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Abstract
Purpose of Review The setting of competing risks in which there is an event that precludes the event of interest from occurring is
prevalent in epidemiological research. Unless studying all-cause mortality, any study following up individuals is subject to
having a competing risk should individuals die during time period that the study covers. While there are prior papers discussing
the need for competing risk methods in epidemiologic research, we are not aware of any review that discusses issues of missing
data in a competing risk setting.
Recent Findings We provide an overview of causal inference in competing risks as potential outcomes are missing, provide some
strategies in dealing with missing (or misclassified) event type, and missing covariate data in competing risks. The strategies
presented are specifically focused on those that may easily be implemented in standard statistical packages. There is ongoing
work in terms of causal analyses, dealing with missing event type information, and missing covariate values specific to com-
peting risk analyses.
Summary Competing events are common in epidemiologic research. While there has been a focus on why one should conduct a
proper competing risk analysis, a perhaps unrecognized issue is in terms of missingness. Strategies exist to minimize the impact
of missingness in analyses of competing risks.
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Introduction

Epidemiologic research questions are often interested in esti-
mating the time to some event. During the course of follow-
up, should another event occur before the outcome of interest
that precludes the outcome of interest from happening, the
other event is termed a competing event. There has been in-
creasing acknowledgement of the importance of conducting
an appropriate analysis in the presence of competing risks in
epidemiologic and medical research [1]. As shown in Fig. 1,
there has been a rapid increase in the number of publications

mentioning competing risks with an approximate increase of
34% per year. However, it has been suggested that almost half
of time-to-event studies inwhich the outcomemay be preclud-
ed by a competing event overstated the risk of the event of
interest by (inappropriately) censoring person-time after the
occurrence of a competing event [2–5].

Missing data are also ubiquitous in epidemiologic research.
In a causal inference setting, at least one potential outcome
(i.e., outcome under a particular value of exposure) is always
missing by definition [6, 7], and frequently, covariate infor-
mation is missing. In situations where there are competing
risks, the event time may be missing (i.e., censoring), but also
the event type that occurred.

First, we briefly outline competing risks. Second, we re-
view causal inference in competing risk settings. Third, we
review several approaches for dealing with missing informa-
tion on event type. Finally, we summarize methods for ac-
counting for missing covariate information in the presence
of competing risks; only recently have multiple imputation
methods for time-to-event analyses with extensions to com-
peting risk setting been described [8, 9, 10•]
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Competing Risks: a Brief Review

There are several introductions to competing risks in the epide-
miologic and statistical literature [1, 11–13, 14••]. Nevertheless,
for completeness, we review some central concepts here. For
simplicity, we limit our discussion to two competing event types
while noting that methods are easily extended to situations with
more than two event types. Let P(.) denote the probability, let T
denote the composite event time (that is, the time of the earliest of
either the event of interest, any of the competing events, or cen-
soring), and let J denote the event typewhere j= {0, 1, 2} and j=
0 represent neither event having occurred (censoring).

Two different hazard functions have been defined in the pres-
ence of competing risks. The natural extension of standard time-
to-event analyses to competing risk setting is the cause-specific

h a z a r d : h j tð Þ ¼ lim
Δt→0

P t < T ≤ t þΔt; J ¼ jjT > tð Þ
Δt

� �

[15]. Note that the probability in the numerator of the cause-
specific hazard is conditional on remaining free of all events
(and censoring) until time t. The cause-specific hazard can be
interpreted as the instantaneous rate of the jth event at time t,
given the individual has survived to time t [5, 11, 12].
However, this hazard may not translate into the risk of the jth
event, as the risk also depends on the cause-specific hazard for the
competing event(s) [5, 11, 12]. If the cause-specific hazard of the
competing event is high, the risk for the event of interest may
actually be quite low, because individuals have the competing
event before the event of interest can occur. The cause-specific

hazards act together to determine the timing of any event and the
type of event [1, 12]. Therefore, by itself, the cause-specific rel-
ative hazard of the event of interest is insufficient for inference on
the relationship between the exposure and the risk of the event
[14••]. Nevertheless, the cause-specific relative hazard is a valid
measure of association of the instantaneous rate and allows for
direct assessment of the exposure and specific outcome on this
scale.

