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Abstract
Purpose of Review Epigenetic processes represent important mechanisms underlying developmental plasticity in response to
environmental exposures. The current review discusses three classes of environmentally induced epigenetic changes reflecting
two aspects of that plasticity, toxicity effects as well as adaptation in the process of development.
Recent Findings Due to innate resilience, epigenetic changes caused by environmental exposures may not always lead to impair-
ments but may allow the organisms to achieve positive developmental outcomes through appropriate adaptation and a buffering
response. Thus, some epigenetic adaptive responses to an immediate stimulus or exposure early in life would be expected to have a
survival advantage but these same responses may also result in adverse developmental outcomes as they persist into later life
stages. Although accumulating literature has identified environmentally induced epigenetic changes and linked them to health
outcomes, we currently face challenges in the interpretation of the functional impact of their epigenetic plasticity.
Summary Current environmental epigenetic research suggests that epigenetic processes may serve as a mechanism for resilience,
and that they can be considered in terms of their impact on toxicity as a negative outcome, but also on adaptation for improved
survival or health. This review encourages epigenetic environmental studies to move deeper into the functional meaning of
epigenetic plasticity in development.
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Introduction

Adaptation is a critical mechanism to allow for survival in the
changing environment. On a large timescale and population
level, adaptation relies on changes in gene frequencies based
on natural selection; yet, in response to more immediate fluc-
tuations and individual levels, homeostasis represents the crit-
ical process allowing for buffering of the effects of temporary
and quick environmental changes [1]. However, neither of the
modes can efficiently assist an organism to adapt to and sur-
vive in an emerging baseline environmental state, such as
prenatal undernutrition/overnutrition, exposure to maltreat-
ment or stress in early life, and environmental pollution or
toxicants [1]. Instead, developmental plasticity allows for

response to such environmental changes, representing an in-
termediate between the slow process of natural selection and
the transient processes represented as homeostasis [1].
Developmental plasticity summarizes the capacity to modify
developmental biology in response to and to fit the environ-
mental experiences [2, 3]. On the positive side of developmen-
tal plasticity, resilience serves as the process through which
organisms achieve positive adaptation to environmental
changes and prepares for future adverse experiences [4, 5];
meanwhile, on the negative side, once the impacts of environ-
mental experiences exceed the capacity of resilience, impaired
or disrupted development outcomes will be the results of in-
complete buffering [6]. Researchers highlight the value of
epigenetic mechanisms in studies of environmental health
and developmental plasticity because of its function in regu-
lating gene expression without altering the DNA sequence [7]
as well as its persistence and relative dynamic plasticity in
response to environmental factors [8]. Thus, these mecha-
nisms are critical to developmental outcomes (Fig. 1).
Epigenetic events include the widely studied DNA methyla-
tion as well as histone modifications and non-coding RNA,
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mechanisms that are less widely explored [9]. In this review,
we mainly consider the role of DNA methylation as a mech-
anism of plasticity in response to environmental exposures.

DNA methylation is a process by which a methyl group is
added to individual cytosines in the context of CpG dinucle-
otides. When this addition occurs in gene promoters, it is most
often associated with transcriptional gene silencing or the re-
duction of gene activity [7]; however, the correlation between
promoter DNAmethylation and gene expression is not always
in the expected direction and the exact impact of each unique
instance of DNA methylation has not yet been fully charac-
terized [10]. DNA methylation is implicated in aiding the
persistent memory of environmental cues; but, it has been
shown that DNA methylation is dynamic and changeable
[11]. DNA cytosine methylation modifications are embodied
in two major ways, through processes of methylation and
demethylation. The processes involved in DNA methylation
include de novo and maintenance activities while demethyla-
tion includes active and passive processes. These processes
are critical in embryonic and fetal development, where a wave
of demethylation after fertilization allows for pluripotency of
the initial embryonic stem cells. This is followed by cell type-
specific de novo methylation allowing for differentiation and
maturation [12]. This process of de novo methylation is cata-
lyzed by the DNA methyltransferases (DNMT) 3 family and
is regulated by many other factors, such as DNMT3L (a non-
catalytic paralog), unmethylated histone H3 lysine 4 tails, and
piwi RNAs (piRNAs) [13, 14]. The process of de-
programming and re-programming provides the fetus devel-
opmental plasticity and also introduces a critical period during
which the organisms are sensitive to environmental exposures
[12]. The established DNA methylation pattern is maintained
by DNMT1 during DNA replication [14]. DNMT1 functions
to copy the methylated strand of the hemi-methylated DNA to

