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Abstract
Purpose of Review Use of electronic cigarettes (e-cigs) has increased sharply recently although understanding of toxicity is
limited, particularly target organ effects. Altered DNAmethylation is a reversible response to environmental exposures, including
smoking, and may be useful as a biomarker of e-cig harm.
Recent Findings Among studies examining DNA methylation in blood by smoking status, there is considerable variability in
differentially methylated CpGs identified; certain CpGs are consistently found. These include AHRR (aryl hydrocarbon receptor
repressor gene), particularly cg05575921, cg0363183 in the F2RL2 gene coding for the protease-activated receptor 4 (PAR-4),
and several CpGs in the 2q37.1 genomic region. Differences are found even with short duration and light smoking; effects vary
with pack-years and time since quitting among former smokers. For tissues other than blood, data are limited but also indicate
altered methylation with smoking.
Summary DNA methylation changes are a consistent biomarker of smoke exposure. Most studies regarding smoke effects on
methylation are of blood cells; further evidence regarding effects of smoke, secondhand smoke, and e-cigs on target tissues for
smoking-related diseases are needed. Understanding biological effects of e-cigs is critically important to inform regulation;
examination of e-cig effects on DNA methylation can significantly add to evidence-based regulation.

Keywords Electronic cigarettes . DNAmethylation . Smoking . Toxicity

Introduction

Electronic cigarettes (e-cigs) are battery-powered devices with
heating elements. They create a vapor that contains nicotine as
well as carrier liquids (vegetable glycerol (VG) and/or propyl-
ene glycol (PG)) and flavors [1]. There has been a sharp in-
crease in the use of e-cigs and related products since their

introduction into the marketplace in 2007. By 2017, 2.8% of
US adults over the age of 18 reported using e-cigs [2•]. Use
among younger people is particularly high. Among high
school students, report of current use went from 1.5 to
20.8% between 2011 and 2018. During the same period, prev-
alence of current use amongmiddle school students went from
0.6 to 4.9% [3•]. During the period 2014–2017, 9.2% of mid-
dle and high school students reported ever having used e-cigs
[4]. More than 37% of current smokers, 1.4% of never
smokers, and 43% of former smokers quitting within the past
year reported ever using an e-cig. Among current smokers,
3.6% report regular use of e-cigs in the last 30 days [5].

Given these data showing high prevalence of use, and par-
ticularly given the rate of increase in use, understanding of the
biological impact of use of these devices is critically impor-
tant. E-cigs may be used both as a tool for smoking cessation
as well as by never smokers, particularly young people.
Understanding of the toxicity related to e-cig use is needed,
in relation to never, current, and former smoking.

E-cigs contain substances which may be harmful including
nicotine, ultrafine particulate matter, flavorings, volatile
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organic compounds, and heavy metals. Concentrations are
generally considerably lower for these than those in cigarette
smoke with the exception of heavy metals where there is ev-
idence that concentrations may be equivalent or higher than
those in cigarettes [6]. There is confusion among smokers
about the harm from e-cigs and the relative harms of smoking
and e-cigs; an understanding of the effects of e-cigs is needed
to inform choices [7–10]. An understanding of the public
health impact of these devices is urgently required; such an
understanding is difficult given the wide variety of products
with thousands of different flavors and the rapid change in the
products that are available [11–13].

We recently reviewed data regarding inflammation in rela-
tion to e-cig use [10]. The focus here is on another potential
aspect of e-cig toxicity, namely altered DNA methylation.
There is consistent evidence that smoking affects DNA meth-
ylation, and that some of the changes in methylation are re-
versible with smoking cessation. While most of the data re-
garding altered DNA methylation associated with smoking
are examinations of blood cells, there is some for associated
changes in other tissues. We review here what is known re-
garding altered DNA methylation in blood and tissues as a
biomarker of smoking toxicity and discuss its potential utility
for the assessment of toxicity from e-cig use.

DNA Methylation and Smoking

Epigenetic alterations are an important biological mechanism
for an organism to respond to changes in the environment.
Among epigenetic changes, DNA methylation plays an im-
portant role as a reversible response to environmental expo-
sures [14]. DNA methylation, the addition of a methyl group
to a cytosine base on DNA, usually to a cytosine 5′ to a gua-
nine (CpG), plays a role in determining gene expression. The
pattern of DNA methylation is not uniform within an individ-
ual, differing, at least in part, among tissues. It is also known
that DNA methylation can change over time, with aging and
in response to exposures such as caloric intake. Alterations in
DNA methylation can be observed in response both to exog-
enous and endogenous exposures, changes which can be locus
specific or global across genes.