The second hazard function that has been defined in the con-

text of competing risks is the subdistribution hazard function: λ j

tð Þ ¼ lim
Δt→0

P t < T ≤ t þΔt; J ¼ j½ j T ≥ t∪ T ≤ t∩J≠ jð Þ�
Δt

� �

[16]. In the subdistribution hazard, the probability in the numer-
ator is conditional on remaining free of just the event of interest
(and censoring). Alternatively stated, individuals who experience
a competing event prior to time t remain in the risk sets after the
competing event occurs. This may not seem intuitive, but stems
from the idea of a cure model, in that individuals who experience
the competing event have been “cured” as they cannot subse-
quently have the event of interest [14••, 16]. The appeal of this
estimand is that an increase in the subdistribution hazard corre-
sponds to an increase in the risk of the event, although the mag-
nitude of the change will not be the same. Thus, the
subdistribution hazard ratio reliably provides a qualitative de-
scription of the relationship between a variable and the risk of
the outcome [14••].

The cumulative incidence is a natural estimand in the pres-
ence of competing events and is defined as F*

j tð Þ ¼ P

T ≤ t; J ¼ jð Þ where F*
j is used to denote the probability that

the jth event occurs by time t. We denote the cumulative inci-
dence function (CIF) with a “*” to highlight that this is not a
proper distribution that will integrate to 1 as t→∞ in the
presence of a competing event. The CIF for the jth event is a
function of the cause-specific hazard for the jth event as well
as the cause-specific hazards for all other J events through the
survival function, S(t). The CIF can be written:

F*
j tð Þ ¼ ∫t0S uð Þhj uð Þdu ð1Þ

where

S tð Þ ¼ exp − ∑
J

j¼1
∫t0hj uð Þdu

 !

As stated above, the CIF is directly related to the
subdistribution hazard, and thus it can also be written:

F*
j tð Þ ¼ 1−exp −∫t0λ j uð Þdu

� �
ð2Þ

Presenting both an estimate of the cause-specific and
subdistribution hazard ratios or cause-specific hazard ratios
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Fig. 1 The number of publications in PubMed mentioning a competing
risk-related term by calendar year. The PubMed search was conducted
searching on the following terms: “competing cause” OR “competing
causes” OR “competing risk” OR “competing risks” OR “competing
outcome” OR “competing outcomes” OR “competing endpoints” OR
“subdistribution hazard” OR “cause-specific hazard”
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and corresponding CIFs provides a richer picture of the data
and helps provide greater insights [17•]. Presenting the CIFs
and absolute risk differences provides important information
for public health and etiologic inference. CIFs are less fre-
quently reported, perhaps due to a perceived difficulty gener-
ating adjusted estimates. Another estimand of use in the pres-
ence of competing risks is the restricted mean time to an event
or differences in the restrictedmean time to an event; restricted
mean time is estimable as the area under the CIFs up to time t
[18]. This may be interpreted as the expected time lost due to
the event; for instance, the time lost due to AIDS-related mor-
tality could be examined in the context of competing event of
non-AIDS-related mortality. Difference in this expected time
lost due to AIDS-related mortality could be examined by an
exposure of interest [18].

Estimating the non-parametric CIFs under competing risk
setting is fairly straightforward using the Aalen-Johansen es-

timator, F*
j tð Þ ¼ ∑

tk
Ŝ tk−1ð Þ d j tkð Þ

nj tkð Þ
� �

, where Ŝ tk−1ð Þ is the es-
timate of the overall survival function just prior to time tk, and
dj(tk) and nj(tk) are the number j events and the number of
individuals remaining in the risk set at time tk, respectively.
Inverse probability (IP) weighting may be used to standardize
the CIFs [1, 19, 20]. IP weighting can also be used to stan-
dardize estimates from a cause-specific or subdistribution pro-
portional hazards model.

