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Abstract

Purpose of Review Evidence suggests prenatal polybrominated diphenyl ethers (PBDE) exposure effects on human
neurodevelopment, but this is controversial due to conflicting research results. We conducted a systematic review and meta-
analysis to summarize available peer-reviewed data of prenatal PBDE exposure effects on cognitive function, motor function, and
behavior problems in children.

Recent Findings Eligible birth cohort studies (January 1996-February 2017) were located through PubMed®, Web of
Science®, or Google Scholar® and reported PBDE concentration in cord blood, maternal blood, or colostrum, as well as
neurodevelopment assessment scores in children. Comprehensive meta-analysis (v.3.3.070, November 20, 2014) was
used to calculate summary effect. Covariates are child age category (<2, 3-5 and 6-7 years), location, and time period.
Summary Six studies were included in meta-analysis. We found that prenatal PBDE exposure significantly correlated
with decreased cognitive function (npe01ed = 804; k=65 r=—10.237; 95% CI —0.441, — 0.010; p = 0.041), decreased motor
function (npooled =794; k=5; r=—0.350; 95% CI —0.610, —0.022; p=0.037), and increased behavior problems (n-
pooled = 307; k=3;r=0.393; 95% C1 0.133, 0.602; p = 0.004). Child age category was a significant covariate. The largest
summary effect by child age category was <2 years for cognitive function and 6—7 years for behavior problems.
Biomarker type was also a significant covariate. PBDEs measured in colostrum had a similar neurodevelopment effect
size to cord blood, but PBDEs measured in maternal blood had a smaller effect size, relative to cord blood. The effect of
prenatal PBDE exposure on behavior may be underestimated because only maternal blood was used as the exposure
biomarker in eligible behavior assessments. Our study suggests that prenatal PBDE exposure adversely affects
neurodevelopment. This study was underpowered due to the low number of available studies meeting eligibility criteria,
although the use of pooled data analysis helped to offset the underpowered meta-analysis.
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Introduction
Background

Polybrominated diphenyl ether (PBDE) flame retardants are
persistent organic pollutants commonly found in the environ-
ment [1-4]. Predominantly used in polyurethane foam and
plastics for consumer products, PBDEs entered the commer-
cial market in the 1970s, driven by demand created by
California Technical Bulletin 117 (1975) that required certain
consumer products sold in California be able to withstand
direct contact with an open flame for 12 s without sustaining
combustion [2, 5-7]. The size of the California consumer
market made the flame-resistant standard a de facto require-
ment for rest of the USA [7].

Theoretically, there are 209 PBDE congeners with one to
ten bromine atoms attached to the diphenyl ether substrate;
however, only three congeners were commercially produced:
pentabromodiphenyl ether (pentaBDE), octabromodiphenyl
ether (octaBDE), and decabromodiphenyl ether (decaBDE)
[2, 3]. Billions of pounds of PBDEs were incorporated into
consumer goods, such as furniture, electronics, textiles, carpet
padding, plastics, vehicle seats and car seats, and placed on the
market, primarily in the USA [8, 9]. PBDEs are additive flame
retardants—they are not covalently bonded to foam or a plas-
tic polymer matrix—so they volatilize or leach into the envi-
ronment and potentially bioaccumulate [3, 10, 11].

Regulatory Response

Concern regarding persistence, bioaccumulation, and toxicity
of some PBDE congeners led to regulatory restrictions and
phaseout of most PBDEs by 2014. Regulatory remedies
restricting environmental release of PBDEs to reduce human
exposure were initiated by the European Union (EU)
Commission in 2001 over concerns of bioaccumulation after
research detected pentaBDE derivatives in human breast milk
[12, 13]. The European Union (EU) subsequently banned
pentaBDE and OctaBDE in consumer products in 2004 [14].
The US Environmental Protection Agency (US EPA) imple-
mented a voluntary production phaseout of pentaBDE and
octaBDE [8, 15, 16]. By 2008, the EU restricted all commer-
cially produced PBDEs to less than 0.1% by weight in most
electronic or electrical devices [17, 18]. In 2009, tetra-, penta-,
hexa-, hepta-, and octaBDE were added to the Stockholm
Convention on Persistent Organic Pollutants (POPs) [1, 19].
In 2012, the US EPA proposed a Significant New Use Rule
(SNUR) for six common PBDE congeners, effectively limit-
ing their continued use in US commerce [20]. This initiated a
voluntary production phaseout of decaBDE by the last two
manufacturers of the chemical in the USA by December 31,
2013 [20]. California Technical Bulletin 117 was changed to
allow furniture manufactures an option of not using flame

retardants if their products would not combust when in contact
with a smoldering ignition source, rather than an open flame
ignition source specified under the 1975 version [7].

