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Abstract
Purpose of Review Epidemiologic and experimental evidence support that exposure to moderate-to-high arsenic (As) is a
cardiovascular disease (CVD) risk factor. Little is known, however, on the cardiovascular effects of low water As exposure (<
10 μg/L) through diet, particularly rice. The goal is to summarize the evidence on As and CVD and the research needs at low
levels of exposure.
Recent Findings Studies of populations in Taiwan, Chile, and Bangladesh have consistently shown that high water As (>
100μg/L) constitutes a CVD risk factor. In experimental studies, chronic inorganic As in drinking water increased atherosclerotic
lesions in mice. Cohort studies at low-to-moderate levels of exposure (< 100 μg/L) based on biomarkers or individual water As
measures in American Indian from rural communities and in Whites and Hispanics from Colorado found higher risk of CVD
incidence and mortality, particularly coronary heart disease (CHD) among those with higher arsenic exposure.
Summary Amajor limitation of existent dose-response meta-analyses is the limited number of studies in populations exposed to
water As at levels < 10 μg/L. Measuring metals, in particular arsenic, in general populations with comprehensive assessment of
clinical cardiovascular disease can inform on the cardiovascular role of low-level arsenic and contribute to CVD prevention and
control in general populations.
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Introduction

Increasing evidence indicates that metals and metalloids are
risk factors for clinical cardiovascular disease (CVD) [1–5].
However, evidence from population-based prospective cohort
studies, which are the basis for CVD prevention and control
programs in the USA, is lacking. This is particularly true for
arsenic (As), for which most of the evidence comes from

populations exposed to high water levels internationally (gen-
erally > 100 μg/l) [6–9] and to moderate water levels in rural
areas in the USA (generally 10–100 μg/l) [10••, 11••]. The
significant findings in those international and rural US studies,
the relevance of dietary As exposure, and experimental evi-
dence showing increased atherosclerosis even at relatively
low levels [12] support the need to investigate the association
between As and CVD in populations living in urban settings.
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Prospective cohort studies in general populations with data on
subclinical and clinical CVD, wide geographical coverage
across US regions, multi-ethnic inclusiveness, and compre-
hensive characterization of CVD risk factors, covering tradi-
tional, environmental, and social risk factors (e.g., air pollu-
tion) are needed. Indeed, while low-level As exposure is wide-
spread, very few studies have characterized the potential car-
diovascular effects at those low levels.

Methods

In this review, we summarized a large body of literature
on the role of arsenic and CVD with a particular focus on
the evidence available at low-moderate levels of exposure.
We first review the sources of As exposure at low levels
and the role of cooking and eating practices across differ-
ent ethnics groups in general populations. Second, we
discuss the evidence on As as a CVD risk factor, the
relevant mechanisms, and the shape of the dose-response.
Third, we discuss particular challenges when conducting
research at low-level As exposure, in particular the chal-
lenge of interpreting total As and some As species in the
presence of seafood intake and how to address this chal-
lenge. Finally, we discuss the research needs for general
populations and present an overall conclusion. The man-
uscripts identified for this review have been compiled
over many years by the study investigators through sys-
tematic reviews and ongoing systematic searches of the
literature using both free text and indexed terms including
arsenic, arsenite, arsenate, methylated arsenic species, ar-
senic poisoning, cardiovascular disease, coronary heart
disease, stroke, and other terms.