Causal Inference in Competing Risk Settings: Missing
the Potential Outcomes

The potential outcomes framework has become a prominent
approach for conducting analyses that are trying to answer a
causal scientific question. The potential outcome, usually de-
noted Ya

i , is the outcome Y that would have been observed if,
possibly contrary to fact, individual iwas exposed to treatment
A = a. For a binary exposure, each individual has two potential
outcomes, one for each exposure level. However, at most, we
can only observe the potential outcome under the realized (i.e.,
factual) exposure (additionally assuming treatment variation
irrelevance [21–23]). The potential outcomes under all other
exposure levels will be missing. We will suppress subscript i
for the remainder of our discussion of potential outcomes in
competing risk settings. A review of the entire causal infer-
ence literature is beyond the scope of this paper and we refer
the readers to the following references [24–26].

Potential outcomes for competing risk settings have recent-
ly been defined [1, 27, 28, 29•]. Using the notation of Cole
et al. [1, 28], let A represent exposure, let Ta represent the time
of occurrence of any outcome (i.e., composite outcome) that
would have been observed under exposure level A = a, and let
Ja represent the event-type indicator under exposure level A =
a where j = 1, 2 for the case of two competing events. (While

we limit our discussion to two competing events, this is easily
expanded to a setting with more competing outcomes.) The
potential outcomes in a competing risk setting are then bivar-
iate: (Ta, Ja) [1, 27].

The primary challenge of causal inference is that by defi-
nition, at least one potential outcome (i.e., outcome under a
particular value of exposure) is always missing [6, 7].
Therefore, one can view bias in answering a causal scientific
question as arising from improper imputation of the unob-
served potential outcome [30]. These improper imputations
are a result of lack of exchangeability [7] between those with
and without the exposure, regardless of whether lack of ex-
changeability is due to confounding or selection bias.

Until recently, there has been little-to-no research on con-
founder control in competing risk settings. Informally, con-
founders are variables that could account for a lack of ex-
changeability between exposure groups. Epidemiologists
have recently acknowledged advantages to identifying poten-
tial confounders using a directed acyclic graph [31]. However,
to our knowledge, there are no established rules for drawing a
causal diagram for the competing risk setting; when depicting
research questions that involve competing risks, some inves-
tigators have (ad hoc) drawn a single directed acyclic graph
with separate nodes for each outcome type [32, 33]. This
depiction of causal mechanisms would lead most epidemiol-
ogists to identify only covariates on an open backdoor path
between the exposure and outcome of interest as potential
confounders. However, we have shown that estimates of the
causal effect of the exposure on the event of interest will be
biased if the adjustment set does not include covariates that are
confounders of the exposure-competing event causal path (on
a directed acyclic graph with separate nodes) [29•]. Some
intuition for this finding is available in Eq. 1: the cumulative
incidence is a function of all-cause-specific hazards. Failing to
adjust for a covariate that changes the cause-specific hazard of
the competing event and that is differentially distributed
across exposure groups will result in residual confounding in
the estimated cumulative incidence through confounding of
the relationship between exposure and cause-specific hazard
of the competing event. Given that the causal estimands using
the CIF are biasedwhen potential confounders of the exposure
and competing event are not included, it reasons that
estimands directly linked to the CIF, such as the
subdistribution hazard ratio, would be biased. This is borne
out in simulations [29•].

These advancements in (1) defining potential outcomes
and (2) identifying bias when variables related to exposure
and the cause-specific hazard of the competing event are not
included in the adjustment set have furthered our understand-
ing of causal questions in the competing risk setting.
Identification of a set of rules for drawing directed acyclic
graphs would help in assessing which variables are needed
for d-separation to isolate the causal effect in question.

Curr Epidemiol Rep (2018) 5:153–159 155



Missing Data on Event Type

A complication of the competing risk setting is that informa-
tion onwhich event type occurred at the time of failure is often
uncertain. For instance, in examining time to specific causes
of death (e.g., HIV-related and non-HIV-related), the date of
death may be known but cause of death on death certificates
may be misclassified or missing. We present several analytic
approaches that are valid if missingness (or misclassification)
can be assumed to be missing at random (i.e., the probability
of the missing event type only depends on the observed data
[34]).

