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Abstract
Purpose of Review Decision trees are a well-established tool for statistical modeling and machine learning, but they are not
widely used in the epidemiological literature. In this review, we introduce the reader to the basic concept of the decision tree and
describe three distinct ways that they can be used: for explanatory modeling, outcome prediction, and subgroup identification.
Recent Findings We discuss varieties and generalizations of decision trees that are best-suited for analyzing epidemiological data
and introduce some visualizations which can help researchers interpret decision tree outputs. Throughout, we provide diverse
examples from recent literature of how decision trees have been applied to analyze epidemiological data.
Summary The overall aim is to encourage epidemiologists to incorporate decision trees into their analytic toolkit.
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Introduction

Regression models have been extensively applied in epidemi-
ological research to examine relationships between covariates
(e.g., risk factors, demographics, etc.) and an outcome of in-
terest [1, 2]. However, regressionmodels lack the flexibility to
uncover complex covariate-outcome relationships unless the
analyst pre-specifies the nature of these relationships. For ex-
ample, consider a randomized controlled trial, the Box Lunch
Study (BLS) [3], where one analysis goal was to explore as-
sociations between daily food intake measured in kilo-calories
and relevant covariates. The set of covariates include re-
sponses to the Three-Factor Eating Questionnaire (TFEQ)
[4] quantifying hunger, disinhibition, and restrained eating
and novel laboratory-based psycho-social measures such as
relative reinforcing value of food (rrvf) [5] and degrees of
liking and wanting of food [6, 7]. Denoting the outcome by

Yand the covariates byX (for this illustration consisting of six
covariates X1, .…, X6), one option would be to fit the multiple
linear regression model

Y ¼ β0 þ β1X 1 þ ::…þ β6X 6 þ ϵ:

This model assumes that daily energy intake is a linear
function of covariates, an assumption that is unlikely to
hold. One common alternative approach is to categorize
continuous covariates, e.g., by splitting them at the medi-
an or into quartiles. However, in many cases, it may not
be obvious which values to choose for splitting.
Furthermore, this approach makes investigating covariate
interactions more challenging due to the potentially large
number of dummy variables in the model. Investigating
different splitting choices requires estimating a potentially
large number of linear regression models; when deciding
on a single split point for a single continuous X1, many
models would need to be fit to include indicator variables
1[X1 ≥ τ] defined for different threshold values τ. This
may require many candidate models to be examined in a
fairly ad hoc manner, potentially inflating type I error and
increasing the risk of overfitting the data, which reduces
generalizability of the results [8–10].

At the other end of the spectrum, machine learning tech-
niques such as neural networks, support vector machines, and
graphical models [11, 12] offer very flexible modeling of
covariate-outcome relationships. However, these techniques
are usually “black boxes” as they combine covariate
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information in complex ways. For example, neural networks
classify outcomes based on weighted combinations of trans-
formed covariates. The resulting model cannot easily be
interpreted in terms of the original covariate values, making
it difficult to gain insight about the nature of covariate-
outcome associations andmake individual predictions without
access to software that can calculate model outputs.

Decision trees are an appealing intermediate between
these two extremes: they offer more flexibility than stan-
dard regression models [13••], but their output is more
easily interpretable than “black-box” machine learning
methods. As a result, decision trees are potentially useful
for analyzing complex, high-dimensional data from epide-
miological studies. In this paper, we introduce the key
concepts of decision trees and describe how they have
been applied in the recent epidemiological literature,
distinguishing between three different ways that decision
trees are used: for explanatory modeling and variable se-
lection, outcome prediction, and subgroup identification.
We also briefly discuss some variants of and extensions to
decision tree models which are also seeing increased use
in the epidemiological community.