Sources of Arsenic Exposure in General
Populations

Inorganic As (iAs) is a potent [13] toxic and carcinogenic
metalloid widespread in the environment. It is found in water,
soil, food, and air. Groundwater contaminated with iAs affects
populations worldwide, including 5million people in the USA
with water above the EPA standard (10 μg/l) [14]. In popula-
tions exposed to water As < 10 μg/l, diet contributes to up to
85% of iAs exposure [15, 16•]. Arsenic enters the food chain
from contaminated soil and water, industrial contamination,
and past use of As pesticides [16•, 17–19]. Rice is a major
source of iAs and dimethylarsinate (DMA) because it accu-
mulates in the grain (Fig. 1) [20–25]. USA-grown rice is par-
ticularly high in As. In a US population, consuming ½ cup of
cooked rice was estimated to be equivalent to drinking 1 L of
water at 10 μg/l [26]. Fruit juice, especially apple, pear, and
grape concentrates, can have relatively high iAs levels [16•,
27]. Poultry was a source of iAs and other species before the
recent ban of As-based drugs in poultry production (chicken
in 2013, turkey in 2015) [28–30, 31•]. Foods that contain
lower levels but are consumed in high quantities such as wheat
and non-rice cereals can also contribute to exposure [16•].
Seafood is generally low in iAs but contains high levels of
arsenobetaine, arsenosugars, and arsenolipids, which have
low toxicity but complicate exposure assessment [32–34].
Air pollution can also contribute to iAs exposure, although it
has been less studied [35–37]. Given the complexity of expo-
sure sources, epidemiologic studies of low-chronic As expo-
sure must rely on established biomarkers and sensitive
methods such as urinary arsenic with low limits of detection.

Cooking and eating preferences differ greatly by racial/
ethnic groups and can impact arsenic exposure. It is estimated
that rice and rice products contribute to 80.4%, 64.2%, and
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41.7% of dietary As (excluding seafood) for Asian
Americans, non-Mexican-American Hispanics, and non-
Hispanic Whites, respectively; while cereals contribute to
1.8%, 9.0%, and 25.0% [27]. Asians also have the highest
dietary As exposure (0.11 μg/kg/day) followed by non-
Mexican-American Hispanics (0.07), Mexican-Americans
(0.06), and non-Hispanic Blacks and Whites (0.05) [38•]. In
our pilot in the Multi-Ethnic Study of Atherosclerosis
(MESA), Chinese-Americans and Hispanics were dispropor-
tionately exposed to As compared to Blacks andWhites. Little
is known, however, about the long-term health effects of die-
tary As and if some racial/ethnic groups are disproportionately
affected. Studies with racial/ethnic diversity, for instance
MESA, are ideal to assess the long-term cardiovascular effects
of low-chronic As exposure, primarily from food.

Evidence on Arsenic as a CVD Risk Factor

Epidemiologic Evidence Studies of populations in Taiwan [8,
39, 40], Chile [6], and Bangladesh [7, 41] have consistently
shown that high water As (> 100 μg/l) constitutes a CVD risk
factor (Fig. 2). Occupational studies that account for healthy
worker effects support this finding [42], as well as experimen-
tal studies showing that chronic iAs in drinking water in-
creased lesions covering the aortic intima compared to unex-
posed mice [12, 43, 44]. Of note, iAs concentrations as low as
10 μg/l increase atherosclerotic lesion in apolipoprotein E

knock-out (apoE−/−) mice (Fig. 3) [45••]. These data suggest
that humans might be susceptible to even lower As concen-
trations, considering that mice methylate and excrete As at
much higher rate than humans [46]. Early epidemiologic
CVD research of low-to-moderate As (< 100 μg/l) was limited
by ecological designs [47, 48], inconsistent findings [9, 49], or
lack of statistical power [7]. In contrast, cohort studies based
on biomarkers or individual water As measures in rural
American Indian communities from Arizona, Oklahoma,
and North and South Dakota (Strong Heart Study [SHS])
[11••] and in White and Hispanic communities from rural
Colorado (San Luis Valley Diabetes Study [SLVDS]) [10••]
found statistically significant associations with CVD inci-
dence and mortality, particularly coronary heart disease
(CHD). In the SHS, the association of As with incident
CVD was attenuated after adjustment for hypertension and
diabetes, supporting the idea that some of these risk factors
may link As and CVD. In experimental and epidemiological
studies, As at moderate-to-high levels has also been associated
with subclinical outcomes including carotid intima media
thickness (CIMT) [50, 51], plaque score [52••], and CVD risk
factors such as hypertension [53–55], diabetes [56, 57], and
electrocardiographic abnormalities (prolonged QT-interval)
[58–60], although the findings are not entirely consistent.