Regulatory action has reduced PBDEs detected in the en-
vironment and in humans [21, 22¢, 23, 24]. However, PBDEs
are still detected in house dust, food, animal tissue, and
humans, particularly in adipose tissue, breast milk, and blood
lipids [5, 8, 25-27]. This is due in part to continued use of
furniture containing PBDEs and from the environmental per-
sistence and bioaccumulation of several PBDE congeners [3,
5]. In 2002, US adult PBDE sera levels were ten times the
levels found in their European or Asian counterparts, but until
recently, there were few research studies on human health
effects of PBDE exposure [8, 27, 28].

PBDE Fate and Transport, Routes of Human Exposure

PBDE:s are lipophilic and have a moderate to high octanol-
water partition coefficient, depending on amount of bromina-
tion [8]. Partitioning coefficient estimates the environmental
fate of a chemical regarding how likely the chemical will
dissolve in water or bioaccumulate in lipids of plants and
animals. The higher the octanol-water coefficient, the more
likely a chemical is to bioaccumulate. All PBDE congeners
have varying levels of environmental persistence [4, 9, 29,
30]. Gaseous PBDEs or airborne PBDE-contaminated dust
are the main forms of transport in the environment [8,
31-33]. The primary fate of PBDEs is deposition in soil and
sediment, which is a route of PBDE uptake into the food chain
[8, 31, 34, 35].

Environmental exposure studies measuring PBDE concen-
tration in various human biomarkers showed that PBDE ex-
posure increased rapidly after commercialization [2, 36-43].
Common congeners found in human tissue include tetraBDE,
hexaBDE, and decaBDE [28, 44]. Humans are exposed to
PBDEs through their environment, primarily via air, food,
and house dust and fetal exposure via maternal exposure that
crosses the placenta [8, 26, 28, 43, 45¢, 46-48].

The half-life of PBDE congeners varies by bromination
level and by the environmental compartment or tissue [30].
The relatively consistent level of decaBDE measured in hu-
man blood sera by surveillance programs in several countries,
combined with a relatively short half-life of decaBDE in hu-
man sera (11 to 18 days), suggests that humans are continu-
ously exposed to this PBDE congener [26, 30, 49, 50¢].

PBDE Exposure and Risk to Neurodevelopment

Prenatal exposure to neurotoxic agents, such as PBDEs, can
interrupt neurodevelopment processes and have lasting ad-
verse effects. Fetal neurodevelopment occurs in early gesta-
tion and is especially susceptible to environmental toxins [51].
Previous research indicates a positive association between
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prenatal PBDE exposure and adverse neurodevelopment out-
comes, but conflicting results in the research exist regarding
the significance, magnitude and direction of association [2, 5,
8, 46, 47, 52-56]. Data from animal studies suggest exposure
to certain PBDEs disrupts normal endocrine function associ-
ated with neurodevelopment, although the results are not con-
sistent [5]. Toxicokinetic studies show reduced ability of
young animals to excrete PBDEs, resulting in a higher body
burden compared to adults [5].

With few epidemiological available studies available, the
US Environmental Protection Agency (US EPA) established
PBDE exposure thresholds for neurobehavioral effects based
on animal studies [37—40]. The US EPA reference dose for
oral exposure (RfD-oral) for neurobehavioral effects is 0.1 pg/
kg/day for BDE-47 (tetraBDE) and BDE-99 (pentaBDE),
0.2 ug/kg/day for BDE-153 (hexaBDE), and 7 pg/kg/day
for BDE-209 (decaBDE) [37-40]. PBDE concentrations in
cord blood and colostrum from recent birth cohort studies
are close to and, in some cases, exceed the US EPA RfD-
oral threshold for neurobehavioral effects [52, 53, 55].