the nascent strand. Studies have demonstrated that environ-
mental exposures, such as tobacco smoke [15], ethanol [16],
and methyl-group donor intake [17], can interfere the activi-
ties of DNMT1. The absence of maintenance of DNA meth-
ylation leads to a passive loss of methylation; although, de-
methylation can also occur in active ways [13]. For example,
ten-eleven translocation (TET) enzymes and thymine-DNA
glycosylase (TDG) catalyze the subsequent products of the
oxidized 5-methylcytosine to form abasic sites which are
changed to be unmethylated sites through the base excision
repair pathway [18]. These dynamic processes of DNA meth-
ylation provide environmental exposures various opportuni-
ties to influence the growth and development of organisms.

Recent data also suggests that through epigenetic variation,
the organism not only reacts to the environmental experience
of the current environment during the pre-/post-natal period
[19] but also, potentially, to the environmental events experi-
enced by its parental ancestors (reviewed by [20–22]). A great
body of literature has made efforts to understand what epige-
netic variations can be induced by specific environmental fac-
tors throughout the lifetime [12, 23–26]. In particular, with the
growth of high-throughput technology, epigenome-wide stud-
ies allow us a holistic insight into the epigenetic programming
in response to specific environmental factors [27–31].

Evidence is accumulating that there is complexity to
epigenetic plasticity in response to environmental expo-
sures. On the one hand, a certain environmental factor
may induce epigenetic variation involved in multiple func-
tional pathways in one type of tissue. On the other hand,
epigenetic changes in the same region of the same gene in
the same tissue may vary in response to different types of
environmental factors. For example, studies of tobacco
smoking-associated DNA methylation in infant cord blood
have compellingly identified DNA methylation changes in

Fig. 1 Epigenetic plasticity summarizes the capacity to modify
developmental biology in response to and to fit environmental
experiences. Once the impacts of environmental experiences exceed the
capacity of resilience, epigenetic toxicity effects will be the result of
incomplete buffering; on the contrary, the resilience serves as the

processes through which the organism achieves epigenetic adaptation to
environmental changes and to prepare the organisms for adverse
experiences. However, the epigenetic adaptations can lead to both
positive and negative long-term developmental outcomes

