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Abstract
Purpose of Review We review recent examples of data analysis with the g-formula, a powerful tool for analyzing longitudinal data
and survival analysis. Specifically, we focus on the common choices of time scale and review inferential issues that may arise.
Recent Findings Researchers are increasingly engaged with questions that require time scales subject to left truncation and right
censoring. The assumptions necessary for allowing right censoring are well defined in the literature, whereas similar assumptions
for left truncation are not well defined. Policy and biologic considerations sometimes dictate that observational data must be
analyzed on time scales that are subject to left truncation, such as age.
Summary Further consideration of left truncation is needed, especially when biologic or policy considerations dictate that age is
the relevant time scale of interest. Methodologic development is needed to reduce potential for bias when left truncation may
occur.
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Introduction

The introduction of the potential outcome framework has pro-
vided a formal set of conditions by which epidemiologists can
infer causal relationships from observational data. Using this
framework, a number of methods have arisen to estimate caus-
al effects of exposures or treatments in observational data.
These methods are often used in longitudinal settings in which
exposures, covariates, and outcomes may vary over time. One
approach that is fundamental to causal inference is the g-
computation algorithm formula (g-formula), which was intro-
duced by Robins, demonstrating that causal inference in com-
plex longitudinal data was possible [1] and which was later
formally generalized to estimate effects of arbitrary (e.g., dy-
namic) treatment regimens [2], competing risks [3], and for-
mal generalization of non-experimental study findings [4].

One of the innovative heuristics that has emerged from this
literature has been the re-casting of causal effect estimation in
terms of interventions [5]. For epidemiologists, the g-formula
has proven to be an essential, if perhaps underutilized tool for
estimating human health impacts of exposures and interven-
tions on exposures.

One frequent use for the g-formula is estimating impacts of
exposure on the timing of some health event, often referred to
as survival analysis. Aside from analytic methods, survival
analysis requires three basic tools: a clear definition of failure,
a time origin, and a scale for measuring time (time scale) [6].
Such characteristics are often clearly defined in randomized
experiments in terms of “natural” time scales like time-on-
study, but they may not be in analysis of observational studies
with the g-formula where time scale may vary according to
substantive interests or for reasons related to policies or inter-
ventions of interest; further, multiple time scales may be used
as a way to emulate the results of alternative experimental
designs [7]. The numerical results and interpretation of a given
analysis depend crucially on time scale [8].

In the current manuscript, we explore the choice of time
scale in causal effect estimation. Specifically, we discuss is-
sues of time scale for causal effect estimation using the g-
formula, illustrating with examples from the literature when
possible to demonstrate tradeoffs between etiologic or policy

This article is part of the Topical Collection on Epidemiologic Methods

* Alexander P. Keil
akeil@unc.edu

1 Department of Epidemiology, University of North Carolina, 2102E
McGavran-Greenberg Hall, Campus Box 7435, Chapel
Hill, NC 27599-7435, USA

Current Epidemiology Reports (2018) 5:205–213
https://doi.org/10.1007/s40471-018-0153-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s40471-018-0153-0&domain=pdf
mailto:akeil@unc.edu


considerations and the potential for bias. We discuss issues of
interpretation that arise when standard complications of sur-
vival analysis arise, namely left truncation (late entry) and
right censoring (loss to follow-up or end of follow-up). We
point out when such issues have arisen in our own and others’
work in hopes of spurring stronger consideration of the choice
of time scale in causal effect estimation as well as the refine-
ment of methodologic approaches to late entry.

Throughout, we provide examples from a survey of the
literature with applications of the g-formula, we performed
a MEDLINE search on 9 Oct. 2017 using the search terms
given in the Appendix. This search yielded 94 results,
which we narrowed to 56 articles after excluding manu-
scripts that did not include analysis of real data with the
g-formula. One of us (AK) classified the articles meeting
inclusion criteria according to the time scale of analysis.
We focus mainly on the 43 analyses of cohort studies
([9–51], shown in Fig. 1), but we also include selected
examples of studies published after the MEDLINE search
was conducted. We identified four major types of time
scales, given as “study” (time on study), “age,” “landmark”
(time since some eligibility defining event such as pregnan-
cy), and “treatment” (time since treatment/exposure).