Study Objective

The aim of this research is to determine the summary effect of
prenatal PBDE exposure on neurodevelopment outcomes (cog-
nitive function, motor function, and behavior problems) in chil-
dren. To accomplish this aim, we conducted a systematic review
and meta-analysis of eligible birth cohort studies reporting a
measure of association between prenatal PBDE exposure mea-
sured in cord blood, prenatal maternal blood or colostrum, and
neurodevelopment test scores assessed in children.

Rationale

There are two motivations for conducting this research.
First, while regulatory actions have removed PBDEs in
new foam-containing furniture and electronics, there is a
large stock of existing consumer products in use that contain
PBDEs. Consumers using older furniture are likely to be of
a lower socio-economic status (SES), such as college stu-
dents and young families. Prenatal exposure to PBDEs
might be modifying the effect of SES on neurodevelopment
outcomes. Second, the rigor employed in conducting a sys-
tematic review and meta-analysis provides value in summa-
rizing the effect of an exposure on a health outcome when
controversy in existing research results exist, especially
when the exposure occurs in utero.

Methods

The systematic review a priori protocol began with develop-
ing a literature search strategy and eligibility criteria for the
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selection of birth cohort studies. Case-control and cross-
sectional studies were not eligible because temporality of pre-
natal PBDE exposure prior to or shortly after birth was a
necessary condition. Search engines used were (1)
PubMed®, (2) Google Scholar®, and (3) Web of Science®.
Study selection followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) flow chart
[57], shown in Fig. 1. Study eligibility criteria included type of
study (birth cohort), study participants (consenting pregnant
women and their infants/children), exposure (PBDEs detected
prenatally or shortly after birth), outcome (neurodevelopment
assess using a validated instrument by trained and competent
personnel), measure of association, and effect size. Any study
meeting eligibility criteria was screened for relevance without
consideration to geography.

Study Search Strategy

Study inclusion criteria were limited to studies in English
language conducted between January 1, 1996 and February
28, 2017. The search strategy was confined to peer-reviewed
scientific articles, books, government documents, conference
proceedings, technical reports, reviews, theses, and disserta-
tions; the last source was reviewed for the citation list only.
Exclusion criteria restricted patents, audio/visual sources,
blogs, microfilm, newspaper articles, and studies on popula-
tions already covered under another study. Table S-1 in the
Supplemental Material lists all search terms used. Study
search terms included the use of a Boolean multi-character
wildcard. Search terms were: “PBDE*” OR “polybrominated
diphenyl ether” OR “brominated flame*” OR “BFR” AND/
OR “neuro*” AND/OR “develop” AND/OR ““*natal” AND/
OR “infant” AND/OR “child*” AND/OR “in utero” AND/
OR “review” AND/OR “meta-analysis.”

Study Screening Strategy and Data Extraction

Titles of identified records were first screened for relevance
and duplicates were removed. Studies were then screened for
relevance using keyword searches, such as a “mouse,” “rat,
or “animal.” Citation lists of non-relevant studies were
reviewed and relevant studies from the citation list were then
screened. Abstracts were screened by reading each abstract
twice by one reviewer, yielding 17 eligible studies for full-
text review, which were also read twice by one reviewer.
The reference list of each eligible study was examined to
identify additional studies meeting eligibility criteria. No
new study was identified from this examination. Data extrac-
tion took place after full-text review for eligibility. Data from
each eligible study was entered onto a systematic review cod-
ing sheet, yielding seven studies that met eligibility criteria for
meta-analysis.
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quantitative synthesis of
meta-analysis
(n=7)

Fig. 1 PRISMA flow diagram on record selection and exclusion criteria [2]

Study Characteristics

The characteristics of participants in each study are listed in
Table 1. The first birth cohort study to measure prenatal PBDE
exposure and neurodevelopment outcomes was Roze [56],
followed by Herbstman [55]; Shy [54]; Gascon, 2011 [53];
Gascon, 2012 [52]; Eskenazi [58]; and Chen [46]. Reporting
choice of measures of association and dispersion were not
consistent across studies. Shy et al. [54] met eligibility criteria
for the systematic review but was not included in the meta-
analysis because a measure of dispersion was not reported.
Risk of bias at individual study level was assessed and esti-
mated as low, given the narrow eligibility criteria of recent
birth cohort studies published in peer-reviewed journals and
that each study sample size was greater than 50 participants.