A Brief Overview of Decision Trees

A decision tree is a statistical model which aims to partition
the given data into groups that are (relatively) homogeneous
with respect to the outcome, based on covariate values.
Decision trees have several components, which we illustrate
by referring to Fig. 1 (note that Fig. 1 is a conditional
inference tree, which we describe in greater detail below).
Subsets of observations are contained in nodes of a decision
tree; all observations (n = 226 in the Box Lunch Study) are
initially contained in the root node of a tree (at the top of
Fig. 1). The splitting step is a vital step in the process of con-
structing decision trees, where two disjoint subsets are deter-
mined by dividing the sample (or subsample, for nodes below
the root node) according to covariate values. Branches in the
tree represent splits below a node; a decision tree is built by
successively splitting down each branch until a stopping rule is
triggered. Stopping rules may be determined by a number of
factors, e.g., a minimum number of observations in a node, or a
threshold for the decrease in estimated prediction error. A leaf
or a terminal node is a node where the stopping rule is satisfied.
Collectively, a disjoint partition of the original sample is defined
by terminal nodes; each observation in the sample belongs to a
single terminal node, depending on its covariates. Predictions
for a new observation are obtained by computing a summary
statistic from the individuals falling in the same leaf as that
observation. For instance, with continuous outcomes, the pre-
dicted value would be the mean outcome of the subset of ob-
servations within that leaf. Decision trees are usually depicted

upside down relative to actual trees, with the root node at the
top and the branches spread downwards to the leaves. The tree
in Fig. 1 has four terminal nodes (or “leaves”), and therefore
partitions individuals into four subgroups with distinct means
(and indeed, distributions) of the outcome on the basis of six
variables: hunger, wanting, liking, disinhibition, restrained eat-
ing, and relative reinforcing value of food.

The splits in a decision tree define a set of prediction rules
for predicting the outcome on the basis of covariates, with the
goal of minimizing a loss function that computes the discrep-
ancy between the predicted and true values. Commonly used
loss functions include misspecification rates, Gini index, and
entropy for classification trees and mean squared error for
regression trees. A training set is used to learn a set of decision
rules and a test set is utilized to assess the performance of the
grown decision tree. Like many strongly data-driven methods,
decision trees are prone to overfitting, i.e., getting an overly
optimistic estimate of prediction accuracy by modeling idio-
syncrasies of the training set used to build the tree instead of
characteristics of the underlying data generating process. To
prevent overfitting, it is therefore common practice to con-
struct trees using a number of different stopping rules to gen-
erate trees of varying depths (a deeper tree has more splits,
more nodes, and fewer observations within each leaf; hence, it
may yield higher prediction accuracy but is also more likely to
overfit). The final tree depth is selected using a process called
pruning that seeks to minimize the prediction error estimated
by cross-validation or, preferably, on an independent test set.

There are several methods for constructing decision trees,
with the major differences between the methods being the
algorithms used to partition the sample and the criteria which
determine when to stop splitting. The most widely used meth-
od of constructing decision trees is the Classification and
Regression Tree (CART) technique [15••]. In CART, the
search for each split takes place simultaneously across all co-
variates and their candidate split points. For each covariate,
CART identifies the split point resulting in greatest reduction
in error. The split chosen for inclusion in the tree is the most
error-reducing split across all covariates. This recursive split-
ting process continues until the best split results in a relative
reduction in error less than a pre-specified threshold, since the
CARTand related techniques (e.g., C4.5 [16]) have seen wide
application, including in obesity [17, 18], smoking studies
[19•, 20], and diabetes [21, 22].

One more recently proposed alternative to CART is the
conditional inference tree (CTree [23]). CTree follows a
two-stage splitting process: in the first stage, the covariate to
split on is determined based on a measure of association be-
tween each covariate and the outcome of interest. Then, the
best split point for the splitting covariate is calculated. This
two-stage splitting process allows CTree to use a more formal
statistical inference framework, wherein the hypothesis that
none of the covariates has a univariate association with the
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outcome is tested by considering a set of tests corresponding
to each univariate association and the result of each test is
summarized via a p value. Nodes are declared as terminal
nodes (node IDs 3, 5, 6, and 7 in Fig. 1) when the minimum
p value determined is larger than a multiplicity adjusted sig-
nificance threshold. Hence, in conditional inference trees such
as the one in Fig. 1, each splitting node is associated with a
(multiplicity-adjusted) p value and the type I error is con-
trolled both overall and within each node. In a previous paper
[14], we compared the advantages and disadvantages of
CART and CTree via simulation and found that CART often
yielded trees with slightly lower prediction error than CTree
but required more parameter tuning, tended to favor the inclu-
sion of continuous over discrete covariates (due to the large
number of possible splits of the former), and did not control
the overall type I error rate. We argued that the simplicity and
inferential focus of conditional inference tress make them an
appealing option for epidemiologists, but at this point in time,
they have seen limited use in public health and medical re-
search [24, 25•].