Mechanistic Evidence The health effects of As may occur
via numerous pathophysiological pathways (Fig. 4), influ-
enced by exposure levels, genetic variants, As metabo-
lism, and nutritional status [58, 61]. Elevated pro-
inflammatory cytokines and markers of oxidative stress
were detected in plasma, serum, and atherosclerotic le-
sions of As-treated vs. untreated mice [44]. In mouse
models, As interferes with cholesterol homeostasis and
functions of macrophage and induces upregulation of in-
flammatory signaling, enhanced oxidative stress, activa-
tion of nuclear factor-κB, and inhibition of NO availabil-
ity [62–67]. These effects can promote proliferation of
endothelial cells and smooth muscle cells, cell adhesion,
platelet aggregation, and arterial vasoconstriction [64, 68,
69]. Many of these mechanisms have been evaluated at high
levels, although in a recent relatively small study in a pop-
ulation from New Hampshire (n = 415) exposed mostly to
water As < 10 μg/L, urinary As was associated with 15-F2t-
Isoprostane, a biomarker of oxidative stress [70••].
Neovascularization, angiogenesis, and vessel remodeling
have been shown at As levels even below the current water
standard [68, 71, 72]. Relatively specific effects of As expo-
sure in animal experiments are cardiac electrophysiology
changes, specifically QT prolongation, a risk factor for sud-
den cardiac death [60, 73, 74]. Prolonged QT-interval is also
a common secondary effect of As trioxide, a treatment for
promyelocytic leukemia [75–77], consistent with epidemio-
logic findings [60]. Toxic effects of As may also be
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Fig. 2 Highlights of epidemiologic studies on arsenic (As) and
cardiovascular disease. The MESA study is ongoing. Abbreviations:
HEALS, health effects of arsenic longitudinal study; SLVDS, San Luis
Valley Diabetes Study; SHS, strong heart study; MESA, multi-ethnic
study of atherosclerosis
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mediated through epigenetic mechanisms, including DNA
methylation (DNAm) [78–81]. In addition to experimental
studies, human studies with markers of these pathways are
available and have been associated with CVD outcomes,
providing the opportunity to assess relevant mechanisms of
low-chronic As in an epidemiological setting.

Shape of the Dose-Response The shape of the dose-response
across low-moderate and high As levels with CVD is uncer-
tain but critical for As risk assessment [82••]. In the SHS, urine
As levels > 10 μg/g creatinine (or 10 μg/L in a sensitivity
analysis standardized by specific gravity) were associated
with higher risk of CVD incidence and mortality [11••].
Below 10μg/g, however, the shape was inconsistent, showing
a potential linear association for incident total CVD and stroke
but a possible threshold for incident CHD, although for all
outcomes, the confidence intervals were consistent with mul-
tiple shapes. In a dose-response meta-analysis of prospective
studies of As and CVD, the pooled relative risks (95%CI) for a
twofold increase in As levels were 1.11 (1.05, 1.17) (number
of studies = 4) and 1.16 (1.07, 1.26) (n = 6) for CHD incidence
and mortality, respectively [82••]. There was no evidence of
non-linearity using flexible splines, although a non-linear
dose-response could not be discarded due to low power (Fig.
4). The major limitation of the existing evidence is the lack of
data below 10 μg/L in either water or urine. Ongoing mea-
sures of arsenic at low levels in the Multi-Ethnic Study of

Atherosclerosis (MESA) can help address this gap and inform
on the shape of the association with CVD at low chronic As
exposure levels.

Important Aspects to Consider when
Conducing as Research at Low Levels

Arsenic Exposure Assessment in the Presence of Seafood
Measuring As at low levels requires highly sensitive methods.
For example, the limit of detection (LOD) for iAs species in
NHANES 2003–2010 was 10 times higher [31•] than the cur-
rent LOD in the Trace Metals Core Laboratory at Columbia
University (0.1 μg/L), resulting in a large proportion of the
population being undetectable for several of the species (e.g.,
> 90% had undetectable iAs levels in NHANES [31•]). High
sensitivity is thus critical for a successful study at lowAs levels.