Covariates

Common study characteristics reported across all studies were
location, type of biomarker collected as a substitute for

only measure of association. Unable to

Records excluded convert effect size for summary effect.

1
1
1
1
1
I relevant to study question;
1
1
1
1
(n=1) |

prenatal PBDE exposure, timing of biomarker collection,
and age of the infant/child when neurodevelopment was
assessed. Highest age of neurodevelopment testing in eligible
studies was 7 years old. Maternal age was reported across
studies, but as a categorical variable in some studies and a
continuous variable in others. An estimate of mean maternal
age is 27-30 years old. An infant/child age category variable
was created, with categories delineating development phases
of infant/toddler (0-2 years) preschool (3—5 years) and early
school years (6-7 years) [59]. Other covariates included re-
gion (the USA, EU, or Asia), latitude (absolute), time period
of study, and neurodevelopment category.

The neurodevelopment assessment instruments utilized in
individual studies included in this meta-analysis (k= 6) are de-
scribed in detail in Table 2. Several neurodevelopment assess-
ment instruments have overlapping primary measures. Based on
a review and categorization of each assessment instrument’s
scales and subscales, we created a neurodevelopment outcome
category with three variables, cognitive function, motor func-
tion, and behavior problems, for use in this meta-analysis. Not
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Chen et al. [46]

Eskenazi et al. [58]

Shy et al. [54] Gascon et al. [52]

Gascon et al. [53]

Herbstman et al.

[55]

Roze et al. [56]

Table 1 (continued)
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(516, SD)

Study reported as

(433, SD)

(2335-5790, (487.4, SD) (from primary study;

Infant birth

“Low birth-weight
(<2500 g)” “yes”

no range or SD
reported)

range)

weight (g)
Mean (SD or

46

48.6°

(2.4%); “no” (97.6%)
48.3

Not reported

50.7 48.9

Not reported

range)
Infant sex

Male (%)

 Primary study, Meijer, et al., (2008). Environmental Science & Technology, 42 [9]:3428-3433

® Primary study, Lederman, et al., (2004). Environmental Health Perspectives, 112 [17]: 1773-1778
¢ Primary study, Eskenazi, et al., [58]. Environmental Health Perspectives, 112 [10]: 1116-1124

9 Eskenazi, et al., [58]. Pediatrics, 118 [1]: 233-241

¢ Study did not report race/ethnicity but did report location where recruitment took place and/or maternal birthplace and/or language preference of participants. The percentage is assumed to be the

race/ethnicity of the sample population for general purposes only

all instruments in each study were included in the meta-analysis.
Only Gascon et al. [53] utilized a social competence instrument
(California Preschool Social Competence Scale, CP-SCS) so it
was not included in the meta-analysis. The Development
Coordination Disorder Questionnaire (DCD-Q), utilized by
Roze et al. [56], was included in the meta-analysis using inverse
value as the effect size direction of the DCD-Q is opposite of
other motor function assessments.

Data Analysis

Comprehensive Meta-Analysis (CMA, v. 3.3.070, November
20, 2014) was used for descriptive statistics and to calculate
summary effect and meta-regression [60]. A random effects
model was used as the comparison model for meta-analysis
since there was a high level of heterogeneity in both the ex-
posure and the outcome between studies. Due to non-normal
distributions of effect sizes across studies, Fisher’s Z transfor-
mation with 95% confidence interval (95% CI) was chosen as
the meta-analysis effect size. Fisher’s Z was calculated directly
from Pearson’s correlation coefficient or from odds ratio or
risk ratio using CMA software. Effect size was estimated from
beta coefficients using a multi-step process. First, CMA soft-
ware converted beta coefficients and 95% CI to point esti-
mates and standard errors. Next, Peterson’s imputation formu-
la was used to convert point estimates to correlation coeffi-
cient, r, and converted to the effect size used in the meta-
analysis with Fisher’s Z transformation equation [60—63].

Power analysis for a random effects meta-analysis followed
the recommended approach from Borenstein et al. and is de-
scribed in detail in the Supplemental Material [60]. Power
analysis for each neurodevelopment category, as well as esti-
mates for the number of studies needed to achieve a power of
0.80, is shown in Table 3.