Decision trees are widely implemented in open source R
statistical software [26] using packages such as rpart [27•] and

rpart.plot [28] for CART, partykit [29••] for CTree, and
RWeka [30] for C4.5 [16]. Decision trees have also been im-
plemented using SAS Enterprise Miner [31•], in SAS/STAT
software using a procedure called hpsplit, and in the CART
and CHAID modules in Stata.

Explanatory Modeling and Variable Selection
with Decision Trees

One of the advantages of decision trees relative to “black box”
machine learning techniques is that they provide interpretable
prediction rules in terms of covariates. Hence, they can be
used to identify covariates that are most relevant for predicting
the outcome. In fact, trees can play two roles in explanatory
modeling. First, they can act as a “variable selector” by iden-
tifying which available covariates contribute to predicting the
outcome. Often, trees are constrained to have a modest num-
ber of splits, and hence if the number of available covariates is
large, some fraction of those covariates will never appear in
the tree and it can be concluded that they do not meaningfully
contribute to explaining variation in the outcome. Several

Fig. 1 Conditional inference tree that displays the association between
food intake (in kcal/day) and six covariates (hunger, disinhibition, relative
reinforcement of food (rrvf), restrained eating, liking, and wanting). The
tree represents a series of sequential splits on hunger, liking, and rrvf that
distinguish between four subgroups with different distributions of daily
caloric intake. Root and inner nodes are labeled with the splitting variable
and (multiplicity-adjusted) p value for the association between that

variable and the outcome. Branches below root and inner nodes are
labeled with the optimal splitting rule determined by the CTree
algorithm. Terminal nodes display the number of individuals belonging
to each subgroup and boxplots showing the distribution of daily caloric
intake within each subgroup. This figure is based on a similar one that
previously appeared in reference [14] (http://creativecommons.org/
licenses/by/4.0/)
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papers we found [32, 33] applied a univariate pre-screening
step to identify relevant predictors to include in the tree, but in
most situations, we would argue that this is unnecessary since
trees already perform the variable selection function described
above.

Second, decision trees also play an important role in
explaining how covariates influence the outcome. In standard
generalized linear regression models, covariates are assumed
to be linearly related to some function of the mean. However,
relationships may be non-linear so that the effect of a covariate
is particularly pronounced over a subset of its range. By con-
structing data-driven prediction rules based on covariate
thresholds, decision trees are better able to detect and charac-
terize such non-linearities. This ability is particularly useful
for ordered scales, which are common in clinical contexts and
are challenging to handle as either continuous or categorical
variables in a regression framework. Though not explicitly
designed for effect estimation, a fitted decision tree can be
used to estimate the effects of (dichotomized) covariates. For
instance, in Fig. 1, the effect of having hunger ≤ 10 vs. > 10
could be estimated by calculating the mean caloric intake
twice for every individual: once setting hunger ≤ 10 and once
setting hunger > 10, leaving other covariate values fixed. The
difference between the two mean caloric intake values is the
effect of hunger. Recent papers that have used regression trees
for explanatory modeling include Esteban et al. [34], who
used CART to identify covariates associated with short-term
mortality after an exacerbation of chronic obstructive pulmo-
nary disease (eCOPD). They found that the highest mortality
rate was in those with the highest baseline dyspnea level
(among 5 levels), and a Glasgow score < 15 (score range 3–
15). Kanellos-Becker et al. [35] explored the factors associat-
ed with prognosis of midgut volvulus in young children and
concluded from a CART analysis that the most important pre-
dictors were blood gas analysis base excess (BGABE) < − 1.7
and birth prior to 36 weeks. These factors were then used to
derive a prognostic score which had a PPVof 84.2% and an
NPVof 100%.