Potential Outcomes and the g-Formula

The g-formula is a powerful tool for causal effect estima-
tion developed by Robins as a way to translate Rubin’s
potential outcomes framework [52] to the longitudinal set-
ting. Rubin defined potential outcomes with respect to

point exposures, or exposures that occur at a specific point
in time or represent a summary of exposures measured at a
specific point in time. In the point exposure setting, a po-
tential outcome, denoted by yx, is the value of some out-
come (y) we would have observed had exposure been set to
the value x. For every individual who, in fact, experienced
exposure at the level X = x, their potential outcome is ob-
served (i.e., everyone has only one observed potential out-
come for a given Y, but all other potential outcomes are
unobserved, or counterfactual. While causal inference does
not require the existence of counterfactuals [53], they are a
useful (possible) fiction that greatly facilitates statistical
analysis of causal questions [54–56].

In longitudinal settings with time-varying exposures (and
confounders), exposure or treatment can be expressed in terms
of regimens. An exposure regimen can be expressed in terms of
a vector xk ¼ x1;…; xkð Þ, where the subscript refers to a time
index. For example, on the time scale “age,” the number of
television hours watched at age 10 could be denoted by x10,
while the lifetime history of watching television by age 10
could be expressed by x10. We denote potential outcomes as

yxkk , which refers to the set of outcomes we would have ob-
served up to time k, had exposure followed the regimen
xk ¼ x1;…; xkð Þ. Survival potential outcomes, such as time

to death, are denoted by txk. For purposes of data analysis with
the g-formula, survival outcomes are often discretized such that
yk is a vector of binary indicator variables which are 0 except
when k is equal to a rounded version of t. This approximation is
improved by making the time interval from k to k + 1 be small
relative to t [44]. We denote survival by time k as yk ¼ 0.

Assuming no competing risks, the survival function of a
potential time to event outcome can be expressed by

Sxk kð Þ ¼ Pr Yk

xk ¼ 0

0
@

1
A ¼ ∏

k

m¼1
Pr Yxm

m ¼ 0jYxm−1
m−1 ¼ 0

 !
ð1Þ

whereΠ is the product integral and Pr Yx0
0 ¼ 0

� �
is defined to

be 1. The cumulative distribution function, given as

Fxk kð Þ ¼ 1−Sxk kð Þ, is often used for data analysis. In a closed
cohort, the cumulative distribution function corresponds to the
epidemiologic measure of risk. Implicitly, there is a fixed tar-

get population of interest such that the Yk
xk refer to potential

outcomes in the target population.
The g-formula is often used to estimate risk (sometimes

called cumulative risk), demonstrated by the numerous exam-
ples, which is useful for inference in public health settings
[57•]. The basic unit of risk is given on the right side of (1),

Pr Yxm
m ¼ 0jYxm−1

m−1 ¼ 0
� �

, which is the discrete time hazard at

timem under the regimen xk . Given data from a closed cohort,
the discrete time hazard for potential outcomes under the re-
gime xm can be estimated under the causal identification and
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Fig. 1 Cumulative publications of the g-formula identified in aMEDLINE
search by time scale of interest. Included studies represent analyses of
cohort data (not shown for clarity: reference [9], published in 2001)
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modeling assumptions of the (parametric) g-formula using
probability rules and two regression models:

Pr Ym ¼ 0 j Xm ¼ xm;Wm ¼ wm; Ym−1 ¼ 0;β
� �

ð2Þ

Pr Wm ¼ wm j Xm−1 ¼ xm−1;Wm−1 ¼ wm−1; Ym−1 ¼ 0;α
� �

ð3Þ
where Wm is the set of confounders (assumed to be discrete
for convenience) for the effect of Xm on Ym and β and α are
vectors of parameters. Unlike standard approaches to base-
line confounding, a model for Wm is necessary in the g-
formula. Modeling Wm is typically required to estimate Pr
Yxm
m ¼ 0jYxm−1

m−1 ¼ 0
� �

because interventions to set Xm to xm
may impact the distribution of subsequent confounders.
Some of the effect of Xm on subsequent outcomes may be
through future values of W, and modeling this relationship
allows that time-varying confounders may be affected by
interventions on exposure. Some analyses target the dis-
crete time hazard ratio, in which case analysis may stop
at this point [44, 58].

Using the parametric g-formula to estimate risk involves
combining the probability rules of (1) and the parametric
models in (2) and (3) to estimate risk under the scenario in
which we could set exposure to the regime xm. Notably, (2)
and (3) can be estimated using standard regression software.
The specific model forms used depend on context, but often
include familiar model forms such as pooled logistic regres-
sion (e.g., [46]), pooled linear regression (e.g., [59, 30]),
multi-state models (e.g., [14, 60]), multinomial regression
(e.g., [61••]), Cox proportional hazards regression (e.g., [1,
50]), and Bayesian regression (e.g., [62••, 63]). In the case
of a point exposure, the g-formula can be simplified to a single
model [64]. The point exposure case has become a relatively
common example of the g-formula (e.g., [10, 18, 28, 30–32,
34•, 39, 43••, 65–73]); likely because it is a straightforward
extension to common modeling frameworks. We focus on the
more general case of using the g-formula for survival analysis
with time-varying exposure and confounders. However, we
cite other examples in which non-survival outcomes (e.g.,
body mass [26]) are analyzed with the g-formula, but for
which issues of time scale are still relevant.

Time and Time Scales in the g-Formula

Time is explicitly considered in the g-formula as the index for
time-specific exposures, confounders, and outcomes. The

consequence of this is that the value of Y
xk
k will depend on

what the time scale to which k refers. The index k could

represent age, calendar period, time on treatment, time on
study, time since a landmark event, or any other number of
time scales. The origin of any time scale occurs at k = 0.

Loss to Follow-up, Censoring, Left Truncation,
and Late Entry

In a cohort study, an individual is considered at risk if she or he
could (a) experience the outcome of interest and (b) have that
outcome recorded in the data. An individual is no longer at
risk if he or she experiences the outcome of interest or a com-
peting risk, or if he or she is lost to follow-up. Data are subject
to “right censoring” if outcomes might occur among observed
individuals but not be recorded. Individuals who are lost to
follow-up are often considered censored in that that they are
assumed to experience the event of interest after the last time
they are observed.

Similarly, individuals can experience outcomes before
follow-up starts. Data where some individuals enter the at-
risk set after the origin are subject to “left truncation.” For
non-repeatable survival outcomes, right censoring and left
truncation result in outcomes that we do not observe because
the individuals experiencing the events are not under observa-
tion. Truncation and censoring are distinct, however. Taking
mortality outcomes as an example, if an individual has a right-
censored death, then he or she may be observed in the study.
However, left truncation results in some deaths that occur
before an individual could come under observation; then, he
or she is prevented from ever being under observation for the
study. We take it as a given that the individuals experiencing
those events are of interest for estimating causal effects. Thus,
when estimating risk, right censoring and left truncation result
in under-counting the number of events, while left truncation
also results in under-counting the size of the population.
Jointly, we refer to left truncation and right censoring as
“non-observation.” While other types of censoring and trun-
cation may occur, we restrict the remainder of the manuscript
to these two processes in order to simplify the exposition.

