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Abstract
Purpose of Review To illustrate the utility of quantile regression in epidemiology for outcomes that are continuous and
when exposure effects may differ across the distribution of the outcome. Linear regression methods estimate only the
effects at the mean level which may be an incomplete and biased summary of the effect of exposures for some continuous
health outcomes.
Recent Findings There are several variations of the quantile regression method including classical linear quantile regression,
nonparametric quantile regression for growth trajectories, and the modified quantile regression for case–control designs. Such
methods offer several applications including (1) the use of quantile regression to test whether the effects of exposure are similar
across quantiles, (2) the use of quantile regression for risk prediction, and (3) the use of quantile regression to examine the effects
of growth trajectories over time.
Summary Quantile regression is an important tool for understanding continuous health outcomes, especially outcomes that are
not normally distributed, as it offers insight into the relation of exposures with respect to the distribution of the outcome. Quantile
regression methods have the potential to deepen and expand the existing quantitative evidence from more common mean-based
analyses.

Keywords Quantile regression . Epidemiology . Statistical methods . Continuous outcomes . Growth trajectories

Introduction

Epidemiology research heavily relies on generalized linear
models, which quantify the associations between exposures
on the mean of outcomes. For example, the linear, logistic,

Poisson, and relative risk regression models all estimate the
effects of exposures on the mean of the continuous outcome,
log odds, the log rate, and the log risk, respectively. However,
associations between exposures and outcomes often exist for
specific parts of the outcome distribution and therefore esti-
mates of the mean of Y in a generalized linear model may be an
incomplete picture of the association between X and Y.
Exposures may also have an effect not just on the outcome
but also on the variance of the outcome [1, 2]. For example,
Yang et al. (2012) [1] found that a genetic variant in the FTO
gene and its association with the outcome of body mass index
(BMI) was different in size and variance by percentile of BMI.

Quantile regression [3] is one way to investigate exposure–
outcome associations beyond the mean level. It models the
conditional quantiles of an outcome of interest as a function
of covariates (exposures) without assuming equal normally
distributed errors or homoscedasticity. By estimating associa-
tions across different quantile levels, we can assess how the
change of exposure affects the distribution of the outcome. As
an illustration, we generated two data sets. The first data set is
heteroscedastic, where the outcome Y follows a normal distri-
bution, but both its mean and variance increase with X. In the
second data set, the outcome Y is skewed. Figure 1 a displays
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the estimated 0.1th, 0.25th, 0.5th, 0.75th, and 0.9th regression
quantile functions (the dotted lines) from heteroscedastic data.
We see that the upper quantiles of Y increase with X more
rapidly (steeper slope) than the lower quantiles, and conse-
quently capture heteroscedasticity of the data. Figure 1 b dis-
plays homoscedastic data with a skewed outcome. As a result,
we observe parallel regression quantiles, but the spacing (dif-
ferences in intercepts) between upper quantiles are much
wider than those of lower quantiles. In both cases, a single
mean regression (as shown by the red line) would fail to cap-
ture the full association that is pictured.

In real-world health applications, the exposure–outcome
associations may be even more complex than these exam-
ples. It is very likely that exposure only changes part of the
Y distribution. Quantile regression would be ideal to ex-
plore complex associations. In addition to its modeling
flexibility, quantile regression is also robust against out-
liers. It could be a better fit even in estimating the condi-
tional means in the presence of outliers or heavy tail out-
comes [4].

Here, we present several quantile regression models that
could be useful for epidemiology studies, including the clas-
sical linear quantile regression, nonparametric quantile regres-
sion for growth trajectories, and quantile regression models
for a case–control design. We highlight several applications
of quantile regression under each of the three quantile models,
including (1) the use of quantile regression to assess and test
quantile treatment effects of exposure across quantiles, (2) the
use of quantile regression for risk prediction, and (3) the use of
quantile regression to examine the effects of growth trajecto-
ries over time.