Seafood intake represents another major challenge to as-
sess As exposure in general populations.When seafood intake
is low, the sum of iAs, MMA, and DMA in urine reflects As
intake from drinking water, other dietary sources like rice and
other sources (e.g. air pollution), and is an accepted biomarker
of iAs exposure (Fig. 5) [83–85]. Rice may also contain DMA
in addition to iAs, which is also excreted through urine.
Seafood, including fish, shellfish, and seaweed are important
sources of organic arsenicals (arsenobetaine, arsenosugars,
and arsenolipids); however, these species have low toxicity

Fig. 3 Low arsenic concentrations increase the size of atherosclerotic
plaques dose-dependently. ApoE<sup>−/−</sup >mice were given tap
water or 10–200 ppb arsenic in the drinking water for 13 weeks. Plaque
was quantified in the aortic arch (a) or aortic sinus (b) after oil red O
staining and imaging. Statistical significance from control is represented

as follows: *p < .05; **p < .01; ***p < .001; ****p < .0001.
(Figure reproduced from Makhani K et al., Using the Apolipoprotein E
Knock-Out Mouse Model to Define Atherosclerotic Plaque Changes
Induced by Low Dose Arsenic Toxicol Sci. 2018;166(1):213–218, with
permission from Oxford University Press).
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[33, 86–88]. Arsenobetaine (which can be simultaneously
measured with iAs, MMA and DMA) is rapidly cleared from
the blood stream, excreted unchanged via the kidneys and

contributes to total urine As [89–91]. In murine models, iAs,
MMA, and DMA, but not arsenobetaine, increased atheroscle-
rotic lesions [92••]. Seaweed, mollusks (e.g., scallops,

Fig. 4 Dose-response meta-analysis showing pooled log-linear and non-
linear relative risks of incident overall cardiovascular disease, coronary
heart disease, and stroke in relation to estimated water arsenic. Pooled
linear (red) and non-linear (blue) relative risks of CVD endpoints (overall
CVD, CHD, and stroke, stratified by studies of incidence and mortality)
were estimated for drinking water arsenic concentrations in reference to
10 μg/l. Dashed lines correspond to pooled relative risks, and shaded
regions correspond to the 95% confidence intervals of the pooled
relative risks. Log-linear associations were estimated from models with
log-transformed estimated water arsenic concentrations. Non-linear

associations were estimated from models with restricted cubic splines of
log-transformed estimated water arsenic concentrations with knots at the
10th, 50th, and 90th percentiles of log-transformed arsenic (exact knot
locations vary by model; for CHD incidence, knots were placed at 5.1,
20.5, and 58.7 μg/l). A rug plot along the x-axis provides the median
estimated water arsenic concentrations included in each model.
(Reproduced from: Moon KA et al. A dose-response meta-analysis of
chronic arsenic exposure and incident cardiovascular disease. Int J
Epidemiol. 2017;46 (6):1924–1939, with permission from Oxford
University Press)
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mussels), and fatty fishes are rich in arsenosugars and/or
arsenolipids that are metabolized to As species such as
DMA and dimethylated thiol As species [29, 30, 32, 33].
Therefore, in populations with moderate-high fish intake, the
sum of iAs, MMA, and DMA in urine cannot be used as a
biomarker of iAs intake.

To address this important problem, which may explain the
scarce number of epidemiologic As studies in general popu-
lations, we have developed and validated a method that esti-
mates As exposure not derived from seafood by regressing
iAs, MMA, and DMA on arsenobetaine and extracting the
arsenobetaine-independent model residuals. The method re-
sults and validation have been published [93•]. The residuals
reflect As not explained by arsenobetaine and likely by sea-
food intake. The method of residuals to obtain adjusted esti-
mates has been extensively used in the literature [94–100]. To
have As levels that represent concentrations after removing
the impact of seafood, we added the mean of the correspond-
ing As species (iAs, MMA, or DMA estimated from partici-
pants with low arsenobetaine [< 1 μg/L]) to the residuals,