The potential influence of publication bias was examined
using techniques also recommended by Borenstein et al., in-
cluding Rosenthal’s fail-safe N, Orwin’s fail-safe N, Duval
and Tweedie’s trim and fill with funnel plot, and restricting
analysis to larger studies [60]. Detailed descriptions of the
publication bias tests are in the Supplemental Material.

This systematic review protocol was registered with
PROSPERO® on January 20, 2017 as CRD42017055622
and followed the guidance provided PRISMA statement
checklist [57], provided in Table S-2 of the Supplemental
Material. IRB review determined this study did not meet the
definition of research using human subject as set forth by the
Department of Health and Human Services, 45 CFR 46.

Results

The pooled sample size of each neurodevelopment category
for the six studies included in the meta-analysis (72p001eq), and a
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Table 2 Neurodevelopment assessment instruments utilized in each eligible study
Study (year) Number Exposure matrix Motor Agetested  Cognitive function Age tested  Behavior problems Age tested
function
Roze et al. [56] 90 Maternal Movement ABC 5, 6 years WPPSI-R 5, 6 years CBCL 5, 6 years
blood Touwen’s test NEPSY-II ADHD (Scholte)
DCD-Q AVLT
TEACh
Herbstman 152 Cord blood BSID-II 1,2,3 years BSID-II 1,2, 3 years
et al. [55] WPPSI-R 4, 6 years
Gascon et al. [S3] 88 Cord blood BSID-I 12,
18 months
Shy et al. [54] 36 Cord blood BSID-III 8, 12 months BSID-III 8, 12 months
Gascon et al. [52] 290 Colostrum MSCA 4 years MCSA 4 years CADS ADHD- 4 years
PPVT DSM-1V
Eskenazi 283 Maternal MSCA 5,7 years WISC-1I 7 years CBCL 5 years
et al. [58] blood WRAVMA 5,7 years PPVT 5 years ADHD Conf. 5 years
Finger- 5,7 years WISC-1IV 7 years Index 7 years
tapping CADS-ADHD 5 years
K-CPT 7 years
BASC-2
Chen 309 Maternal BSID-II 1,2,3 years BSID-II 1,2, BASC-2 2,3,4,
etal. [46] blood WPPSI-III 3 years 5 years
5 years

DCD-Q Developmental Coordination Disorder Questionnaire, BSID-I, II, II] Bayley Scales for Bayley Scales of Infant Development (BSID) I, II or III,
respectively, MSCA McCarthy Scales of Children’s Abilities, WRAVMA Wide Range Assessment of Visual Motor Ability, WPPSI-III, -R Wechsler
Preschool and Primary Scale of Intelligence III, Revised, respectively, NEPSY-I1I Neuropsychological Assessment, Second Ed., AVLT Rey’s Auditory
Verbal Learning Test, TEACh Test of Everyday Attention for Children, PPVT Peabody Picture Vocabulary Test, WISC-IV Wechsler Intelligence Scale for
Children, Fourth Ed., CBCL Child Behavior Checklist, CADS Conners ADHD/DSM-IV Scales

number of studies in each neurodevelopment category (k) are
as follows: n = 804, k= 6 for cognitive function, n =794, k=5
for motor function, and n =307, k=3 for behavior problems.
Results indicate that prenatal PBDE exposure is significantly
correlated with decreased cognitive function (5=—0.237;
95% CI —0.441, —0.010; p =0.041), decreased motor func-
tion (f=-0.350; 95% CI —0.610, —0.022; p=0.037), and
increased behavior problems (5=0.393; 95% CI 0.133,
0.602; p=0.004). Figure 2a—c provides the forest plots for
each neurodevelopment category.

Multivariate analysis from meta-regression indicates bio-
marker type and infant/child age category are significant mod-
erator variables. Meta-regression analysis on other covariates
was not significant. Colostrum had a similar effect size to cord
blood as a biomarker estimate for prenatal PBDE exposure,
but the effect size was smaller when prenatal PBDE exposure
was estimated with maternal blood. Studies that assessed cog-
nitive function and motor function used cord blood,

colostrum, and prenatal maternal blood to estimate prenatal
PBDE exposure. Studies that measured behavior problems
only used maternal blood as the biomarker.