In comparisons of current smokers to never smokers, there
is consistent evidence of differences in DNA methylation;
most of these studies are focused on methylation in blood
cells. These findings are consistent for men and women and
among adults, varying by age. At most of the differentially
methylated sites, there is hypomethylation for smokers
[14–23]. For example, in one study, 85% of the differentially
methylated CpGs were lower for smokers [24].

As noted above, DNA methylation contributes to tissue
differentiation and therefore varies by tissue type.
Examination of the tissue of interest is critical to

understanding the impact of an exposure on methylation
[25]. Much of the existing literature regarding effects of ciga-
rette smoking on DNA methylation is focused on DNA meth-
ylation from blood cells [15–23]. While these studies poten-
tially provide insight into systemic effects of smoking, they
may not provide a full picture of the impact of smoking on
particular tissues, especially target organs. Further, in studies
of differences in DNA methylation in blood cell DNA, the
distributions of cell type may affect results. In some studies
comparing blood DNA methylation for smokers and non-
smokers, findings are adjusted for individual white blood cell
type percentage [16, 21, 26••]; most studies do not account for
these differences, making it difficult to separate alterations as a
result of the smoking and those as a result of differences in
blood cell types.

Among studies examining differences in blood cell DNA
methylation by smoking status, a large number of CpGs have
been identified as differentially methylated, with considerable
variability among studies. In a meta-analysis of almost 16,000
participants in 16 cohorts, comparing current to never
smokers, 185 differentially methylated CpGs were identified
[27••]. In another study, 192 CpGs were determined that had
been reported inmore than one of 16 published studies [24]. In
another, examining studies published before June 2015, there
were 320 genes identified as differentially methylated in more
than one CpG position or in more than one study [28].
Differences in findings among studies are likely related to
differences in the analytic methods, differences in the popula-
tions under study, including in their smoking habits, differ-
ences in the other exposures of the populations, and differ-
ences in population genetics. Some observed differences
may also result from random noise. Nonetheless, there are
CpGs that are identified as associated with smoking status
with considerable consistency. These include the aryl hydro-
carbon receptor repressor gene (AHRR), particularly
cg05575921, identified as the CpG that is the most strongly
or one of the most strongly associated with smoking status
(that is, lower methylation in smokers compared to non-
smokers) in many studies [16, 19, 20, 23, 24, 26••, 27••,
28–31, 32•, 33•, 34–42] (Table 1). In one study, examining
methylation of this single CpG, the receiver operating charac-
teristic (ROC) area under the curve (AUC) was 0.99 for the
classification of smoking status, comparing current smokers to
lifetime never smokers [55•]. Other CpGs in the AHRR gene
have also been found to be associated with smoking status in a
number of studies examining DNA methylation in blood [16,
20, 21, 23, 26••, 31, 48, 50]. Additionally, cg0363183in the
F2RL2 gene coding for the protease-activated receptor 4
(PAR-4) [17, 19–24, 26••, 27••, 29–31, 36–40, 42, 45, 49,
50, 54] and CpGs (cg21566642, cg05951221, cg21566642,
cg01940273, cg06644428, cg21566642, and cg05951221) in
the 2q37 region are frequently identified as differentially
methylated [20, 26••, 30, 31, 36, 40, 42, 48, 54].
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DNA methylation may be altered even with relatively low
smoke exposures. In a study of young people with relatively
short histories of light smoking, comparing never smokers,
smokers with less than one-half and those with more than
one-half of pack-year history, AHRR cg05575921methylation
for the males differed by group. The number of females in the
study was smaller and did not reach statistical significance
[32•] (Table 1). Environmental tobacco smoke exposure may
also impact DNA methylation. Exposure to environmental
smoke within the previous week was associated with
cg05575921 methylation [56] in a study of never and former
smokers. In a study of breast tumor DNA methylation, envi-
ronmental tobacco smoke exposure was associated with dif-
ferences in methylation [57]. In utero exposure to maternal
smoking has also been shown to affect offspring methylation
[14].