assuming that As not derived from seafood is similar in par-
ticipants with low and high arsenobetaine [93•]. To validate
that estimated biomarkers reflect iAs exposure but not seafood
intake, we compared urine As levels by seafood and rice in-
take data from a FFQ and n-3 fatty acids. Self-reported sea-
food intake (Table 1), estimated n-3 fatty acids, and measured
n-3 fatty acids were positively associated with the original
urine As biomarkers but no longer associated with the estimat-
ed ones [93•]. The associations with self-reported rice intake,
however, remained similar (Table 1).We replicated these find-
ings for DMA in NHANES. These preliminary findings in
MESA and the replication in NHANES support that the
residual-based method estimates As exposure and metabolism
for each participant not due to exposure from seafood, and
therefore can be used to investigate the health effects of low-
level As in populations with frequent seafood intake.

Understanding Determinants of As Metabolism and their
Influence on CVD The toxicity of As depends on its metabo-
lism, a process that is influenced by genetic determinants and
relies on folate-dependent one-carbon metabolism (OCM)
[101–105]. After exposure to iAs (arsenite and arsenate), As
is methylated in the body by As (III) methyltransferase
(AS3MT) to mono and dimethylated arsenicals (MMA and
DMA) using s-adenosylmethionine (SAM) as the methyl do-
nor [106, 107].Mice lacking As3MTcannot methylate arsenic
[108]. DMA, MMA, and iAs are excreted in the urine, with
half-lives ranging from 2 days for DMA to 38 days for iAs
[87]. SAM synthesis is dependent on OCM and is inhibited by
homocysteine, a sensitive biomarker of OCM nutritional sta-
tus, collectively reflecting the status of folate and other B
vitamins required for OCM [109]. Moreover, nutritional ma-
nipulation of OCM has been shown to increase As methyla-
tion and to lower blood As concentrations [102, 110]. Other
factors that influence As methylation efficiency include age,
sex, smoking, and As exposure levels [106, 111–113]. The
relative proportions of iAs, MMA, and DMA in urine in re-
spect to their sum (iAs%, MMA%, and DMA%) serve as
biomarkers of As metabolism. Patterns of As metabolism in
urine that reflect inefficient methylation (e.g., higher MMA%
vs. lower DMA%) have been related to higher risk of CVD

Table 1 Geometric mean ratio (95%CI) of urine arsenic levels (sum of
iAs, MMA and DMA) by self-reported seafood and rice intake inMESA.
(Results adapted from Jones MR et al. Estimation of Inorganic Arsenic

Exposure in populations with frequent seafood intake: evidence from
MESA and NHANES. AJE 2016;184 (8):590–602. with permission
from Oxford University Press)

By seafood intake By rice intake

Seafood/rice intake N Measured biomarker Estimated biomarker N Measured biomarker Estimated biomarker

≤ 1/month 60 1.00 (ref.) 1.00 (ref.) 42 1.00 (ref.) 1.00 (ref.)

2–4/month 159 1.27 (1.01, 1.59) 0.93 (0.78, 1.16) 105 1.27 (0.98, 1.63) 1.30 (1.04, 1.63)

≥ 2/week 91 1.93 (1.50, 2.48) 1.04 (0.83, 1.30) 162 2.16 (1.70, 2.75) 1.77 (1.43, 2.19)