Curr Epidemiol Rep (2018) 5:450–460 451



genes such as AHRR, CYP1A1, GFI1 (reviewed by Green
et al. [32]), and hypomethylation of CpGs at the ESR1
(estrogen receptor 1) transcription start sites (TSS) in re-
sponse to prenatal smoking exposure through epigenome-
wide association study (EWAS) meta-analysis [33••]. ESR1
is a transcription factor mediating estrogen’s involvement in
the regulation of growth and development [34] as well as
an important tumor suppressor gene [35]. Interestingly,
White and colleagues [36••] found that ever active smoking
as well as residential environmental tobacco smoking were
also associated with lower promoter methylation of ESR1
in breast tumor tissue. However, for most exposures, such
as prenatal benzophenone-3 (BP-3) [37], hepatitis virus in-
fection [38], inflammatory cytokine IL-1β [39], a western
diet with bisphenol A (BPA) [40], and high-stress level
[41], hypermethylation of ESR1 was widely reported.
Moreover, hypermethylation of ESR1 and inactivation of
this tumor suppressor were well documented as one of
the main mechanisms underlying the presence and progno-
sis of malignancies like breast cancer [42], colorectal can-
cer [43], hepatocellular carcinoma [44], and ovarian cancer
[45]. Therefore, comparing these studies, the unexpected
inverse association between smoking and ESR1 methylation
in cord blood and even breast tumor tissue cannot simply
be interpreted as the carcinogenic effect of smoking. This
kind of complexity of DNA methylation changes was also
observed in placenta tissue. The demethylation of the
P2RX4 (Purinergic Receptor P2X, Ligand-Gated Ion
Channel 4) promoter and elevated expression were ob-
served in the placental tissues of preeclampsia cases com-
pared to the normal mother-child pairs [46], suggesting an
overexpression of P2RX4 induced by preeclampsia. On the
contrary, another study found that prenatal nitrogen dioxide
(NO2) exposure was associated with placental hypermethy-
lation of the CpG site in the same P2RX4 region detected
in the preeclampsia study, potentially suggesting a sup-
pressed P2RX4 expression [47••]. These observations sug-
gest a need for careful interpretation of these exposure-
related epigenetic changes. We need to consider if the al-
terations in DNA methylation are a reflection of environ-
mentally induced toxicity, a way to adapt to environmental
cues to benefit survival, or merely neutral reliable bio-
markers of exposures.

In this review, first, we discuss epigenetic toxicity of envi-
ronmental exposures. We then discuss the role of epigenetic
plasticity in human adaptation to environmental cues focusing
on developmental adaption studies. Last, we raise several
challenges in the interpretation of epigenetic changes induced
by environmental exposures.While this review is not meant to
exhaust all the studies of exposure-induced epigenetic modi-
fications in each class, it encourages epigenetic environmental
studies to consider more fully the functional meaning of epi-
genetic plasticity in development.

Epigenetic Toxicity

Epigenetic toxicity is exposure-induced epigenetic modifica-
tions leading to undesirable health effects on organisms, po-
tentially underpinning the predisposition to diseases due to
environmental exposures [48]. Exposure-induced epigenetic
toxic modifications appear to result from insufficient buffering
of perturbations; in other words, the toxicity of the environ-
mental factors exceed the capacity of resilience. The adverse
effects of epigenetic toxicity are relatively direct, compared to
the effects of the inappropriate epigenetic adaptation
(discussed later). While epigenetic toxicity can lead to imme-
diate developmental problems, it does not have to cause a
problem initially, suggesting a time lag between epigenetic
changes and health effects appearance. In the context of epi-
genetic toxicity, it is necessary to study the relative stability of
the observed epigenetic markers in order to fully understand
their impact on lagged health effects. However, currently, very
few studies have measured the epigenetic markers at multiple
time points to prove the persistence of modifications. We will
discuss in greater depth below using examples.