Non-informative Non-observation and Causal
Parameters

Causal inference with the g-formula is possible under a set of
sufficient identifying assumptions, namely exchangeability. A
simplified version of the exchangeability assumption given by
[2] is that

Yk

xk
∐ X k ;Ckð ÞjWk ¼ wk ;X k−1 ¼ xk−1;Ck−1 ¼ Yk−1 ¼ 0 ð4Þ

where ∐ implies independence between the left and the right
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sides and Ck is censoring at time k. Notably, no provision for
late entry is given in this oft-used definition of exchangeability.
However, in his original paper on the g-formula [1], Robins
anticipated the problem of late entry, noting that “the only safe
option is to match on exposure and [confounder] history until
time of entry” (p. 1436). A rigorous derivation of the stronger
assumption of exchangeability necessary under late entry is
beyond the scope of this paper. Roughly, however, for causal
inference to be possible in survival analysis subject to left trun-
cation, exchangeability must hold conditional on the measured
past values of exposure and confounders, among those who
have entered into the study by time k and remain uncensored
at time k. This strengthened exchangeability assumption im-
plies that underlying health status should not depend on entry
time, conditional on past values of exposure and confounders.
While we do not discuss them here, estimating effects of inter-
ventions using the g-formula also requires the causal identifi-
cation conditions of positivity and consistency and the statisti-
cal assumption of correct model specification [1].

From Hazards to Risks with Right Censoring

Provided that exchangeability (4) holds, the conditional, dis-
crete time hazard given in (2) can be consistently estimated
given a correct statistical model. However, the survival or cu-
mulative distribution functions may be of greater interest than
hazard functions, and we may be more interested in marginal,
or population average parameters. Taubman’s influential paper
on estimating effects of interventions on risk factors for coro-
nary heart disease (e.g., smoking, body mass, and exercise) is a
widely cited example that demonstrated how to estimate pop-
ulation average risk using the g-formula [3]. Notably, Taubman
et al. used data from the Nurses’ Health Study, a cohort study
which began follow-up in 1976. The authors used a subset of
the person-time from 1982 onwards, but included covariate
data from 1980. This method of cohort selection resulted in a
cohort that was closed on the left, thus avoiding issues of late
entry but allowing for right censoring due to loss to follow-up.
Taubman et al. used a version of formula (1), modified to ac-
count for competing risks, to estimate the 30-year risk of coro-
nary heart disease in the population under a set of hypothetical
interventions that started in 1982.

Taubman’s approach to estimating (population average)
risk leveraged the absence of late entry. This approach relies
on the mathematical result that the population average risk is
equal to the average of the individual risks, given by

Fxk kð Þ ¼ n−1∑n
i F

xk
i kð Þ, where i refers to an individual. In

the Monte Carlo algorithm often used to estimate parameters
of the g-formula, this corresponds to predicting the individual

risk at each time k under the intervention “Set X k ¼ xk ” for all
cohort members and then averaging those risks across the

population. Naively, this could be problematic in the case of
right censoring because censoring results in some participants
not being present in the data for some time points (which
would result in selection bias from informative censoring
due to averaging over potentially increasingly healthy subsets
of the population as k grows). Taubman et al. solved this
problem by assuming exchangeability and simulating each
participants’ outcomes beyond the times when they were, in
fact, censored (though Taubman et al. also performed a sensi-
tivity analysis in which censoring was not prevented by
modeling censoring as a function of prior exposure and covar-
iate histories). Thus, Taubman et al.’s primary analyses encode

joint interventions of the type “Set X k ¼ xk and prevent cen-
soring from loss to follow-up.”Administrative censoring from
the end of follow-up is addressed by simply evaluating risk up
to the end of follow-up, presuming it occurs at the same time
for all participants on the time scale of interest.

Taubman’s approach for loss to follow-up can be easily
extended for other forms of censoring, at a possible cost of
interpretability. For example, Jain et al. estimate the effect of
smoking cessation on 20-year weight gain, which can only be
observed among those who survive 20 years [26]. The authors
use an implicit intervention to prevent mortality over the risk
period. While controversial [74], this approach to competing
risks has been shown by Tchetgen Tchetgen et al. to corre-
spond to a combination of principle strata effects and yield a
valid test of the sharp null hypothesis between exposure and
the outcome of interest [75].