Linear Quantile Regression Model

Model Description Here, we briefly summarize the basic as-
sumptions of the quantile regression model. Let Y be an out-
come of interest, and let X represent the vector of the covari-
ates of interest. Classical linear regression models the condi-
tional mean of Y given X, that is, E(Y ∣ X) = X′β. The regres-
sion coefficients β can be interpreted as the change of mean Y
due to a unit increase of X. In quantile regression, we model
the conditional quantile of Y as a linear function of X without
assuming that the coefficients are constant across quantile
levels. A linear conditional quantile model can be written as
follows:

Qτ Y jXð Þ ¼ X
0
β τð Þ

where Qτ(Y ∣ X) stands for the τth conditional quantile of Y
given a covariate profile X, and τ is quantile level that ranges
between 0 and 1. For example, τwould equate to 0.5 if model-
ing the median (50th percentile) of Y. The quantile coefficient
β(τ) can be interpreted as the change of the τth quantile due to
a unit increase of X. It is estimated separately at each quantile
level, and hence the estimation of β(τ) is entirely data-driven
and does not rely on any distributional assumption. Since
quantile regression does not assume any parametric form for
β(τ), it is a flexible modeling tool and can accommodate any
continuous distribution of Y. Thus, Y does not need to be
normally distributed which is a key advantage for health data.

Whereas a linear regression model is fit by minimizing the
squared loss, defined as the difference between the observed
and expected Y for each observation, a quantile regression
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model uses the absolute loss rather than the squared loss.
When τ = 0.5, the model estimates the effect of X on the con-
ditional median of Y, and the loss function is calculated by the
absolute value of residuals. To estimate quantiles other than
the median, we generalize the absolute loss function by
weighting the absolute loss by the quantile level. One can
obtain an unbiased estimate for the quantile coefficient β(τ)
from a sample (Yi, Xi)’s by minimizing the following objective
function over all the possible βs

β̂ τð Þ ¼ argmin
β

∑iρτ yi−X iβð Þ

where ρτ(u) = τuI{u ≥ 0} − (1 − τ)uI{u < 0} is the asymmetric
absolute loss function. For example, to estimate the 90th
quantile, the absolute loss function for observations above
the 90th quantile would be the absolute loss multiplied by
0.9. For observations below the 90th quantile, the loss func-
tion would be the absolute loss multiplied by 0.10. As a result,
there are τ × 100% data points above the fitted regression

plane X
0
β̂ τð Þ, and (1 − τ) × 100% observations below the re-

gression plane.

Estimation of quantile coefficients β̂ τð Þ depends on the
local data sparsity around the target quantiles. In general, we
have better power for estimating median and mid-range
quantile levels, where data are relatively dense, while we have
less power to estimate extreme quantiles at the two tails (e.g.,
0.1 and 0.9) where data are sparse. Consequently, we need a
large sample size to estimate the extreme quantiles well, while
smaller sample sizes are sufficient to obtain a reliable estima-

tion of the median. Since β̂ τð Þ is estimated using an absolute
loss function, we do not assume that the standard errors are
identically distributed and thus standard Wald-type inferences
(i.e., test statistics based on the ratio between the estimate and
its standard error) are difficult to estimate, particularly at ex-
treme quantile levels where there is sparse data. A few alter-
native inference tools have been proposed. The rank score test
(inference) proposed by Gutenbrunner and colleagues [5] is
often recommended due to its robust performance.
Bootstrapping is another commonly used way to achieve
quantile inference. Extensions to conventional bootstrapping
approaches include the Markov chain marginal bootstrap
(MCMB) [6] and Wild-bootstrap [7]. Using simulation
methods, Kocherginsky and colleagues [8] recommended
using the rank score method for small datasets (e.g., the sam-
ple size (n) is smaller than 1000, and the number of covariates
(p) is smaller than 10) and using the MCMB for moderately
large datasets (e. g. , 1 × 10 ^ 4 < np < 2 × 10 ^ 6). In very large
datasets, Wald-type inference tests can be used because sparse
data is no longer a limiting factor.