The immediate effects of epigenetic toxicity have been
studied in response to a wide range of environmental expo-
sures. Liu et al. utilized the human lymphoblastoid TK6 cell to
identify that lead exposure resulted in DNA damage via in-
ducing hypermethylation and suppression of DNA repair
genes, suggesting immediate epigenetic toxicity induced by
lead exposure [49••]. Similarly, in a human study, Paul et al.
found that higher levels of arsenic exposure led to hypome-
thylation of the promoter and enhanced expression of ERCC2
(Excision Repair Cross-Complementing rodent repair, com-
plementation group 2) that further inhibited DNA repair pro-
cess in dermatological lesion patients [50]. Another study of
adults occupationally exposed to volatile organic compounds
(VOCs) has suggested that the synergistic, hematotoxic/
leukemogenic effect of VOCs is represented by the toxic ef-
fects on the aberrant promoter methylation in genes involved
in oxidative stress, DNA repair, and inflammation [51].
Additionally, the immediate epigenetic toxicity may appear
in the placenta which is a fetal organ serving as the vehicle
for communication of environmental signals between mother
and fetus as well as a metabolic, endocrine, and immune organ
regulating intrauterine fetus development. Disruption of the
placental epigenome induced by environmental exposures
has been associated with dysfunction of the placenta as well
as fetal development (reviewed by Marsit [52]). A recent
study reported that smoking mothers had lower placental
DNA methylation of CYP1A1 (cytochrome P450, family 1,
subfamily A, polypeptide 1) and enhanced oxidative stress, in
turn associated with lower mitochondrial DNA content that
reflects mitochondrial dysfunction and impairment of placenta
[53••]. Everson’s cadmium-associated epigenome-wide study
observed differential DNA methylation of the genes involved
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in inflammatory signaling and their corresponding effect on
gene expression in the placenta. These alterations of gene
expression were also associated with birth weight, suggesting
the reproductive toxicity of cadmium on growth may be par-
tially through epigenetic toxicity and its downstream impacts
[31]. The cadmium-associated epigenetic toxicity was also
detected in a mouse model which suggested DNAmethylation
modifications and the expression patterns of Cdkn1c and
Peg10 involved in the etiology of cadmium-induced fetal
growth restriction [54].

The Developmental Origins of Health and Disease
(DOHaD) hypothesis emphasized the long-term impact of
early life exposures on the susceptibility of diseases later in
life. To explore the underlying mechanisms, a growing body
of studies have investigated the link between environmentally
induced epigenetic modifications and the lagged health events
in both animals and humans (reviewed by Marczylo et al.
[55]). Most of the studies have only single time point epige-
netic measurement taken either early in life with a particular
exposure or later in life with the outcomes. For example,
Kaushal et al. reported that prenatal arsenic exposure leads
to the changes in methylation of five CpGs in cord blood
which were in the pathways related to cardiovascular diseases;
also, the changed DNA methylation was associated with low-
density lipoprotein of the children at the age of 2 to 14 years
[30]. Additionally, prenatal particulate matter (PM)2.5 expo-
sure was associated with hypermethylation of children’s nasal
epithelia glutathione S-transferase P1 (GSTP1) gene that is
also inversely associated with reduced children’s lung func-
tion in early childhood [56]. Although this evidence may sug-
gest potential epigenetic toxicity of environmental exposures
on health later in life, they are powerless to illustrate if the
environmentally induced epigenetic changes early in life are
stable and functional until the occurrence of health events later
in life, and vice versa. Therefore, we need to explore epige-
netic toxicity at multiple time points in response to environ-
mental exposures as well as outcomes. One recent example,
from a prospective pregnancy cohort study in which the re-
searchers evaluated the association of prenatal mercury expo-
sure with the children’s DNA methylation changes and cog-
nitive performance, found that children exposed to prenatal
mercury had lower regional DNA methylation at the paraox-
onase 1 gene (PON1) in cord blood that predicted lower cog-
nitive test scores measured in childhood; moreover, the
mercury-related demethylation of PON1 was also identifiable
in childhood, building evidence that the neurodevelopmental
toxicity of mercury may be partially through fetal epigenetic
toxicity [57••].

In addition to gene-specific studies, DNA methylation age
has gained significant interest in studies of environmentally
induced epigenetic toxicity. DNA methylation age is a novel
epigenome-wide DNAmethylation-based measure of individ-
ual biological aging predicting chronological age [58] as well

as capturing the interpersonal differences in the risk of many
functional alterations, diseases, and mortality [59]. In adults,
increased PM2.5 exposure has been linked to accelerated DNA
methylation age [60–62], which provides an improved under-
standing of the role of PM2.5 as a contributor to accelerated
aging and aging-related diseases [63–67], such as cardiopul-
monary disease, and cognitive decline. Other perturbation-
related DNA methylation age modifications are also docu-
mented. For example, one study detected cigarette pack-
years were negatively correlated with DNA methylation age
[61], but another study found a null association [68]. Obesity
has also been reported to be associated with accelerating epi-
genetic aging in human liver [69].