From Hazards to Risks with Left Truncation

For right censoring, the g-formula can account for missing
outcomes by simply simulating participant data as though they
had not been censored. The situation is not as straightforward
for left truncation. Recall that, with right censoring, we are
missing outcome data on some individuals who are observed.
However, with left truncation, we are missing outcome data
on individuals from a target population who were never
observed because they experienced some event that prevented
them from entering the study to begin with (but are nonethe-
less of interest). For example, in a target population of all
workers who were employed at a Montana copper smelter,
explored in work by Robins [1] and later by Keil et al. [76],
data were available only for workers who were employed on
or after 1 January 1938.

Assuming exchangeability, the missing individuals create
no problem for estimating the conditional hazard at time k,
which is conditional on covariates and on survival to time k
and does not depend on the missing data. However, for cumu-
lative average risk, left truncation is more problematic than
right censoring because it implies we do not know the size
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of the target population to begin with. Note that this problem
results when the target population is subject to late entry, even
when exchangeability holds in the study sample.

Under the definition of exchangeability extended to ac-
count for left truncation, Taubman et al.’s algorithm cannot
be used to estimate risk in target population data subject to left
truncation. Frequently, the study population (reimagined as a
closed cohort) is the target population of interest, so the issue
may arise in any data subject to left truncation. In order to
account for these missing individuals, we would have to sim-
ulate extra members of the population, but it is not clear how
these pseudo-individuals would be assigned baseline or time-
fixed covariates, given that they were never observed.
Unfortunately, there is no apparent solution given in the
methodologic literature to this exact problem.

To more explicitly define the unique issue caused by late
entry, it is helpful to more concretely describe issues with the
more tractable problem of right censoring. Consider a possible
cause of loss to follow-up in the Nurses’Health Study such as
stroke, which could prevent participants from filling out study
surveys. Assume that stroke and coronary heart disease
(Taubman’s outcome of interest) are related through common
etiologic pathways, such that they are associated in the popu-
lation. Under Taubman et al.’s approach, if a woman were lost
to follow-up due to stroke-related non-response, her subse-
quent data would be simulated assuming exchangeability.
Thus, in Taubman et al.’s approach, the average target popu-
lation hazard in older ages would be based on a group of
women that includes all of those who survived with stroke.
Under an alternative approach, her outcome would be cen-
sored after the last completed survey, and risk would be cal-
culated using the hazards estimated among those who were
not loss to follow-up due to stroke. If stroke is, in fact, related
to underlying CHD risk, then the average hazard among older
women will have been underestimated due to selection bias
caused by censoring those women, even if the conditional
hazard ratio is unbiased; Taubman’s approach avoids
censoring-related selection bias by imputing the covariate
values after loss to follow-up, thus eliminating censoring.
The alternative approach assumes (with respect to censoring)
conditional exchangeability in the study sample, but it as-
sumes unconditional exchangeability in the target population.
This phenomenon occurs because the target population aver-
age risk is calculated from the population average hazards,
rather than conditional hazard, and the averaging occurs with
respect to the covariate distributions in the observed (and im-
puted) data. The observed plus imputed data used in Taubman
et al.’s approach represent the hypothetical study sample we
would have observed, had loss to follow-up been prevented.
Notably, this only means that covariates among observed in-
dividuals need to be imputed.

The key barrier to progress with reducing selection bias due
to late entry in the g-formula is that left truncation means that

some members of the target population may never be ob-
served, implying that entire covariate histories of new individ-
uals would need to be imputed. Unfortunately, the theory un-
derlying such an approach is underdeveloped, but addressing
potential bias from informative late entry is an area of active
research. The analogy with right censoring (and solutions in
the g-formula) illuminates this issue and highlights potential
solutions. The issues of late entry and exposure occurring
prior to baseline are not new, however, and care must be taken
when considering both when the time scale starts and when
the intervention starts.