Prediction with Decision Trees

Since trees are a flexible modeling tool, they have been widely
applied by researchers seeking to predict outcomes of interest
[36•, 37•, 38, 39]. The task of prediction differs from explan-
atory modeling and variable selection in that, for prediction,
the goal is to minimize prediction error, and understanding
how covariates contribute to predicting outcomes is less im-
portant. How to measure prediction accuracy depends on the
outcome type, the available data, and the clinical context.
Common metrics include mean-squared error (MSE) for con-
tinuous data and area under the ROC curve (AUC) for binary
outcome data [40–42]. The most accurate assessment of pre-
dictive performance comes when the data is split into separate

“training” and “test” sets, with the former used to build the
model and the latter used only to assess its performance on
independent data [12]. When limited sample size precludes
splitting into separate sets, cross-validation is recommended
for calculating prediction error. There are several types of
cross validation methods including leave-one out cross vali-
dation, the holdout method, and k-fold cross validation, and
software packages in R (e.g., caret [43]) contain built-in cross
validation routines that simplify the evaluation of predictive
performance.

One drawback of decision trees in the context of prediction
is that they can be highly sensitive to small changes in the
data. This is because the initial splits of the tree have a major
influence on its final structure, and decisions on how and
when to split are made on what may be very small differences
between the fitting metrics of interest. For example, if splitting
a sample on sex reduces the within-subgroup mean squared
error (MSE) by 4.7% and splitting it according to whether age
is <25 or ≥25 reduces theMSE by 4.6%, then the tree will split
on sex. However, it is easy to imagine that a small change in
the data might cause the age split to reduce the MSE by 4.8%,
in which case age would be chosen to split on instead. This
sensitivity is undesirable for prediction, since it means that
prediction models based on a tree fitted from one dataset
may generalize poorly to new data. To overcome this “sample
sensitivity” problem, it is more common to use random forests
[44, 45] to derive prediction models. As its name suggests, a
random forest is a collection of decision trees, with each tree in
the collection fitted from a bootstrap sample of the original
data. Final predictions are obtained by averaging the predic-
tions from the trees in the random forest.While random forests
often yield more accurate and generalizable prediction
models, they lose the interpretability of individual decision
trees. Some metrics have been developed that measure “vari-
able importance” within random forests [46–48], but only
provide high-level summaries of which variables have the
biggest impact; they do not provide insight about specific
decision rules and thresholds.

While decision trees are correctly characterized as being
less sensitive to underlying assumptions about the relationship
between covariates and outcomes than standard regression
models, they can predict quite poorly if the outcome scales
continuously with covariate values (e.g., the mean of the out-
come is a linear function of a continuous covariate). In that
case, any covariate cutpoint will produce groups with different
means, cutpoints will be essentially arbitrary, and given suffi-
cient data, the tree will split many times. As we have previ-
ously shown [14], when the true relationship between covar-
iates and outcomes is linear, decision trees will have much
larger prediction error than the standard regression model.
Therefore, when contemplating the use of decision trees or
random forests to build a predictive model, we strongly rec-
ommend comparing their performance to that of an
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appropriate generalized linear model to assess whether they
offer a meaningful improvement in prediction accuracy.

Subgroup Identification with Decision Trees

Since decision trees are constructed by sequentially splitting the
original sample based on covariate values, they classify individ-
uals into distinct population subgroups that are relatively homo-
geneous with respect to a given outcome. Splits are defined by a
set of covariate dichotomizations, so it is straightforward to
understand how subgroup membership is determined in a deci-
sion tree; this stands in contrast with many classification tech-
niques where the rules used to create subgroups are based on
complex rules involving combinations and transformations of
covariates and therefore lack a simple scientific interpretation.
Decision trees have been used to identify prognostic groups
[49], stratify patients in clinical trials [24, 50•, 51], and retro-
spectively explore treatment/exposure effect heterogeneity [52].