Epigenetic Adaptation: Positive Effects

Environmental exposures do not always lead to epigenetic
toxicity and impairments but can benefit organisms to achieve
positive developmental outcomes through appropriate epige-
netic adaptation. A growing body of studies has discussed the
positive effect of environmental exposures through epigenetic
mechanisms. Lactation represents an important early life pe-
riod during which the DNAmethylation in the still developing
infant can be susceptible to environmental changes. Before
birth, the fetus mainly takes the energy from glucose [70].
With the onset of breastfeeding, the infant starts to take ad-
vantage of more energy from fat [71], and breast milk assists
infants to adapt to the change of energy source. Breast milk
lipids may bind to PPARα (Peroxisome proliferator-activated
receptor alpha) which in turn decreases the DNA methylation
of genes related to lipid metabolism and increases their ex-
pression in neonatal livers; thus, breastfeeding assists hepatic
lipid metabolism and liver maturation [71]. The DNA meth-
ylation changes of these genes can be regarded as a positive
adaptive response to the increased lipid nutritional environ-
ment. These adaptive DNA methylation changes may benefit
the lipid metabolism of the infants in later life, as indicated by
human studies on breastfeeding and children’s metabolic dis-
eases [72]. In line with human studies, animal models have
shown that the adaptive demethylation of FGF21 (fibroblast
growth factor 21, involved in lipid metabolism) and enhanced
expression are persistent into adulthood, resulting in attenua-
tion of diet-induced obesity of adults [73••]. Another well-
known study in an animal model is that of the viable yellow
agouti mouse, which examined the effects of maternal dietary
genistein on the decreasing Agouti gene expression through
increasing the methylation levels of a retrotransposable ele-
ment in the promoter of the Agouti gene. The genistein-
induced hypermethylation and decreased Agouti expression
persisted into adulthood and protected offspring from obesity.
This animal study provided the evidence that parental envi-
ronmental exposures can benefit the offspring to achieve
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positive metabolic set points by permanent epigenome adap-
tation [74].

Studies on asthma provide additional evidence to the ben-
efits of early environmentally induced epigenetic adaptation
for health condition later in life. Early life microbial exposure
instructs the body to mount a well-adapted immune response
to allergens via inducing epigenetic adaptation [75]. Munthe-
Kaas and colleagues found that children with pets at home had
lower DNAmethylation of CD14 at age 2 and this association
persisted until age 10 [76], suggesting an enhanced CD14
expression induced by the animal living environment (more
microbial exposure) [77]. As the co-receptor of Toll-like re-
ceptors (TLRs), CD14 activates TLRs-mediated innate im-
mune responses [78] which serves as a greatly important first
defensive line against invading pathogens [79]. The children
raised in such early life environments are at decreased risk of
developing allergies [80–82], under which the mechanism
may be the higher expression of CD14 deviating immune
responses away from the allergen-reactive type 2 helper T
cells [83], resulting in an attenuated sensitivity to allergens
later in life [77]. Therefore, in the early stage, the changed
methylation of CD14 in response to microbial exposure is a
stable epigenetic adaptation of the immune system, which in
turn exerts beneficial effects of reducing the vulnerability of
children to asthma later in life.

Epigenetic Adaptation: Negative Effects

Epigenetic adaptations are not always to the benefit of the
organisms’ development. Especially during pregnancy, the
fetus must adapt to its environment in order to optimize
growth and to minimize the potential adverse effects of per-
turbations. Although such adaptation to fluctuations could at-
tenuate immediate impacts of environmental perturbations on
the fetus and benefit in utero and early life survival, these
adaptive alterations can also be potentially deleterious to the
long-term health of an individual depending on the particular
environment experienced later in life.