Additional Considerations for Interventions
in Light of Late Entry

A second problem occurs with the “intervention” aspect of the
g-formula with late entry (as well as with causal effect estima-
tion, in general, when exposure occurs before study entry

[77]). For the intervention “Set X k ¼ xk ,” we implicitly as-
sume that exposure is modifiable at every time past the origin.
Consider, however, an individual who enters an occupational
cohort study at time k = 5 and, through work records, we dis-
cover that individual has been at work, but unexposed from
time k = 0 through study entry. Also consider the intervention
“If at work, be exposed to high levels of silica.” Suppose that,
if exposed to such levels, this individual would have devel-
oped silicosis at time k = 3 and left employment. Thus, under
the supposed intervention, this individual would not have
been in the study sample. Consequently, exposure may influ-
ence whether or not an individual enters the study and esti-
mating effects of “intervening” on exposure prior to study
entry is subject to selection bias. Such selection bias occurs
unless exposure prior to the start of follow-up is known not to
affect study outcomes conditional on measured covariates
[77], an assumption that is empirically testable if some cohort
members do not enter late and exchangeability holds with
respect to exposure.

One approach to this issue is to consider exposure accrued
prior to study entry to be a baseline confounder, and, as such,
cannot be intervened upon. Such issues are common in occu-
pational studies. For example, Neophytou et al. used the g-
formula to estimate the effect of interventions on respirable
elemental carbon on lung cancer mortality, but only imple-
mented the interventions among the exposure that occurred
during observed person-time, while adjusting for exposure
that occurred prior to study entry [12]. Such an approach is
akin to the “treatment decision design” in which interventions
are considered for relevant treatment decisions among preva-
lent and incident users of drugs [78•]. In other analytic ap-
proaches, bias reduction is achieved by creating study samples
in which individuals are known to be unexposed/untreated
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prior to study entry; this set of approaches has been given the
name “new user designs” in observational studies of pharma-
ceuticals [79]. For some etiologic questions, new user designs
reduce bias by eliminating “prevalent” exposure that cannot
be intervened upon. However, excluding individuals who en-
ter with prior exposure may not be desirable when dealing
with small study samples or when individuals exposed before
baseline may represent a scientifically interesting group [80].

Potential for Bias and Time Scale Relevance
in the g-Formula

Many examples of cohort data analysis with the g-formula
involve questions in which a specific time scale is natural to
the study design, reflecting interest in the study population as
the implied target population. For example, several authors
estimate effects of hypothetical interventions to reduce the
population burden of cardiovascular and related diseases
(e.g., [20, 29, 35, 36, 42•]). In each of these cases, the pro-
posed interventions are expressed in terms of actions that oc-
cur at the beginning of follow-up in a closed (on the left)
cohort. For relevance to interventions in the study sample, a
natural time scale for analysis is “time-on-study,” which was
employed by 29/43 of the cohort studies we identified. As
shown in Taubman et al.’s example, such analyses can readily
address informative loss to follow-up by measured covariates.

In other cases, landmark events such as HIV seroconversion
[50], pregnancy [30, 31], or hospitalization [32] define the start
of the time scale. In the case of seroconversion and pregnancy,
the precise start of the time scale may be unknown, and current
approaches to this problem with the g-formula involve imput-
ing the start of the time scale (e.g., [50]). However, in the case
of early loss and pregnancy, in particular, such studies have the
potential for late entry and possible misidentification of the
target population if the time scale might start and stop before
measurement of the landmark event [81].