If Xi is a binary treatment indicator (treatment or placebo,

exposed or unexposed), then β̂ τð Þ ¼ Qτ Y jtreatmentð Þ−Qτ

Y jplacebo=controlð Þ is the quantile treatment effect, which

measures the change of the τth quantile of Y due to a treatment
or an exposure (compared with the control group). Figure 2
illustrates the advantage of evaluating the quantile treatment
effect in comparison with the mean treatment effect (i. e. ,
E(Y ∣ treatment) − E(Y ∣ placebo/control)) under three scenar-
ios including two-condition location shift (i.e., Y = μ + X′β +
e), multiplicative scale model (i.e., Y = μ + (X′γ)e), and
location-scale models (i.e., Y = μ + X′β + (X′γ)e). In the first
column, the red and black curves represent the densities of Y
under two conditions (e.g., exposed and unexposed), the sec-
ond column is the corresponding distribution functions, and
the third column is the resulting quantile effect. In panel A, the
change of X only causes a location shift of the distribution/
density of Y. In such case, the quantile effect β(τ) ≡ β is con-
stant across quantile levels and is equivalent to the mean ef-
fect. In panel B, the exposure X only inflates the variance of Y
but does not change the mean of Y. In such case, β τð Þ≡γF−1

e

τð Þ; where F−1
e τð Þ is the τth quantile of the error e. As shown

in the figure, we observe positive quantile effect at upper
quantiles, while negative effect at lower quantiles. In panel
C, the exposure changes not only the mean of Y, but also the

variance. In this location-scale model, the quantile effects β

τð Þ≡β þ γF−1
e τð Þ increase with quantile levels and are most

evident at upper tails. By estimating the exposure effect across
quantile levels, quantile regression provides richer informa-
tion on how the exposure X impacts the outcome Y, especially
for non-normal outcomes and heteroscedastic data.

Computer Syntax Given the advances in estimating the stan-
dard errors, most standard statistical packages now estimate
quantile regression. Computation packages for quantile re-
gression are readily available in R (the quantreg package),
SAS (the quantreg procedure), and Stata (qreg). In the
Appendix, we have included the syntax of quantile regression
in both R and SAS.

Use of Linear Quantile Regression Model
to Test Whether the Effects of an Exposure
Are Similar Across Quantiles

In many epidemiology applications, hypotheses focus on not
only the mean of the distribution but specifically how expo-
sure might affect the tail of the distribution. Particularly with
the onset of precision medicine, there is a growing recognition
that exposure may operate differently depending on absolute
risk of disease.We can also think of outcomes like BMI where
we might hypothesize that exposure affects only one part of
the distribution, but not the entire distribution as reflected by
the mean of the outcome. For example, people with a high
BMI are predisposed to diabetes, cancers, and many other
disorders, [9] and therefore we may be most interested in
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Fig. 2 The quantile effect under location, scale, and location-scale
models for a binary exposure. In the first column, the red and black
curves represent the densities of the outcome, Y, under two conditions,
exposed and unexposed. The second column is the corresponding
distribution functions, and the third column is the resulting quantile

effect. In panel A, the exposure causes a shift in the mean of Y, but does
not change the variance. In panel B, the exposure inflates the variances of
Y but does not change the mean. In panel C, the exposures affect both the
mean and variance of Y
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modeling factors that drive the higher levels of BMI and not
just the mean of BMI. We previously investigated pre- and
postnatal influences on adult BMI [10]. Here, we take a por-
tion of the dataset from this example to illustrate how to inter-
pret quantile regression.