One approach when event type is misclassified would be to
analyze the data using a Poisson-based model to obtain inci-
dence rates for each event. Edwards et al. estimated the effect
of occupational asbestos exposure on lung cancer death
correcting for misclassification of event type using a Poisson
model for two event types [35]. The likelihood function was
modified to allow for inclusion of the sensitivity and specific-
ity of the observed, but potentially misclassified, event type.
To transform incidence rates into a CIF, the following formula
may be used [36]:

F*
j tð Þ ¼

α j

α1 þ α2
1−exp − α1 þ α2ð Þtð Þ½ �

where αjis the incidence rate for the j = 1, 2 event type. Note
that the Poisson model and incidence rates for estimating the
CIF assume constant rates over time although this assumption
may be relaxed (for instance, by allowing for piecewise
Poisson model).

Goetghebeur and Ryan showed that missing event type
could be accounted for by modifying the partial likelihood
of a Cox proportional hazards model by (1) modeling the
event types jointly, (2) including a parameter for the ratio of

the baseline hazards between event types (i.e., h20 tð Þ
h10 tð Þ ¼ ξ tð Þ ),

and (3) including an additional term for those who have an
event but unknown event type [37]. This partial likelihood
links the underlying baseline hazards together in order to al-
low individuals who have an unknown event type to contrib-
ute to the analysis with proper contribution to event types
based upon ξ(t). If ξ(t) is not known, then it can be estimated.
Recently, this work was extended to allow for not only miss-
ing event type, but misclassification of the event type [38].
Finally, this approach has also been extended to situations in
which the missing event type may depend on auxiliary vari-
ables (i.e., variables that are related to the missing event type
and assumed to be collected on all individuals who have an
event, but that are not being included in the final outcome
model) [39]. This extension allows for a weaker missing at
random assumption to be made. This may be useful if
missingness in the event type is related to a marker of disease
progression. For instance, Nevo et al. provide an example in

examining time to subtype of colorectal cancer (microsatellite
instability or microsatellite stable) as the competing events,
cancer subtype is often missing, and tumor location as an
auxiliary variable is associated with microsatellite instability
subtype [39]. R code to run these two extensions is available
in the appendix of Van Rompaye et al. and available on re-
quest from Nevo et al. [38, 39].

Missing event type can also be multiply imputed to esti-
mate either cause-specific or subdistribution proportional haz-
ards ratios [40, 41]. To impute the missing event type, Lu and
Tsiatis proposed modeling the probability of the event of in-
terest given the event time, covariates, and auxiliary variables
(Z) using a logistic regression model, such that P

J i ¼ 1jJ i > 0;Wið Þ ¼ exp βTWið Þ
1þexp βTWið Þ, where Wi = (Ti, Xi, Zi)

and Ji = 0 indicate censored individuals. This model may in-
clude non-linear and interaction terms as appropriate. Using
this model for imputation requires (i) randomly drawing β∗

from Nðβ̂; V̂ar β̂
� �

), (ii) for the missing cases, compute the

πi = P(Ji = 1| β∗,Wi), and (iii) replace the missing Jiwith either
Ji = 1 or Ji = 2 with probability πi and 1 − πi, respectively [40,
41]. This is repeated multiple times, storing each imputed data
set. Cause-specific or subdistribution hazard ratios are esti-
mated within each imputed dataset and then combined across
all imputed data sets using standard multiple imputation rules
[42]. If there is also incomplete data in the covariates, the
imputation for missing failure type and for missing covariates
can be combined using an approach such as multiple imputa-
tion by chained equations (MICE, also known as fully condi-
tional specification, FCS) [43, 44].