Often, subject matter considerations make it desirable to
estimate quantities on time scales that are almost certain to
be subjected to late entry in many study designs.
Occupational studies are one such example. In the USA, the
Occupational Safety and Health Administration (OSHA) sets
personal exposure limits for many workplace hazards, such as
asbestos [46, 82], radon [23], diesel exhaust [12], arsenic [1,
11], and silica [83]. Exposure limits are based on reducing
worker risk below a risk difference of 1/1000 comparing no
exposure with exposure at the occupational limit for 45 years
(e.g., [84]) where risk is evaluated from ages 20 to 85. Thus,
for relevance to policy interventions in the USA, the natural
time scale for analysis is “age,” even if it does not correspond
tomany occupational cohort studies that recruit workers based
on calendar time; many workers are older than 20 at baseline
and some do not even start work by age 20 and so would not

be captured. Age was the second most used time scale in the
identified analyses (9/43 studies). Of the six studies we iden-
tified viaMEDLINEwith possible late entry [9, 11, 12, 23, 46,
50], five of them utilized age as the time scale of analysis.

Notably, in the occupational studies we identified that
employ the g-formula, all [1, 11, 12, 23, 46, 82, 83] but
two [14, 22] used age as the time scale of analysis.
Consequently, these studies were subject to left trunca-
tion because not all workers started employment (and
follow-up) at the origin of the time scale, often age 20.
Further, workers who were hired at younger ages in each
of these studies will be subjected to administrative cen-
soring due to the end of follow-up without reaching the
maximum age on the time scale, meaning that not all
workers have the same administrative end to the time
scale. Typically, such variation in administrative censor-
ing is addressed by considering such censoring to be
equivalent to loss to follow-up and requiring that ex-
changeability must also hold for administrative censor-
ing. Each of these analyses accounted for loss to
follow-up using variations of Taubman’s approach. All
but one of the identified occupational studies with late
entry used the implicit assumption that marginal ex-
changeability held for late entry. The notable exception
was the original paper that described the g-formula,
which included a data analytic example of estimating
lung cancer mortality risk among a cohort of copper
smelters exposed to arsenic [1]. In this paper, Robins
estimated risk in “the subset of the observed study pop-
ulation hired at age 32 in 1935 remaining on work at
high exposure until start of follow-up in 1938” (p.
1503). Thus, in Robins’ approach, late entry and varia-
tion in administrative censoring times (and the need for
additional exchangeability assumptions) were eliminated
by considering the target population to be a subset of the
study population in which late entry did not occur and
who would all reach the end of follow-up on the time
scale of interest. This approach trades external validity
for internal validity. That is, by conditioning (restricting)
on age and date of hire, we lose the ability to easily
generalize results to the general smelter worker popula-
tion. However, through this conditioning, we need only
assume that workers in the target population are margin-
ally exchangeable with other workers who could have
been in the study (but died or quit work) who were of
a similar age, hired at a similar time, and had similar
pre-study exposures. Another way to state this idea is
that we expect marginal exchangeability to hold within
this group of workers who are similar in age, date of
hire, and exposure at baseline. An alternative approach
might consider completely synthetic worker populations,
such as those used by the OSHA to estimate lifetime risk
for regulatory purposes.
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Conclusions

The choice of time scale in analyses with the g-formula re-
quires careful thought that weighs substantive concerns with
the plausibility of the assumptions needed to identify effects
on each time scale. Loss to follow-up may not result in bias,
provided that exchangeability assumptions are met. However,
problems with late entry and variation in administrative cen-
soring times require additional consideration. For the g-for-
mula, in contrast with other survival analysis methods [85,
86], left truncation and right censoring are not automatically
addressed by the same method when risk is the estimand of
interest and the study population is the target population. We
hope this manuscript encourages further consideration of the
assumptions necessary to make inference with the g-formula
when using a time scale subject to late entry. Further, we hope
to spur methodologic innovations to address informative late
entry while still allowing inference on biologically or policy
relevant time scales.
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Appendix: MEDLINE search terms

(“g-computation” [All Fields] OR “g computation” [All
Fields] OR “g-formula” [All Fields] OR “g formula” [All
Fields]) AND (“epidemiology” [Subheading] OR “epidemiol-
ogy” [All Fields] OR “epidemiology” [MeSH Terms]) AND
(“English” [Language]).
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