To illustrate quantile regression methods, Table 1 displays
the estimated quantile coefficients across different quantile
levels for three risk factors labeled X1, X2, and X3. For this
example, the covariates were specifically related to maternal
factors and early-life growth [10]. The coefficients from the
mean model are listed in the last column of Table 1. These
coefficients suggest that factors X1, X2, and X3 are all posi-
tively associated with the outcome Y (in this example, BMI).
However, the coefficients differ across the quantile levels, and
the pattern of these differences is risk factor-specific. To some
extent, one can view the quantile level as a partition of a pop-
ulation: the coefficients at lower quantile levels represent the
impact of risk factors for the subpopulation with lower BMI,
while those at upper quantiles represents their effect for the
group with higher BMI. For example, we observed that risk
factor X1 makes little difference in the lower quantiles of adult
BMI (e.g., a unit change in X1 was associated with a 0.002
decrease in 10th percentile of BMI and a 0.04 increase in the
median BMI), but has a large positive association with BMI in
the upper quantile (e.g., a unit change inX1was associated with
a 0.24 increase in the 90th percentile of BMI), which suggests
that X1 has a substantial impact in increasing the risk of obesity,
although it does not change the distribution below the median.
Although it is also significant in the mean model, the
population-average coefficient overestimates the association
of X1 and BMI in the lower quantiles and underestimates the
association in the higher quantiles, leading to an overall under-
estimation of the potential role of X1 on the outcome (in this
case, adult BMI). In contrast, risk factor X2 has a significant
impact only on the lower quantiles and not the highest quantile,
a distinction that is missed in the mean model. In contrast, for
risk factor X3, all quantiles are statistically significant, but even
with this example the advantage of quantile regression over the
mean is that the association with X3 and Y is monotonic across
the quantiles and we get an estimate of the range with the
estimate for the 90th percentile double that of the 10th percen-
tile. The linear regression estimate for X3 still leads to similar

inferences but the differences in the magnitude of estimates
across quantiles are not revealed.

As shown in the example, quantile regression allows for
heterogeneous effects across different quantile levels, which
can provide useful insights into biological pathways and iden-
tify high-risk groups that may benefit most from health pro-
motion interventions. It has a key advantage in that it can
identify factors that increase the risk at both tails of the distri-
bution; this U-shape association is likely to be missed in a
linear or logistic model. The mean model assumes that the
effect of a risk factor is to shift the entire distribution of the
continuous outcome, as was the case for risk factor X3.
However, in making this assumption, the mean model may
miss or underestimate the effect of risk factors that exert their
influence on the tail of distribution, such as risk factor X1. We
recommend using quantile regression across multiple quantile
levels to investigate complex associations. Typical choices of
quantile levels include 0.1 and 0.9 plus the three quartiles
(0.25, 0.5, 0.75), or 5–10 evenly spaced quantile levels. One
could consider the quantile process, a data-driven approach to
determine the quantile levels [11, 12].

Why Not Just Use Logistic Regression? Logistic regression
models can also be used to examine high-risk groups by di-
chotomizing a continuous outcome. For example, for BMI,
one could dichotomize the outcome based on cut points such
as 25 kg/m2 or 30 kg/m2 to indicate overweight or obese
status. One could also model multiple categories using a
polytomous or multinomial regression model. However, both
binary and multinomial logistic regression models will be
sensitive to the cutoffs used to define high-risk.

Quantile Regression for Prediction

When there are heterogeneous effects across different quantile
levels, quantile regression could serve as a better tool for risk
prediction than a standard linear model. From the quantile
regression model, one could estimate the conditional quantile
function of the outcome given different risk/covariate profiles.
For example, to construct a 90% prediction interval of Y, one
can naturally construct the interval by the 5th and 95th condi-
tional quantile of Y given X. Such prediction is free from
distributional assumptions and is hence more flexible to fit
the underlying true distributions. If there are clinically defined
diagnosis cutoffs, we can easily calculate the probability of
risk from the conditional quantiles and the predicted risk of
multiple cutoffs can be jointly calculated. For example, Fig. 3
displays the estimated quantile functions of adult BMI given
different combination categories of early-life risk factors,
which we define as scenarios A, B, and C. The gray lines of
25 and 30 are clinical cutoffs for overweight and obesity. The
portion exceeding these lines demonstrates the risk of

Table 1 Example of quantile regression for a continuous outcome

Risk factor Quantile

10th 50th 90th Mean

X1 − 0.002 0.04 0.24** 0.10**

X2 1.54** 1.85* 0.62 1.47*

X3 0.03** 0.03** 0.06* 0.05**

*p ≤ 0.05; **p ≤ 0.01
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overweight and obesity. As illustrated, there is a clear impact
of early-life risk factors on the probability of being overweight
in adulthood. Individuals with risk factors in scenario A have a
very low predicted risk of being overweight in adulthood,
which is illustrated by the fact that the conditional quantiles
Q01-Q09 all fall below 25 kg/m2. Conversely, individuals
with early-life risk factors in scenario C have a much higher
probability (approximately 30% chance) of being overweight
in adulthood given that the quantile function crosses the 25 kg/
m2 mark at about Q07.