There are only a small number of studies which have ex-
amined smoking effects in target organ tissues, including the
lung. There may be systemic effects of smoking such that the
sites of consistently altered DNA methylation are found not
only in blood but in other tissues. Altered methylation of the
AHRR cg05575921 was found in non-tumor lung tissue from
smokers with lung cancer for smokers compared to non-
smokers [38]. Further, in another study of normal tissue col-
lected during a lung tumor resection where the normal lung
tissues were checked for abnormal pathology, there were sim-
ilar differences in AHRR cg05575921 methylation by
smoking status [42]. In a study examining adipose tissue, there
were differences in DNA methylation by smoking status in-
cluding two CpGs in the 2q37.1 region [54]. There have been
a few studies examining tumor DNA methylation, showing
differences by smoking status, with some overlap with the
CpGs found in studies of normal tissues [53, 57, 58].
Because of the importance of smoking-related lung diseases,
understanding of effects in the lung are particularly important.
There is some evidence from sputum of altered DNA methyl-
ation with smoking status—findings that likely reflect chang-
es in the lung [18, 59, 60]. There are a small number of studies
directly examining lung biospecimens by bronchoscopy [18,
43, 58, 61]. As for the studies of blood, there is a finding in the
lung of consistent differences in methylation for smokers and
never smokers, including some overlap between lung and
blood in the locations of altered methylation [43, 60]. While
these studies are useful, more data regarding effects on target
tissues are needed to understand biologic effects in particular
organs.

Former Smokers: Time Since Smoking

Differential DNA methylation can be used as a biomarker of
progress toward smoking cessation [33•] and of past exposure
to smoking [50]. Many, but not all, smoking-associatedT
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changes in DNA methylation are reversible. Blood cell DNA
methylation for former smokers is generally intermediate be-
tween that for smokers and never smokers, with former
smokers generally showing a pattern more similar to never
smokers [19, 21, 23, 27••, 31, 33•, 37, 48, 50]. In studies of
particular CpGs (e.g., in the AHRR gene, consistently identi-
fied as differentially methylated for smokers at one or more
CpGs) or in genome-wide studies, DNA methylation is corre-
lated with both pack-years of smoking and with time since
smoking cessation among former smokers [15, 21, 32•, 45,
49, 62]. There are a limited number of studies examining
sputum and lung cells of former smokers; these show a similar
pattern—former smokers’methylation is more similar to nev-
er than to current smokers [18, 59]. There are no human data
regarding DNA methylation for e-cig users.

There are few studies regarding the speed of the changes in
methylation with smoking cessation. Most studies of former
smokers are of individuals who have not smoked for periods
on the order of 5 years or longer [17, 19, 21, 22, 26••, 30, 45,
62]. However, a few studies have examined changes over
shorter time periods [33•, 39, 49]. In a study following smokers
in the process of smoking cessation, there was evidence of
increased blood cell DNA methylation of cg05575921 in the
AHRR gene after 1 month [33•]. In another study, there were
alterations in DNA methylation detectable within 3 months
[39]. With respect to timing of methylation changes, in cell
culture studies, effects on gene transcription and DNA methyl-
ation have been demonstrated in very short time periods
[63–65]. In a study of malignant transformation of a human
cell line in culture, there were both genome-wide and site-
specific alterations in methylation within 10 min following
exposure to cigarette smoke [64]. In another study, DNAmeth-
ylation was altered for cell cultures exposed to cigarette smoke
condensate after periods of as little as 1 day [63].

DNA Methylation and Lung Disease

Smoking-related identified DNA methylation alterations fre-
quently map to genes with significance for lung function, lung
diseases, and inflammation [15, 16, 27••, 59]. DNA methyla-
tion has been shown to play a critical role in chronic obstruc-
tive pulmonary disease (COPD) [24, 62, 66–75]; differentially
methylated genes that are associated with smoking have also
been shown in studies of blood to be associated with risk of
COPD [69, 71, 75, 76]. Altered methylation has been found to
be associated with lung function [75, 77]. In sputum from
smokers, altered DNA methylation was associated both with
lung function and odds of COPD [71, 78]. Further, DNA
methylation profiles may predict response to treatment of
acute exacerbations of COPD [69]. DNA methylation has
been shown to be associated with lung and other cancers
[18, 28, 47, 58, 79••, 80–82, 83, 84]. For two of the genes

where there is consistent evidence of hypomethylation among
smokers, AHRR and F2RL3, altered methylation has been
shown in several cohort studies to be strongly predictive of
lung cancer risk, independent of smoking history [79••, 80]. In
addition, altered methylation is associated with cardiovascular
disease [22, 35, 49], inflammation [85], and overall mortality
[22, 49, 80], as well as older adult frailty [86] and age accel-
eration [87].