A convincing example is social environment-induced neu-
robehavioral disorders governed by epigenetic mechanisms
via hypothalamic pituitary adrenal (HPA) axis programming.
The epigenetic programming of the HPA axis reflects the need
to coordinate fetal development in preparation for responsive-
ness to stressors as determined by the upregulated regulatory
set point of negative feedback of the HPA axis. However, this
inhibition of negative feedback of the HPA axis impairs the
offspring’s interaction with stimuli later. The HPA axis is one
of the most well-studied hormonal signaling pathway in
responding to stress, through its regulation of the production
of the stress hormone cortisol [84]. Various genes are involved
in the regulation pathway, such as NR3C1 (Nuclear Receptor
Subfamily 3 Group C Member 1, encoding a glucocorticoid
receptor protein) and FKBP5 (FK506 binding protein 51,

encoding a protein binding to glucocorticoid receptor) [84].
Nagarajan has systematically reviewed and shown that ad-
verse maternal mental health (i.e., prenatal depression, anxi-
ety, stress) is consistently associated with increased neonatal
promoter methylation of NR3C1 [85], suggesting a decreased
glucocorticoid receptor expression and an inhibition of nega-
tive feedback of the HPA axis followed by enhanced cortisol
reactivity [86]. FKBP5 is a glucocorticoid receptor (GR) reg-
ulator inhibiting GR-mediated negative feedback of the HPA
axis by competing with cortisol to bind to GR [87]. Studies
observed the demethylation of a key regulatory locus in
FKBP5 in saliva DNA of children exposed to maltreatment
within 6 months [88]; moreover, the interaction of maltreat-
ment and contextual stress could lead to persistent demethyl-
ation of FKBP5 even 1 year after the stimuli [89].
Demethylation of FKBP5 results in increased gene expression
and decreased GR signaling as reported in children exposed to
maltreatment [90], suggesting increased cortisol reactivity but
reduced GR sensitivity and negative feedback of HPA axis.
Cortisol is essential for fetal development and prepares infants
for stress response, which is typically portrayed as the “fight-
or-flight” process, mobilizing energy rapidly in order to cope
with threatening stimuli to survival [91]. Cortisol increases the
availability of energy from endogenous stores by mobilization
of glucose [92], fat [93], protein [94], and inhibiting insulin
secretion [95]; this hormone also regulates the supply of en-
ergy to critical systems, such as the central nervous system
[84]. In light of this, increased promoter methylation of
NR3C1 that occurs in response to prenatal or early life stress
could increase the HPA axis responsivity and cortisol level,
providing, at least initially, an offspring survival advantage to
cope with a stressful living environment. However, this
overactivation, which does not allow the HPA axis to fully
return to normal, can lead to a state of an exhausted HPA axis
[96, 97]. Such exhausting may manifest itself in terms of per-
sistent hypermethylation of NR3C1 but decreased cortisol
concentration in the long term, which results in a restriction
of stress adaptation responses and increases the vulnerability
to chronic complex disorders, in both the mental and physical
realms, later in life [98]. This interpretation is supported by a
cross-sectional study which showed that hypermethylation of
NR3C1was associated with a flattened cortisol recovery slope
(a delayed recovery time) in adolescents [99]. A recent study
demonstrated that the increased methylation of NR3C1 and
cortisol concentration in the depressed adult patients was re-
lated to childhood emotional abuse severity, further suggest-
ing early stress-induced higher basal HPA axis activity and
limited stress-response capacity results in emotion dysregula-
tion [100]. Similar associations were observed by Peng [101].