Nonparametric Quantile Regression Model
for Growth Trajectories

In addition to using quantile regression to examine how expo-
sures are associated with a continuous outcome at one point in
time, quantile regression methods can also be used to examine
repeated measures of continuous outcomes and investigate
whether quantile-specific exposure effects vary across time.
Nonparametric quantile regression has shown to be a powerful
tool to model growth trajectories and construct pediatric
growth charts [13, 14].

Using BMI trajectories as an example, we denote Yt as the
BMI measured at age t, and then expand the linear quantile
model to

Qτ Y tjXð Þ ¼ gτ tð Þ þ X
0
βτ tð Þ

where Qτ(Yt ∣ X) is τth quantile of BMI at age t and covariate
profile X.

If, for example, X is a binary indicator of a particular expo-
sure, then gτ(t) is the τ × 100 percentile curve of BMI for
subjects without the exposure while βτ (t) is the change of
the τ × 100 percentile curve of BMI for those with the expo-
sure. Due to the nature of growth trajectories, we assume that
gτ(t) and βτ (t) are nonparametric functions with certain
smoothness to avoid pre-specifying the shape of trajectories.

To estimate gτ(t) and βτ (t), one can use spline approximation
[15•]. In theory, any smooth functions can be well approxi-
mated by a linear combination of B-splines basis functions.

As an example application of nonparametric quantile re-
gression modeling, we used this method to examine the influ-
ence of the early-life risk factors on growth trajectories from
birth to 7 years in the National Collaborative Perinatal Project
(NCPP) [15•]. This was an expansion of previous NCPP anal-
yses that used linear quantile regression to examine pre- and
postnatal influences on body size at specific ages [10, 16, 17•].
We also point the reader to work by Briollais and Durrieu
(2017) looking at the effect of the genetic variant in the
TCF4 gene on childhood BMI in the Western Australian
Pregnancy Cohort (RAINE) as another example of nonpara-
metric quantile regression modeling of growth trajectories
[18•]. In this example, Briollais and Durrieu [18•] investigated
the effect of the genetic variant in the TCF4 gene on the
childhood growth trajectories. In the Appendix, we have pro-
vided R codes for nonparametric quantile splines.

Quantile Regression for Intermediate Markers
Within Studies that Use Case–Control Studies

Epidemiology studies often employ case–control designs,
where researchers sample cases and controls from a disease
population and a disease-free population, respectively. It is a
cost-effective way to identify disease-associated risk factors,
especially for rare diseases. In addition to the disease status,
case–control studies also collect secondary outcomes/disease
biomarkers. For example, in a case–control study for diabetes,
glucose levels and BMI are often included. Here, we discuss
the use of quantile regression for these secondary analyses of
intermediate markers such as glucose levels or BMI. These
intermediate markers are often continuous but for proper in-
ference, we need to consider the original case–control sam-
pling methods. Analyses of intermediate markers within co-
hort studies do not face this same empirical challenge if the
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sampling is based on outcome as with a case–control study.
With analyses of continuous intermediate markers within a
case–control study, we can conduct quantile-based analyses
using inverse probability weighting (IPW) and likelihood-
based approaches. The main idea of IPW is to reweight individ-
ual observations by the inverse of their selection probabilities
and conduct weighted regressions. IPW is simple and can be
easily applied to quantile regression. However, it requires infor-
mation on the case–control sampling scheme to construct the
weights and is often biased when there are unobserved con-
founders. Case–control studies may also be used to jointly mod-
el the primary binary disease status and secondary continuous
outcomes. The semiparametric maximum likelihood (SPML)
proposed by Lin and Zeng [19] is the most widely recognized
approach in this group as it largely improves the efficiency over
IPW. Since quantile regression does not assume any parametric
likelihood, likelihood-based approaches cannot be applied to
quantile regression. Based on the concept of counterfactual out-
comes, Wei and colleagues [20] proposed weighted estimating
equations (WEE) to estimate the conditional quantile of second-
ary outcomes in a case–control study. Suppose Sτ(x, y, β) is the
original quantile regression score function, we can then con-
struct the unbiased estimating equations by