The usual visualization of decision trees (see Fig. 1) in-
cludes much of the information needed to characterize popu-
lation subgroups, but it does not necessarily help researchers
comprehend this information. This drawback is pronounced
for predictor variables that lack an easily interpretable scale, or
when their population distribution is unknown. To address this
limitation, as part of our own work, we developed an alterna-
tive visualization of the composition of subgroups defined by
decision trees [14]. R code for our novel visualization and
relevant examples are available at https://github.com/
AshwiniKV/visTree. The visualization is presented as a grid

of plots, one corresponding to each terminal node (i.e.,
population subgroup), and summarizes, at a glance, the
characteristics of the subgroups identified by the decision
tree in Fig. 1. In Fig. 2, a plot is displayed for the terminal
nodes (population subgroups) identified by the decision tree in
Fig. 1. A histogram shaded in gray is placed in the background
of each plot which summarizes the distribution of the outcome
variable (here, 24-h energy intake) for individuals that belong
to the relevant terminal node/subgroup. The top left plot in
Fig. 2 displays a right-skewed distribution of 24-h energy
intake and the average 24-h energy intake within each indi-
vidual bin of the histogram are labeled as numbers above the
x-axis. Themean and subgroup size for each terminal node are
displayed as the plot title and a vertical line shows the overall
mean of outcome values contained in the subgroup. Colored
bars are overlaid on the background to define the composition
of the subgroup; individual bars are placed on the percentile
scale to describe the set of predictor values.

The subgroup corresponding to the top left plot of Fig. 2 is
defined by liking values below -13.38, which represents the
39th population percentile, and hunger values that are below
10, which represents the 91st percentile. The bottom right plot,
by contrast, has left-skewed values of 24-h energy intake and
is defined by hunger above 10, where this cut-off point would
create the 92nd percentile.

In Fig. 2, the four subgroups are defined by differences in
liking, hunger, and relative reinforcing value of food. The first
subgroup (n = 86) has a below average energy intake
(1698 kcal) and is characterized by moderate to low liking
and all but very high hunger. The second and third subgroups

Fig. 2 Visualization that summarizes the characteristics of subgroups identified by the decision tree displayed in Fig. 1
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are both characterized by moderate to high liking and all but
very high hunger and are differentiated by relative reinforcing
value of food; very low rrvf for the second subgroup and all
but very low rrvf for the third subgroup. The second subgroup
(n = 22) has moderate to low energy intake (1800 kcal) and the
third subgroup (n = 104) has moderate to high energy intake
(2189 kcal). The fourth subgroup (n = 14) has very high ener-
gy intake (2959 kcal) and is characterized by very high
hunger.

Conclusion

This article only scratches the surface of an extensive
literature on decision trees. The basic concept of sequen-
tial dichotomization has been extended in many direc-
tions: decision tree variants have been developed to han-
dle virtually all outcome types common to epidemiologi-
cal studies, including continuous [53], ordinal [54], binary
[55•, 56], and time-to-event [57–60] outcomes. Decision
trees have been adapted to allow for traditional covariate
adjustment and to handle missing covariate data [61, 62•].
They have also been made more flexible by allowing
multiway splits (e.g., [63, 64]). As noted above, random
forests created by combining predictions from multiple
decision trees have yielded very successful and accurate
predictors in a wide variety of contexts. Decision trees are
also commonly incorporated into other “ensemble”
methods which aggregate predictions from a variety of
machine learning techniques [65, 66].

Though this article identifies three distinct uses for decision
trees, most epidemiologists will choose to apply decision trees
because they seek to strike a balance between model complex-
ity and interpretability, and hence will have more than one of
these uses in mind. For example, decision trees are an appeal-
ing choice when a researcher seeks to build an accurate pre-
diction model that is based on prediction rules that can be
implemented in clinical practice. They are also particularly
useful for identifying a small number of covariates that can
be used to stratify the population into homogeneous
subgroups.

With software for fitting decision trees now available in
most standard statistical packages, and ongoing work produc-
ing visualizations which make the interpretation of decision
tree outputs more intuitive, decision trees are starting to be
used widely in the scientific literature.We therefore encourage
epidemiological researchers to branch out and give decision
trees a try.
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