Animal models examining various aspects of stress and
trauma and epigenetic effects on the HPA axis are abundant
and provide compellingmechanistic evidence for an impact of
psychosocial factors on health through epigenetic alterations.
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For example, a rat model study demonstrated that chronic
stress led to increased DNAmethylation at the Nr3c1 promot-
er which in turn induced increases in visceral pain [102].
Another rat study also revealed that the increased hippocam-
pal Nr3c1 methylation levels causally mediated the effect of
preconception paternal stress on the anxiety-related behaviors
in offspring [103]. In a highly cited study, Weaver and col-
leagues demonstrated, also, that positive environments,
modeled as rat maternal licking and grooming behaviors,
can also impact long-term HPA axis programming and stress
responses through alteration of hippocampal Nr3c1 promoter
methylation [104]. These models open up opportunities for
translation of these research findings into human clinical and
epidemiologic analyses.

Fortunately, due to the epigenetic plasticity, the pro-
grammed epigenetic patterns in response to perturbation early
in life, to some extent, can be modified to adapt to the emer-
gence of new environmental stimuli later. This allows for
strategies that switch the undesirable epigenetic changes to-
wards the optimal condition. As mentioned above, maltreat-
ment exposure within 6 months led to demethylation of
FKBP5 and hypermethylation of NR3C1 of children [88]. A
further study found that social service utilization may improve
the methylation levels of FKBP5 over time, even after
adjusting for maltreatment and contextual stress, which im-
plied a positive effect of service utilization on HPA axis epi-
genetic programming [89]. However, the epigenetic effect of
service utilization was not measured in the children with mal-
treatment; thus, more studies are needed to conclude that ser-
vice utilization or other interventions can induce reversal of
maltreatment-related epigenetic effects. Child maltreatment is
associated with higher initial levels of NR3C1 promoter meth-
ylation within 6 months of documented maltreatment but low-
er methylation of NR3C1 1 year after the maltreatment expo-
sure [105]. This dynamic stress-related DNA methylation
changes of NR3C1 reflect the organisms’ early acute response
resulting in neurobehavioral dysregulation and later adaptive
changes for maintaining high levels of readiness for chroni-
cally repeated stressful or unstable conditions [105, 106].
Overall, these studies demonstrate the potential reversibility
of epigenetic processes, although further work is needed to
better characterize and demonstrate such phenomenon.

Challenges and Outlook

The DNA methylation changes induced by environmental
factors and discussed above are just a small part of the accu-
mulating evidence of the exposure-related epigenetic changes
reflecting developmental epigenetic plasticity. For most of the
identified epigenetic markers in response to exposures, we
currently face a number of challenges to interpret their func-
tional meaning in the context of epigenetic plasticity.

First, an important concern is that in human epidemiologic
studies, most epigenetic markers were measured in accessible
tissues, such as blood or saliva, and these are not always the
disease- or function-relevant target tissues. Since the epigenetic
markers are highly tissue specific, we must use caution when
we interpret the association between environmental exposures
and epigenetic modifications in one accessible tissue to the
other more disease-relevant target tissues, especially in the in-
terpretation of epigenetic toxicity, even though the studies sug-
gest some accessible tissues have the potential ability to capture
the pathological process in the targeted tissue [107, 108], or in
the case of blood, may represent immune system perturbation.

Second, for many of the identified epigenetic changes in-
duced by a particular environmental exposure, we have very
limited knowledge about their role in developmental adapta-
tion, mostly because of a dearth of prospective studies linking
environmental exposures, epigenetic changes, and health
events. For example, Green et al. identified demethylation of
LYRM2 in the placenta and increased expression induced by
increasing prenatal arsenic exposure. However, the LYRM2
currently lacks a known function in the placenta and there
was no demonstrated link between LYRM2 methylation vari-
ation and developmental outcomes of the placenta or fetus
[29]. Hence, it is hard to postulate if the LYRM2 methylation
change is epigenetic toxicity, adaptation, or just a neutral bio-
marker of arsenic. This is the case with another arsenic-related
study [109], and with a large body of research on the effect of
the environment on epigenetic variation.