∑iS τ xi; yi;βð Þp dijxið Þ þ S τ xi; y˜i;βð Þp 1−dijxið Þ ¼ 0

where yi (e.g., BMI) is observed the secondary outcome of the
ith subject in the sample, di is the binary indicator for
case/control status, xi is the exposure level, and y˜i is counter-
factual secondary outcomes y˜i under the alternative disease
status but the same exposure xi .The weight p(di ∣ xi) is the
probability of being the observed disease status given exposure
xi, and p(1 − di∣ xi) is the probability of being the counterfactual
disease status.

The counterfactual secondary outcomes are not observed
but can be simulated from stratified quantile process model-
ing. The WEE is computationally simple and straightforward.
The computation packages for theWEE approach using linear
regression, logistic regression, and quantile regression are
available on github (https://github.com/songxiaoyu/
secondary-analysis-in-case-control-studies) together with
sample codes. As an example, this approach was applied to
an asthma case–control GWAS from the NewYork University
Bellevue Asthma Registry [21] to identify the association be-
tween the TSLP gene and IgE. This analysis led to the discov-
ery of new SNPs that would have been missed if only mean-
based analysis had been used [22]. Some SNPs only affect the
upper tails of IgE. Consequently, the distributions of IgE be-
tween two genotypes coincided with one another except at the
upper tail of the distribution. The mean effect essentially av-
erage the differences between the two distribution/quantile
functions and consequently underestimated and overlooked
the tail differences [22].

Conclusions

Quantile regression is now a readily accessible regression
method that we believe has many different applications within
epidemiology. In particular, when modeling continuous out-
come data, either within a cohort, or as an intermediate marker
within case–control designs, quantile regression does not re-
quire that the outcome data are normally distributed. Quantile
regression has the flexibility of testing first if a given exposure
differs by percentile of the outcome. If not, then it is a great
launching point to support the use of linear regressionmethod.
However, when one starts with linear regression first for con-
tinuous outcomes without using quantile regression methods,
it should be more broadly recognized that select associations
with specific quantiles of Y may be missed. Thus, quantile
regression can inform whether or not general linear regression
can be used to correctly model exposure–outcome associa-
tions. Given these strengths, we recommend epidemiologists
and population health scientists consider the use of quantile
regression in future analyses of continuous outcomes, at least
as a first step to inform future modeling decisions.
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Appendix

Basic Quantile Regression Syntax in R

> install.packages(“quantreg”).
> library(quantreg).
> fit = rq(y~×1 + ×2, tau = .5, data = data).
Note: tau is the quantile level(s) of interest. It could a single

value for a fixed quantile level, or a vector of quantile levels,

Table 2. Computational packages and basic syntax of quantile
regression

Software packages

R R package -- quantreg

SAS SAS/STAT PROC QUANTREG

STATA https://www.stata.com/features/overview/quantile-regression/

Matlab Codes available at http://www.econ.uiuc.
edu/roger/research/rq/rq.m
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tau = c(0.25, 0.5, 0.75). The function rq() will return regres-
sion quantiles from multiple quantiles. If tau is smaller than 0
or larger than 1, the function will return the entire quantile
process.

Basic Quantile Regression Syntax in SAS

PROC QUANTREG.
DATA = sas-data-set;
CLASS X1;
MODELY =X1 X2 / QUANTILE = 0.25 0.5 0.75;
RUN;
Note: if the option QUANTILE =ALL, it returns the entire

quantile process. Same as in R, the default value is 0.5, corre-
sponding to the median.

Statistical Inference of Quantile Regression in R
and SAS

To obtain statistical inference of quantile regression in
R, we need to use the function summary.rq(object, se =
“nid”, ...), where object is the returned object from the
function rq(), and the parameter se specify the inference
methods. In SAS, the inference options are specified at
the PROC QUANTREG Statement following the syntax
“PROC QUANTREG CI= <NONE|RANK|...> ALPHA
= value ;” where ALPHA is the significance level,
and CI specifies the choice of inference. The table be-
low lists the available methods in R and SAS.