Meta-regression analysis results on cognitive and motor
function for biomarker type are summarized in Table 4.
Meta-regression was not conducted on behavior problems
for biomarker type since all studies in this neurodevelopment
category only used maternal blood as the prenatal PBDE ex-
posure biomarker, and hence, there were no other biomarkers
available for comparison. The summary in Table 4 indicates
that using maternal blood as an estimate of prenatal PBDE
exposure may reduce the effect size on cognitive function
and motor function.

Power calculations indicate that this meta-analysis is un-
derpowered. The power for each neurodevelopment category
is 0.304, 0.313, and 0.354 for cognitive function, motor func-
tion, and behavior problems, respectively. The summary of
power calculations in Table 3 lists the number of studies

Table 3  Power analysis for each neurodevelopment category and estimate of studies needed to achieve 0.5 and 0.8 powers in future meta-analysis
Neurodevelopment category Power actual K actual Power estimate 50% K estimate Power estimate 80% K estimate
Cognitive function 0.304 6 0.500 12 0.800 23

Motor function 0.313 5 0.500 0.800 19
Behavior problems 0.354 3 0.500 5 0.800 10
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Study name Statistics for each study Biomarker of Exposure
Lower Upper
Correlation limit limit p-Value
Chen, et al., (2014) 0.056 -0.066 0.178 0.368 O Blood, maternal
Eskenazi, et al., (2013) 0.036 -0.012 0.083 0.140 o) Blood, maternal
Gascon, et al., (2011) -0.634 -0.686 -0.576 0.000 O Blood, cord
Gascon, et al., (2012) -0.429 -0.519 -0.330 0.000 Om Colostrum
Herbstman, et al., (2010) -0.319 -0.348 -0.290 0.000 (0] Blood, cord
Roze, et al., (2009) 0.012 -0.167 0.190 0.897 —( Blood, maternal
Summary Result -0.237 -0.441 -0.010 0.041 < |
-1.00 -0.50 0.00 0.50 1.00 a
Study name Statistics for each study Biomarker of Exposure
Lower Upper
Correlation limit limit Total p-Value
Eskenazi, et al., (2013) -0.056 -0.092 -0.020 251 0.002 O Blood, maternal
Gascon, et al., (2011) -0.357 -0.537 -0.146 78 0.001 L O] Blood, cord
Gascon, et al., (2012) -0.758 -0.803 -0.704 290 0.000 O Colostrum
Herbstman, et al., (2010) -0.481 -0.522 -0.439 113 0.000 0) Blood, cord
Roze, et al., (2009) 0.120 -0.027 0.262 62 0.109 O Blood, maternal
Summary Result -0.350 -0.610  -0.022 0.037 ’
-1.00 -0.50 0.00 0.50 1.00 b
Study name Statistics for each study Biomarker of Exposure
Lower Upper
Correlation limit limit p-Value
Chen, et al., (2014) 0.256 0.176 0.332 0.000 O Blood, maternal
Eskenazi, et al., (2013) 0.571 0.550 0.592 0.000 @) Blood, maternal
Roze, et al., (2009) 0.316 0.227 0.400 0.000 O Blood, maternal
Summary Result 0.393  0.133 0602  0.004
-1.00 -0.50 0.00 0.50 1.00 Cc

Fig. 2 a Summary effect (random model) of prenatal PBDE exposure on
cognitive finction, Rpgoteqd = 804, k= 6. b Summary effect (random model)
of prenatal PBDE exposure on motor function, nyeeiea =794, k=5. ¢

needed to achieve 0.50 and 0.80 power for each
neurodevelopment category. For cognitive function, motor
function, and behavior problems, respectively, 12, 9, and 5
studies are needed to achieve a power of 0.50; 23, 19, and
10 studies are needed to achieve a power of 0.80, respectively.

The influence of publication bias on the summary effect is
summarized in Table 5. Based on the analysis of the four tests
recommended by Borenstein et al. [60], the likelihood there
are unpublished studies that could influence the significance
or change the substantive importance of the meta-analysis
summary effect is low.

@ Springer

Summary effect (random model) of prenatal PBDE exposure on
behavior problems, Rpoo1ea =307, 0=3

Discussion

The results of this study indicate that prenatal PBDE exposure
is associated with a significant decrease in cognitive and mo-
tor function and a significant increase in behavior problems
among children 7 years of age or younger.