Total urine

arsenic

iAs MMA DMA
Recent rice,

other foods

Recent

Seafood

Arsenosugars

Arsenolipids

Other

metabolites

Arsenobetaine

Water

Fig. 5 Arsenic exposure, metabolism, and urine biomarkers. Other
sources of arsenic (occupational settings and air pollution) are not
shown. Urine arsenic species commonly measured in epidemiologic
studies are marked in blue. Red arrows reflect how adjusting for
arsenobetaine and extracting model residuals can control the
contribution of seafood arsenicals to DMA and total arsenic. (Adapted
from Jones MR et al. Estimation of Inorganic Arsenic Exposure in
populations with frequent seafood intake: evidence from MESA and
NHANES. AJE 2016;184 (8):590–602, with permission from Oxford
University Press)
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[114–116]. Deletion of As3MT protects apoE−/− mice from
arsenic-induced atherosclerosis [92••]. Candidate gene associ-
ation studies [117–121], GWAS data from Bangladesh [103],
andMetabochip data from the SHS [122] show that variants in
AS3MT are strong predictors of As metabolic patterns in urine.
AS3MT genetic variants are also associated with As toxicity
[104]. Metabochip data, which provides fine mapping cover-
age of AS3MT, GWAS data, and plasma homocysteine—all
available in MESA—will allow for a comprehensive assess-
ment of genetic and nutritional factors that influence As me-
tabolism and interact with As exposure on CVD outcomes.

Research Needs in General Populations

Little is known about the health effects of dietary, geograph-
ical, and racial/ethnic disparities in As exposure in the USA.
Regarding geographical variability, As in community water
systems in L.A. is relatively high compared to other cities
(although still < 10 μg/L) (Table 2) [123]. In suburban areas
of LA, St. Paul, and Chicago, private wells are also used as a
source of drinking water (sometimes > 10 μg/L) [124]. In a
pilot study inMESA, participants from LA had higher median
As levels compared to other cities for most ethnic groups,
supporting that water As in LA contributes to As exposure.
Other Western US cities are affected similarly to LA [93•].
Findings from MESA can be relevant for general populations
in the USA and other countries.

The extensive existing MESA resources, moreover, can be
leveraged for As research, including genomic (GWAS and
Metabochip), epigenomic (Illumina 450 K), OCM nutritional
status (plasma homocysteine), dietary data (food frequency
questionnaire (FFQ)), social and environmental factors (air
pollution, geocoding, neighborhood characteristics), CVD
risk factors (smoking, blood pressure, glycemia, lipids), and
pathophysiological mechanisms (e.g., markers of inflamma-
tion, electrocadiographic findings) together with the well-
characterized subclinical and clinical outcomes during contin-
uous follow-up. Adding As exposure and metabolism data to
MESAwill allow us to evaluate a potentially important, mod-
ifiable CVD risk factor along with other outcomes relevant for

As, including lung and kidney disease, and potentially cancer.
The multi-element analytical technique to be used for urine
As, moreover, facilitate the assessment of metal mixtures in-
cluding metals related to CVD such as cadmium [125, 126],
nickel, and tungsten [5].

Conclusions

The assessment of metals, in particular arsenic, in high-quality
prospective cohort studies of vascular outcomes can provide
relevant information for clinical, environmental, nutritional,
and occupational CVD prevention programs. This is particu-
larly of high need for arsenic, given the EPA’s Integrated Risk
Information System (IRIS) ongoing arsenic risk assessment
and the lack of data at low levels of exposure. From a clinical
perspective, this type of research can impact clinical strategies
for CVD risk reduction, including the identification of indi-
viduals at risk of As exposure because they use private wells
for drinking or rely on As-rich diets (e.g., celiac disease pa-
tients, certain racial/ethnic groups). From a risk assessment
perspective, the US EPA has so far based the As drinking
water standard on quantitative estimates of As cancer effects.
An updated risk assessment is ongoing. The 2013 National
Research Council committee on iAs recommended that the
EPA give priority to the evaluation of CVD [127].While there
is strong evidence at As levels > 10 μg/L, data < 10 μg/L
remain insufficient [9, 61, 82••]. These data are critical for
informing decisions regarding water As standards, which are
currently highly variable: the WHO and the US EPA standard
is 10 μg/L while New Jersey’s standard is 5 μg/L (the lowest
in the USA). In addition, while the need to regulate As in food
is agreed upon, the lack of data on health effects of dietary As
makes regulation difficult [16•, 128, 129]. All current legisla-
tive actions for As in food are non-binding (e.g., As standards
in juice and rice baby products are at different legislative
stages). Assessing the dose-response relationship between
As and CVD at low chronic As exposure, understanding
mechanisms, and identifying environmental, genetic, and nu-
trition susceptibility factors can inform policies to protect the
general population as well as susceptible subgroups.
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