Options
Inference method Subcategories R SAS
Direct i.i.d. model

n.i.d. model
se =” iid”
se = “nid”

CI = SPARCITY/IID
CI = SPARCITY

Rank Score se =” rank” CI = RANK

resampling Pairwise se =” boot”,
bsmethod
= “xy”

Not available

Parzen, Wei
and Ying

se =” boot”,
bsmethod
= “pxy”

Not available

MCMB se =” boot”,
bsmethod
= “mcmb”

CI = RESAMPLING

Wild se =” boot”,
bsmethod
= “wild”

Not available

#The functions to fit quantile b spline

# --------------- R function to fit quantile bsplines---------#
#   *input*                                                                                    # 
#       y: response variable                                                       # 
#       x: independent variable                                                 # 
#     tau: a vector of quantiles, default is the median.      # 
#   knots: internal knots                                                          # 
#     ord: order of spline, default is 3.                             # 
# ---------------------------------------------------------------#

   require(splines)
   require(quantreg)

   boundry.knots=range(x,na.rm=T)
   knots=c(rep(boundry.knots[1],ord),knots,rep(boundry.knots[2],ord))
   xmodel=x[!is.na(x) & !is.na(y)]

ymodel=y[!is.na(x) & !is.na(y)]

   Xm=splineDesign(knots,xmodel,ord)
k=length(tau)

   n=length(knots)-ord
   coef=matrix(,nrow=k,ncol=n)

   for(i in 1:k)
   { 

fit=rq(ymodel~Xm-1,tau=tau[i],method="fn")
coef[i,]=fit$coefficients

   }       
   return(list(coef=coef,knots=knots,ord=ord,tau=tau,x=x,y=y))
} 

# ------ R function to plot the fitted quantile bsplines ---------#
#   *input*                                                                                               # 
#       fit: object from qb()                                                                   # 
# ----------------------------------------------------------------- - ------#

plot.qb=function(fit,lty=1,col=1,xlab=NULL,ylab=NULL){  

xlim=range(fit$x,na.rm=T); xlim[2]=xlim[2]+diff(xlim)/20    
plot(fit$x,fit$y,col="gray",xlab=xlab,ylab=ylab,xlim=xlim)

    x.pred=seq(min(fit$x,na.rm=T),max(fit$x,na.rm=T),,1000) 
    xm.pred=splineDesign(fit$knots,x.pred,ord=fit$ord)

y.pred=xm.pred%*%t(fit$coef)
    matlines(x.pred,y.pred,lty=lty,col=col)
    text(max(fit$x,na.rm=T)+diff(xlim)/40,y.pred[1000,],fit$tau,cex=0.6)

} 

# --------- R function to estimate the quantile bsplines ----------------------#
#   *input*                                                                                                                     # 
#       fit: object from qb()                                                                                          # 
#       new.x: estimate quantiles at new.x                                                              #
# -----------------------------------------------------------------------------------------# 

pred.qb=function(fit,new.x){

require(splines)
   Xm=splineDesign(fit$knots,new.x,fit$ord)  

pred.y=Xm%*%t(fit$coef)  ###each column represent predicted y at a specific tau
   return(list(pred=pred.y,new.x=new.x))

} 

Example 
>library(splines)      
>library(quantreg)
> x = runif(500, 0, 3)
> y = log(x+5)/(3*x+1)
> knots = c(0.5,1,1.5,2);
> tau=c(0.03,0.1,0.25,0.5,0.75,0.9,0.97)
> fit = qb(y,x,tau=tau,knots=knots,ord=4)    
>plot(fit)
>  x.pred = seq(0,2,,1000)
>  y.pred.un =pred.qb(fit,x.pred)$pred

qb=function(y,x,tau=0.5,knots,ord=3){

R script for the nonparametric quantile regression for
growth trajectories with B-spline approximation
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