There is a difference between the types of PBDE congener
manufactured and types of congeners detected in human bio-
markers, suggesting that PBDE metabolism includes
debromination. Smaller PBDE congeners are more persistent,
bioaccumulative and toxic, and have structural similarities to
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Table 4 Summary of meta-regression analysis on cognitive function and motor function for biomarker type

Neurodevelopment category ~ Covariate Coefficient ~ SE 95% lower  95% upper  p value (two-sided)
Cognitive function Intercept maternal blood as reference 0.036 0.079  —-0.118 0.191 0.645

Cord blood —0.564 0.119  —0.797 —0.330 0.000%*

Colostrum —0.495 0.157  —0.802 —0.188 0.002*
Motor function Intercept maternal blood as reference ~ —0.046 0.018  —0.081 -0.011 0.010%*

Cord blood —0.470 0.032  —0.533 —0.407 0.000*

Colostrum —0.944 0.062  —1.065 -0.824 0.000*

Studies reporting behavior problems only used maternal blood as biomarker and, therefore, not included in this summary

*p value< a=0.05

thyroid hormones [64¢, 65¢¢, 66]. From conception through
the 10th week of gestation—a critical window of human
neurodevelopment—maternal thyroid hormones signal differ-
entiation and relocation to neuronal cells in the embryo,
forming main structures in the brain, such as the limbic sys-
tem, as well as the spinal cord and major peripheral nerves
[67—69]. The nervous system continues to develop in the sec-
ond trimester when the fetal thyroid gland is able to synthesize
thyroid hormones [67]. The last trimester is a time of rapid
brain growth and the ramping up of synaptogenesis and
myelination processes, which extend into early childhood
[67]. The limbic system, formed during the first trimester of
fetal development, directs sensory stimuli to the cerebral cor-
tex, where cognition, motor coordination, and executive func-
tion take place [67]. Thus, damage to the developing limbic
system can impact cognition, motor function, and behavior.

Prenatal PBDE exposure may contribute to limbic system
damage and subsequent adverse neurodevelopment assess-
ment test scores [64, 65¢¢, 70, 71].

Although, regulation restricts PBDEs in new consumer
products, upholstered furniture, mattresses, vehicles, and car
seats manufactured before 2014 are still likely to contain
PBDEs. Consumers using older durable goods are likely to
be in a lower socio-economic strata [72¢]. Infants born to
families living in a lower SES are more vulnerable to factors
associated with cognitive and behavior problems [72¢, 73]. In
2008, Zota et al. discovered people living in a lower SES are
more likely to have a higher body burden of PBDEs [74¢].
Thus, it is important to consider prenatal PBDE exposure as a
potential effect modifier when investigating the effect of SES
attributes on neurodevelopment outcomes. Some factors to
consider in prenatal PBDE exposure include the age of the

Table 5 Summary of analysis of potential effects of publication bias on summary effect of meta-analysis for each neurodevelopment category
Test parameters
Test Neurodevelopment  Effect Metric Measurement Likelihood
Category of effect”
Rosenthal’s fail-safe N Cognitive function ~ Missing studies nullify No. of missing studies to 436 L
Motor function significance of summary effect bring p-value > alpha 422 L
Behavior problems 764 L
Orwin’s fail-safe N Cognitive function ~ Missing studies nullify substantive  No. of missing studies to bring 24 L
Motor function importance of summary effect summary effect to +0.05 19 L
Behavior problems 32 L
Duval and Tweedie’s ~ Cognitive function  Estimate unbiased summary effect Estimated unbiased effect —0.256 L
trim and fill (calculated effect) (—0.237)
Motor function -0.233 L
(=0.350)
Behavior problems 0.523 (0.393) L
Restricting to larger Cognitive function ~ Removal of small studies Magnitude of summary effect —0.292 L
studies decreases bias change (calculated effect) (—0.237)
Motor function -0.451 L
(=0.350)

Behavior problems

0.456 (0.393) L

Source: [51]
?Likelihood of effect: low = L, medium = M, high = H [60].
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home, bed mattress, upholstered furniture, and car, as well as
the amount of time spent inside the home, cleaning frequency
and method, and time spent in the car.