Sometimes, we may understand that the epigenetic change
is an adaptive process, but we may not know if it is positive or
negative in long term. A recent crossover randomized study
detected, in healthy subjects, an acute particulate matter (PM)-
induced reduction of vagal modulation coupled with a down-
regulation of the pro-inflammatory pathway characterized by
hypermethylation at the promoter region of IFN-γ gene [110].
The research implied that the unexpected decreased inflam-
matory response is a phenomenon under a homeostatic control
counteracting the changes in neural reflexes (vagal deregula-
tion) [110, 111]; in other words, the finding reflects an epige-
netic resilience in adapting to the unstable homeostasis
resulting from PM exposure. However, we know little about
the persistence of the PM-induced methylation change and its
long-term effects.

Third, the dynamic nature of the epigenome will require an
emphasis on future longitudinal studies in which the epigenome
is profiled over time. However, due to lack of time-series bio-
samples and efficient computational approaches for
epigenome-wide studies, only a few studies model the trajecto-
ry of the dynamic epigenetic changes in response to exposures
in human epidemiology studies. Birth and children’s cohorts
provide the opportunity to obtain the bio-samples [112, 113],
and longitudinal analysis strategies for modeling epigenetic tra-
jectory have been developed recently [114].
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Fourth, most recent epidemiologic studies of DNA methyl-
ation lack the power to conclude causal effects, but some cohort
studies have explored and proved the causal role of DNAmeth-
ylation in the relationship between environmental exposures
and developmental outcomes using epidemiologic methods. A
study from the Avon Longitudinal Study of Parents and
Children (ALSPAC) supports cord blood DNA methylation
as a consequence of maternal vitamin B12 levels having a caus-
al effect on children’s cognition development [115]. Kupers and
colleagues identify that the cord blood DNA methylation of
GFI1 causally mediates the effect of maternal smoking on
birthweight [116]. Animal studies can also provide additional
and complimentary lines of evidence to epidemiologic studies
for the causal effects of DNA methylation, and there is a grow-
ing literature examining epigenetic mechanism as causal path-
ways in various animal model systems.

Finally, one of the limitations of current epigenetic epide-
miology has been the focus on single exposures, denoting a
need to begin to consider an exposomic approach. As the
analytical tools emerge to characterize the full exposome,
studies on the combined burden of multiple exposures on
the epigenome can be undertaken. An early example has been
a study of the independent effect of maternal lead on LINE-1
DNAmethylation changes of children, wherein, Goodrich and
colleagues considered and controlled for the influence of ma-
ternal bisphenol A and nine phthalate metabolites that were
represented by four components created by principal compo-
nent analysis [19], although the potential synergistic effects
were not examined. Another recent study has demonstrated
that among 16 measured chemicals, CB-105 was identified as
the most “epigenetically active” pollutant for female new-
borns [117]. One of our prior studies has investigated a posi-
tive association of co-action between prenatal metal exposure
assessed by a cumulative risk score (higher scores represent
greater cumulative metal exposure risk) with placentalNR3C1
methylation [24], which suggested multiple metal exposures
jointly exert accumulated epigenetic impacts. Demethylation
of AHRR in the cord blood of children with prenatal smoking
exposure is broadly reported. One recent study further discov-
ered the interactive effect of maternal smoking and high folate
level, suggesting that adequate maternal folate levels attenuate
the impact of smoking on the hypomethylation of AHRR
[118••]. As these studies mature and elaborate on these co-
exposure effects, we may be able to better classify and under-
stand the epigenetic plasticity to the complexity and mixture
of exposures.

Conclusion

In this review, we discuss three classes of environmentally
induced epigenetic changes reflecting two aspects of epige-
netic plasticity, including those resulting in toxic as compared

to adaptive processes. There remain challenges to fully defin-
ing and interpreting the reported environmentally associated
epigenetic variants, but keeping in mind that these processes
may represent both pathology and resiliency will be critical as
data grows and future work considers these effects more
broadly.
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