.94, 95% CI (95% CI 0.89–0.98). Specifically, the
authors reweighted the individual age of menarche SNPs for
its effect on BMI rather than age at menarche, thereby con-
trolling for the effect of genetically predicted BMI induced by
SNPs associated with age at menarche. Further discussion of

the relationship between age at menarche, BMI and breast
cancer can be found in Burgess et al. [24].

These results illustrate some of the limitations with MR
analysis when multiple correlated factors are associated with
the outcome. Many alternative MR approaches have been
proposed to tackle pleiotropy, including MR Egger regression
[25], multivariable MR analysis [26], the weighted median
approach [27], and MR-PRESSO [28] (Table 1). In practice,
it is not possible to verify that all assumptions of MR studies
are met. Further, each of these alternative approaches come
with additional assumptions that are often difficult to verify in
practice, and thus, the most appropriate method for analyzing
the data will be situation-dependent. Therefore, we recom-
mend using a range of MR methods, as consistency in the
results across the various methods provides support for a ro-
bust finding. Regardless of method(s) used, it is important the
investigator recognizes the assumptions made in the analyses
and interprets the results with those assumptions in mind.
There are many reviews discussing the pitfalls of MR studies
and alternative approaches [29, 30•, 21, 17].

Bias in Genetic Correlation and MR Studies

All genetic association studies including genetic correlation
and MR studies are subject to collider bias, which can arise
if both traits under study are independently associated with a
third variable which is controlled for in the analysis, introduc-
ing a spurious association between the two traits. Day and
colleagues estimated that the extent of collider bias is inverse-
ly related to the strength of the association between the expo-
sure and the collider [31]. A specific case of collider bias is
selection bias, where, even though genetic variants associated
with Y1 are not associated with Y2 (and vice versa) in the
general population, they are in the sample under study. For
example, an MR study of BMI and breast cancer prognosis

Table 1 Methods to address pleiotropy in MR studies

Method Description Advantages Disadvantages Reference

MR Egger Provides unbiased estimates of the
true effect even in the presence of
pleiotropy.

Does not require the instrumental
variables to be valid.

Relies on the InSIDE (INstrument Strength
Independent of the Direct Effect) assumption.

[25]

Multivariable
MR
analysis

Allows for simultaneous assessment
of multiple correlated risk factors
with a shared genetic basis, such
as lipids.

Allows for inclusion of pleiotropic
variants when the variants are
associated with the risk factors
under study.

Subject to the same assumptions as traditional
MR analysis, including no pleiotropic
associations with any factors that are not
considered in the primary analysis.

[26]

Weighted
median
estimator

Calculates a weighted median of the
individual SNP-specific esti-
mates.

Does not rely on the InSIDE
assumption.

Requires that at least 50% of the instrument
variables are valid.

[27]

MR-PRESSO Corrects for horizontal pleiotropic
effects by removing outliers.

MR-PRESSO can be used in the
context of other MR approaches
such as MR Egger

Sensitive to the InSIDE assumption.
Requires that at least 50% of the instrument

variables are valid.
Requires simulations, and thus is not as

computationally fast as other methods.

[28]

Curr Epidemiol Rep (2020) 7:104–112 107



among breast cancer cases would be subject to collider bias if
there are variants associated with both breast cancer incidence
and prognosis, but not BMI (in the general population)
(Fig. 2). Since BMI is associated with breast cancer risk, var-
iants associated with BMI will be correlated with other risk
variants among breast cancer cases—violating MR assump-
tions and potentially inducing a spurious association between
BMI and breast cancer prognosis [28]. The impact of selection
bias in MR studies is in most cases small, but can be substan-
tial if the selection effects are large [32]. Collider bias has
received much attention lately, since it might cause biased
effects in large population-based samples such as UK
Biobank [33–35]. In particular, the participant rate for UK
Biobank was only 5%, and important population characteris-
tics such as smoking, educational attainment, and overall mor-
tality differ from the general population. Specifically, UK
Biobank participants are less likely to smoke, have higher
educational attainment, and have lower mortality compared
to the general population. Thus, due to collider bias, we would
expect to see upward biased genetic correlations between fac-
tors associated with participation in UK Biobank (such as
smoking and education attainment). For example, a genetic
risk score for BMI was associated with UK Biobank assess-
ment center even after adjusting for 40 principal components
[35]. These results could either be due to residual population
stratification or collider bias, as both assessment center and
BMI are associated with participation in UK Biobank [36]. As
these large resources of data are increasingly being used, we
urge to consider how representative a study population is of
the general population when drawing conclusions and
discussing generalizability.