Finally, an alternate analytic approach when some event
types are missing is to decompose the joint distribution of
the CIF into a mixture model [45–47, 48•]. That is, the CIF,
F*

j tð Þ ¼ P T ≤ t; J ¼ jð Þ, by rules of conditional probability

may be written as either P(J = j)P(T ≤ t| J = j) or P(T ≤
t)P(J = j| T ≤ t). In the first case, when breaking the distribution
into event times conditioned on event type, the likelihood
function to be maximized may be written to include a term
to allow individuals to contribute to the timing of both events
[45, 49]. In the second case of vertical modeling, the likeli-
hood can be factored into two parts [48•]. The first part of the
likelihood is for the timing of events using the total hazard;
this part ignores the cause of failure and all observations can
contribute. The second part of the likelihood is for the event
type given the survival time; only the failures with known
event type contribute. Thus, the likelihood may be maximized
separately using a model for overall survival (likelihood part
one) and a logistic model (part two) with known cause [48•].
These likelihood functions could potentially be modified to
allow for incorporation of sensitivity and specificity to allow
for misclassification of event type similar to those of Edwards
et al. [35, 50–52].
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Missing Covariate Values

Missing values in covariates are ubiquitous in epidemiological
research and multiple imputation has become a standard tool
to deal with this issues [42]. It is recognized that inclusion of
the outcome of interest in the imputation model is imperative
[53]. However, in time-to-event analyses, inclusion of the out-
come in the imputation model is more complicated as the data
may include censoring (i.e., left, right, and interval censoring)
and truncation (e.g., left truncation). In the setting of a single
failure type, prior work compared including different combi-
nations of an event indicator, the time of event or censoring,
and the logarithm of the time of event or censoring [54–56].
Recently, the inclusion of the event indicator and the underly-
ing baseline cumulative hazard has been promulgated as being
less biased than inclusion of event or censoring time [8]. The
authors proposed that the baseline cumulative hazard be esti-
mated by the Nelson-Aalen estimator. Further improvements
to the imputation could be achieved by inclusion of interaction
terms between covariates and baseline cumulative hazard in
the imputation model. A particular advantage of this approach
is that it is invariant to monotonic transformation of the time
axis and is approximately compatible with a proportional haz-
ards model [8, 9, 10•]. That is, when the outcome model (i.e.,
substantive model) is non-linear such as a proportional haz-
ards model, the imputation model may impute values that are
incompatible with the substantive model. A simple example
of this from Bartlett et al., if the outcome Y is a function of
covariate X and X2 yet the imputation model for missing
values of X is X ∣ Y, then this imputation model is incompat-
ible with the substantive model. This would result in a subset
of data in which X has an imputed relationship that is linear in
association [9, 57].

There has been even less research on multiple imputation
for missing covariate values in the context of time-to-event
outcomes when there are competing events. A natural exten-
sion would be to include the cumulative baseline cause-
specific hazard and binary indicator variables for each event
type. For competing risk outcomes, Bartlett et al. proposed an
approach called substantivemodel compatible fully condition-
al specification (SMC-FCS) imputation [10•]. However, this
approach requires that the imputation model for missing
values within covariate X not only be a function of the param-
eter φ for model f(X| Z, φ) but also a function of parameter β
for the outcome model f(Y| X, Z, β). Exploiting the iterative
nature of FCS algorithm [43, 44], both sets of parameters are
estimated [9, 10•].

We briefly note that it has been recommended that when an
investigator is interested in a single event (e.g., death due to
HIV-related causes), those all other competing events (e.g.,
death due to cancer and due to cardiovascular disease) are
collapsed into a single competing event and then analyzed as
a two-event situation [17•]. While practical for the case of no

missing covariate data, this may result in inefficiency in im-
puting covariate(s) values when the relationship between the
covariate and each of the “sub”-competing events may be
different [10•]. Nevertheless, a R package called “smcfcs” is
available for the imputation of data under a competing risks
setting [58]. Whether or not this approach can be extended to
the subdistribution proportional hazards model is still an open
question [10•].

Conclusion

Competing events are common in epidemiological research
and awareness of the appropriate methods to account for their
influence is increasing. Furthermore, missing data is also
ubiquitous in epidemiologic research. While several other pa-
pers have focused on the interpretation of the cause-specific
versus the subdistribution hazard ratio, there has been little
focus on missingness in competing risk data. In this review,
we sought to provide an introduction to competing risks and
an introduction on missingness in a competing risks setting.
However, the majority of the missing data has focused on the
cause-specific hazards and future research on missingness as
applied to the CIF and subdistribution hazard is needed.
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