A goal of conducting epidemiological research is to quan-
tify the magnitude and direction of association between expo-
sure and outcome, but this can be especially difficult for pre-
natal exposures. Prenatal exposure to lipophilic environmental
contaminants, like PBDEs, partition into lipids of blood, adi-
pose tissue and breast milk. Breast milk is a common biomark-
er surrogate for prenatal exposure because it is considered
non-invasive relative to using maternal blood during pregnan-
cy. Umbilical cord blood is also considered non-invasive and,
as our results indicate, may be more representative of fetal
exposure. The use of colostrum as a biomarker for prenatal
PBDE exposure in Gascon et al. [52] was novel and was more
likely to approximate third trimester prenatal exposure than
samples of breast milk collected after 1-week postnatal. The
results of our study indicate PBDE concentrations measured
in colostrum had a similar summary effect to that of cord
blood for cognitive and motor function assessment scores.

Behavior problem was the neurodevelopment category re-
quiring the least number of additional studies [10] to achieve a
study power of 0.80, indicating a larger effect size associated
with prenatal PBDE exposure and behavior problems, even
with a small number of studies (k= 3). Studies that assessed
behavior problems in this meta-analysis only used maternal
blood as a biomarker, which attenuated the effect size of cog-
nitive and motor function in the results of our study. This
suggests that the summary effect of behavior problems might
have been higher if cord blood or colostrum was the biomark-
er. Hence, the summary effect size of prenatal PBDE exposure
on behavior problems may be underestimated in this study.

Infant/child age category relative to the type of
neurodevelopment assessment was a significant moderator
variable on test scores, suggesting assessing cognitive func-
tion and motor function in age category 02 years. A larger
summary effect was observed for behavior problems in the 6—
7 years age category, suggesting that assessing specific
neurodevelopment categories in these respective age catego-
ries may reveal a more pronounced effect size.

Strengths and Limitations

This research had several strengths. The narrow eligibility
criteria of birth cohort studies and exposure biomarkers pro-
vide evidence of strength of association, temporality, plausi-
bility and biological gradient. Development of a
neurodevelopment assessment category for use in the meta-
analysis streamlined the coding and statistical analysis process
and helped visualize trends in meta-regression. Studies that
reported beta coefficients were not discarded. Instead, they
were converted to a point estimate that could be used with
the CMA® software to calculate summary effect, which

@ Springer

increased the number of eligible studies, pooled sample sizes
and overall power of the meta-analysis results.

There are also limitations. First, only one reviewer con-
ducted the eligibility screening and assessment coding for
the systematic review. Various guides on systematic reviews
recommend screening and coding activities be conducted in
parallel by at least two reviewers and results compared and
measured with a kappa statistic [75]. Utilizing one reviewer
creates potential susceptibility to selection and information
bias. To control for this, the reviewer read each abstract twice
and each full-text study included in meta-analysis at least
twice. Second, the creation and use of a neurodevelopment
category (i.e., cognitive function, motor function, and behav-
ior problems) from the primary measures of
neurodevelopment assessment instruments somewhat diluted
the effect size of subscales that overlapped two or more
neurodevelopment categories. This was viewed as an accept-
able tradeoff because it made for a more conservative summa-
ry effect estimate, reduced processing time and complexity,
and increased pooled sample sizes for different ages and
neurodevelopment categories. Finally, the project was under-
powered due to the low number of studies included in the
meta-analysis. Power = 1—type II error (false negative). For
meta-analysis, a false negative is failing to detect an effect
when the effect is present. Thus, a low-powered study sug-
gests an underestimation of effect size.

Conclusions

The epidemiologic utility of a systematic review and meta-
analysis is the rigor employed in study selection and review
and the value to translational science in summarizing evidence
from existing studies to communicate a clearer picture of over-
all public health effect to clinicians, policy-makers, and the
public. There is increasing evidence that PBDE exposure af-
fects endocrine disruption, especially with regard to thyroid
function, which in turn affects neurodevelopment. The effect
of prenatal PBDE exposure on behavior needs further inves-
tigation, and we recommend exploring this effect using cord
blood or colostrum to estimate fetal exposure.

We also recommend conducting additional systematic re-
views and meta-analyses using broader eligibility criteria to
include birth cohort studies that use breast milk or meconium
along with colostrum and maternal/cord blood as biomarkers
for prenatal PBDE exposure and conducting a systematic re-
view and meta-analysis on the efficacy of various human bio-
markers in approximating postnatal exposures to PBDEs and
other halogenated organics that are suspected of endocrine
disruption.
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