Other potential sources of bias that affect both genetic cor-
relation and MR studies include population stratification, dy-
nastic effects, and assortative mating. As with any genetic
association study, population stratification needs to be consid-
ered by, for example, including principal components in the
analytical model [37]. Dynastic effects refer to the fact that
any genetic effects on a trait inherited from parent to offspring
can be exacerbated by any trait-associated environments that

the parents provide the offspring with. Morris et al. [38] dis-
cusses the example of genetic variants associated with educa-
tional attainment. If the parents carry genetic variants positive-
ly associated with educational attainment, they might also be
more apt to have books in the home, which might further
increase the educational attainment for the offspring. Thus,
the genetic propensity to high education among the parents
will not only be genetically inherited by the offspring, but can
also provide an education-stimulating environment.
Assortative mating is simply stating the fact that we are more
likely to choose a spouse that is similar to ourselves, thus
inducing non-random mating patterns in the population. For
a more in-depth discussion of these issues, we refer to Morris
et al. [38].

Directional Analysis

Statistically significant evidence from naiveMR analysis does
not necessarily implicate that X is causal for Y (Gx→X→Y),
but may instead reflect a common shared genetic factor that is
not mediated by either of the traits (X←Gx→Y). It is therefore
important to also carefully consider alternative causal path-
ways (e.g., by constructing DAGs) and recognize that any
conclusions about causality will be based on the assumptions
made by the investigator. Bidirectional MR studies is a tool to
assess any assumptions made about the direction of causal
relationships. Briefly, in bidirectional MR analysis for two
traits, we first assess if SNPs associated with X is also associ-
ated with Y and then if SNPs associated with Y are also asso-
ciated with X. If the former but not the latter is true, we have
evidence that X causes Y. For example, SNPs associated with
BMI have been shown to also be associated with circulating
C-reactive protein (CRP) levels, but SNPs associated with
circulating CRP levels are not associated with BMI [39].
Based on these results, it is more likely that BMI affects
CRP levels than the other way around. An important caveat
in bidirectional MR analysis is that the SNPs for X and Y have
to be independent of each other in order to receive valid
results.

Fig. 2 Example of collider bias. An MR study of BMI and breast cancer
mortality among breast cancer cases would be subject to collider bias if
there are variants associated with both breast cancer incidence and
prognosis, but not BMI (in the general population). Since BMI is

associated with breast cancer risk, variants associated with BMI (GBMI)
will be correlated with other risk variants (GBrCa) among breast cancer
cases—violating MR assumptions and potentially inducing a spurious
association between BMI and breast cancer mortality
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Similarly, a drawback with genome-wide genetic correla-
tion analyses is that they only provide an estimate of the cor-
relation, but give no information about the direction of the
correlation (i.e., does X cause Y or does Y cause X?).
Recently developed statistical methods have addressed this
shortcoming by relying on genome-wide data to identify di-
rectional genetic correlations that support either mediated or
pleiotropic causal models for pairs of traits [40, 41]. Joseph
Pickrell and colleagues developed a statistical framework that
uses the correlation between trait-specific effect sizes of
genome-wide significant SNPs for pairs of phenotypes [40].
The genome is first divided into independent regions, and
given GWAS summary statistics on two traits, they calculate
the likelihood for a range of causal and non-causal models
within each region. They then assess if SNPs having an effect
on X also have an effect of Y and vice versa. As an example,
they found that SNPs influencing BMI had correlated effects
on triglyceride levels, whereas the reverse was not true, sug-
gesting that increased BMI is a cause for increased triglyceride
levels. Using the same approach, they also found that hypo-
thyroidism causes lower stature. We applied this approach on
a set of 38 non-cancer traits and 6 solid cancers, with the aim
of identifying potential causal relationships [3]. We detected
four putative directional genetic correlations where SNPs as-
sociated with the non-cancer trait showed correlated effect
estimates with cancer but the reverse was not true (circulating
HDL concentrations and breast cancer, schizophrenia and
breast cancer, age at natural menopause and breast cancer,
and lupus and prostate cancer).

The latent causal variable method assumes that there is a
latent causal variable (LCV) that mediates the genetic relation-
ship between two traits [41]. The relative strength of the ge-
netic correlation between the LCVand the two traits can help
assess if one trait is more likely to be the causing the other. If
the LCVis more strongly genetically correlated with X thanY,
there is evidence that X is partially genetically causal for Y.
Although the underlying mathematical model differs from the
method developed by Pickrell and colleagues, the LCVmodel
similarly assesses if SNPs affecting X show correlated effects
on Y, and vice versa. The LCV model was used to propose an
inverse causal role of LDL on bonemineral density, supported
by the observation that statin use increases bone mineral den-
sity. These results were subsequently supported in MR studies
as well [42].