DNA Methylation Affects Gene Expression
and Inflammation in Smokers

It is known that changes in DNA methylation can affect gene
expression [88, 89]; there is more limited evidence regarding
changes in gene expression as a result of smoking-related
altered DNA methylation specifically [37, 46, 60]. In one
study, AHRR methylation was related to gene expression in
pulmonary macrophages from smokers [61]. Altered methyl-
ation is associated with increased inflammation [90–92] as
well as inflammation affecting methylation. Cytokine expres-
sion has been found to be controlled, in part, by DNA meth-
ylation and other epigenetic mechanisms [93]. Understanding
the interplay of smoking with biological effects including
methylation, gene expression, and inflammation could poten-
tially provide new insight into the effects of smoking and
potentially of e-cigs. e-Cig users inhale a variety of constitu-
ents and their breakdown products in the vapor produced by
these devices; many of these compounds are known to be
irritants and to provoke inflammation. The toxic effects of
these exposures need to be determined.

E-cigs and DNA Methylation

There are no human studies examining effects of e-cigs on
DNA methylation. While it is plausible that there would be
changes in DNAmethylation for smokers who switch to e-cig
use, at least somewhat similar to changes observed for former
smokers, direct evidence is needed.

Nicotine present in e-cigs is a bioactive compound that im-
pacts cell proliferation, apoptosis, angiogenesis, and inflamma-
tion [10]. There are just a few studies regarding the specific
effects of nicotine on DNAmethylation. There are animal stud-
ies showing maternal nicotine exposure affects DNA methyla-
tion in her offspring [94–96]. In cell culture studies, the effects
of e-cig vapors on transcription differ for devices with and
without nicotine [64, 97]. In a mouse study, the biologic re-
sponse to exposure to e-cigs was different depending on wheth-
er or not they contained nicotine; effects of the nicotine-
containing e-cigs were more similar to those related to COPD
development [97]. There are few studies regarding nicotine
exposure effects on DNA methylation in humans [98–100].
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Staudt et al. [100] saw acute differences in transcription follow-
ing e-cig exposure with and without nicotine in never smokers;
they did not examine DNA methylation. In a study of MAOA
methylation, nicotine dependence was associated with methyl-
ation in women, but not in men [101].

The other e-cig constituents could also impact methylation.
In addition to nicotine, e-liquids are composed mostly of veg-
etable glycerol (VG; also known as glycerin) and/or propylene
glycol (PG) and flavorings. The FDA has designated these
constituents as “generally regarded as safe”when used in foods
and skin products [102, 103]. However, it is unknown what
happens to exposed tissues such as the lung when these con-
stituents are heated and inhaled. In e-cigs, PG can be converted
to propylene oxide [1, 104], an irritant and an International
Agency for Research on Cancer group 2b carcinogen [105].
Heated VG and PG can be converted to acrolein, acetaldehyde,
and formaldehyde, also strong irritants [106–108]. In one study,
there were 31 chemical constituents identified in e-cig aerosols,
including glycidol, acetol, and diacetyl [109]. E-cig aerosols
have also been reported to contain other potentially harmful
chemicals, including tobacco-specific nitrosamines, aromatic
hydrocarbons, acetone, and volatile organic compounds
(VOC) (e.g., benzaldehyde, propionaldehyde, crotonaldehyde)
[1, 7, 108, 110–128]. A recent study using mass spectroscopy
identified over 115 VOCs, many that were not present in the
unheated liquids [111], and another identified trace quantities
of benzene, methyl ethyl ketone, toluene, xylene, styrene, and
acetic acid [128]. Nonetheless, the presence of many of these
compounds is substantially less than for cigarette smoke; heavy
metal concentrations may be the same or higher for e-cigs
compared to cigarettes [6]. It is anticipated that the effects of
e-cigs will likely be less than for cigarettes. Direct data regard-
ing toxicity from e-cig exposure in humans are required; data
from human biomarker studies can provide insights into this
important question.

Conclusions

Understanding of the biological effects of e-cigs on all tissues,
particularly target tissues for smoking-related disease, is crit-
ically important, and a public health problem of considerable
significance. There is a pressing need for more information to
inform regulation. Understanding of how e-cig use affects
DNA methylation, including among the different kinds of
users, those who are never smokers, former smokers and dual
users, can significantly add to this evidence-based regulation.
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