Multi-Ethnic Considerations

Both MR and genetic correlation studies are vulnerable to
ancestral heterogeneity and population stratification. To our
knowledge, this is an underdeveloped area in terms of meth-
odology. Brown and colleagues [43•] developed a Bayesian
approach (Popcorn) that estimates genome-wide trans-ethnic
genetic correlations between two non-admixed populations,

using GWAS summary statistics only. However, we are not
aware of any methods that allow for genetic correlation anal-
ysis in admixed populations, where LD patterns are more
complex. In multi-ethnic MR studies, it is important to assess
if the MR assumptions hold. For example, it is not clear if a
study of circulating CRP levels and cardiovascular disease in
an African-American population can rely on obtaining instru-
mental variables (SNPs) from CRP association studies con-
ducted in European ancestry individuals.

Conclusions

Both genetic correlation andMR analyses have provided nov-
el insights into epidemiology studies, both confirming and
refuting previous associations from observational studies.
Leveraging germline genetics helps us overcome many short-
comings in observational epidemiology and can lend impor-
tant support for causal inference. As large datasets and results
are becoming publicly available (e.g., Biobanks), both genetic
correlation andMR analyses are poised to continue to increase
in popularity. For example, UK Biobank recently released
biomarker data on all 500,000 participants, which will allow
for causal assessments of biomarkers (e.g., hormones, vitamin
D, IGF-1) and disease. In particular, as more data on potential
risk factors for disease become available, genetic correlation
and MR studies will be important tools to disentangle corre-
lated risk factors.

MR studies have helped shed light on previously debat-
ed observed relationships. In addition to refuting a causal
relationship between HDL and CHD [5, 6], it has also
helped identify an inverse effect of genetically predicted
BMI and both pre- and postmenopausal breast cancer risk
[44]. As mentioned earlier, failure to account for horizontal
pleiotropy can severely bias the results, as with the case of
age at menarche and breast cancer [23]. Yarmolinsky and
colleagues conducted a comprehensive MR study of
twelve previously suggested risk factors and ovarian can-
cer histotypes [45]. They also assessed violation of MR
assumptions by using five different MR approaches.
Their analyses demonstrated inconsistent results across
both histotypes and MR approach. The most consistent
result was for genetic susceptibility to endometriosis and
invasive epithelial ovarian cancer, which was supported by
three of the MR approaches. Both naïve and MR Egger
analyses supported an association between BMI and inva-
sive epithelial ovarian cancer, but inconsistency in results
across other MR approaches pointed towards violations of
the MR assumptions. When stratifying the analysis by
ovarian cancer histotypes, they further observed evidence
of associations for multiple risk factors across histotypes,
and these results were often supported across MR ap-
proaches. This study showcases the importance of
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applying multiple MR approaches to identify any evidence
of assumption violation, as well as the importance of con-
sidering etiological heterogeneity across disease subtypes.

Both MR and genetic correlation studies have their
merits. Genetic correlation analysis quantifies the correla-
tion in allele effects across the entire genome and is par-
ticularly powerful when the underlying genetic architec-
ture is polygenic with multiple causal variants, all with
small effect. In addition, novel methods for estimating
local genetic correlations, can give insights into specific
regions in the genome that contributes disproportionally
to a shared genetic basis. MR studies can provide infor-
mation about direction of association. Development of
new statistical methodology for MR studies, in particular
novel methods that are less sensitive to the classical MR
assumptions, is a very active field of research. Indeed,
multiple alternative approaches that are robust to one or
several assumptions have already been developed.
Further, MR studies only require genetic data on a limited
set of SNPs rather than genome-wide genotype data.

In general, methods for MR analyses have been more
developed than for genetic correlation analyses. We ex-
pect that developing novel methods relating to both MR
and genetic correlation analyses will be a highly active
area of research over the next few years. Here, we
discussed two recently proposed methods that build on
MR and genetic correlation analyses to assess causality
[40, 41]. An important area for improvement is research
on how to apply MR and genetic correlation studies on
multi-ethnic populations, in particular for admixed popu-
lations which exhibit long-range LD, where current
genome-wide genetic correlation analysis can create bias.
A recent study highlighted the health disparity associated
with implementing polygenic risk scores (PRS) developed
in a specific ancestral population into clinical practice, as
in general, PRS perform poorly across ancestries [46].
The unambiguously most important factor to overcome
this is to shift the focus on genetic discovery from
European ancestry populations to other ethnicities. In ad-
dition, efforts towards developing novel methods that as-
sess genetic correlations and causal relationships across
ancestries will help us understand to which extent we
can leverage genetic findings across ancestral populations.

In conclusion, genome-wide genetic correlation and MR
studies have made important contributions to further un-
derstand relationships between complex traits. However,
both approaches are sensitive to confounding which, if
ignored, can lead to biased results. Further, both ap-
proaches are notoriously data hungry, requiring large
datasets. We believe that as large genetic and outcome
datasets (e.g., Biobanks) are made publicly available, and
as statistical methodology is being further developed, these
studies will play a central role in genetic epidemiology.
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