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Abstract
Purpose of Review Propensity score methods have become
commonplace in pharmacoepidemiology over the past de-
cade. Their adoption has confronted formidable obstacles that
arise from pharmacoepidemiology’s reliance on large
healthcare databases of considerable heterogeneity and com-
plexity. These include identifying clinically meaningful sam-
ples, defining treatment comparisons, and measuring covari-
ates in ways that respect sound epidemiologic study design.
Additional complexities involve correctly modeling treatment
decisions in the face of variation in healthcare practice and
dealing with missing information and unmeasured confound-
ing. In this review, we examine the application of propensity
score methods in pharmacoepidemiology with particular at-
tention to these and other issues, with an eye towards stan-
dards of practice, recent methodological advances, and oppor-
tunities for future progress.
Recent Findings Propensity score methods have matured in
ways that can advance comparative effectiveness and safety
research in pharmacoepidemiology. These include natural ex-
tensions for categorical treatments, matching algorithms that

can optimize sample size given design constraints, weighting
estimators that asymptotically target matched and overlap
samples, and the incorporation of machine learning to aid in
covariate selection and model building.
Summary These recent and encouraging advances should be
further evaluated through simulation and empirical studies,
but nonetheless represent a bright path ahead for the observa-
tional study of treatment benefits and harms.

Keywords Pharmacoepidemiology . Comparative
effectiveness . Study design . Non-experimental study .

Propensity score . Causal inference

Introduction

Many pharmacoepidemiology studies compare safety and ef-
fectiveness across treatment options that have not been ran-
domly assigned. Treatment groups may differ in terms of
prognostic factors, and crude comparisons will often lack
causal interpretation. Such bias arises because health profes-
sionals rightly use clinical parameters to recommend treat-
ment when they anticipate potential benefit and withhold it
when concerned about adverse events. This phenomenon
and its variants are referred to as confounding by indication,
channeling, or protopathic bias [1]. Propensity score methods
were designed to confront such confounding. They do so by
modeling how prognostic factors (henceforth covariates, X)
guide treatment decisions and using this knowledge to con-
struct treatment groups with similar covariate distributions.
Given their reliance on a treatment model instead of (or in
addition to) an outcome model, propensity scores may be
particularly relevant for pharmacoepidemiology, where it is
often difficult to have adequate outcome models given rare
events and potentially large numbers of confounders.
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Moreover, in medicine, treatment decisions are well under-
stood and investigators can leverage clinical expertise and
guidelines to build plausible models. As they draw on the
familiar concepts of balance from clinical trials, propensity
score analyses are very accessible to clinical, industry, and
regulatory stakeholders.

In this review, we discuss critical aspects in the use of
propensity scores in pharmacoepidemiologic research. We ad-
dress study design, covariate choice, model selection, using
the propensity score, and strategies for dealing with unmea-
sured bias. For each, we highlight current understanding, re-
cent developments, and opportunities for progress.

Data and Design in Pharmacoepidemiology

Treatment Comparisons

Pharmacoepidemiology often employs routinely collected
healthcare data that facilitates payment and reimbursement
for medical services and products (e.g., insurance claims)
and also medical care (e.g., electronic medical records) [2].
To estimate causal effects from these data, investigators must
carve out a sample of patient experience that resembles a well-
designed study that is conceivable in the real world, ethics
and practicalities aside [3••]. Many design flaws at this stage
can be avoided by anchoring study entry, treatment group
assignment, and start of follow-up around a change in drug
use.

The “new user” or “incident user” design anchors a study at
the initial prescription dispensing (henceforth “use”) of a drug
after some period of non-use, perhaps comparing users with
those initiating an active comparison or with non-users, with
treatment group membership held fixed. More elaborate per-
mutations anchor at treatment decisions, e.g., a dose intensifi-
cation [4, 5, 6•]. These designs, which can be incorporated in
distributed data network studies, are motivated to mitigate
pernicious confounding, selection, and immortal-time biases
and to answer clinically relevant questions [7–9]. Unless not-
ed otherwise, our review will consider a comparison of inci-
dent use vs. non-use but extends to other treatment decisions.

Targets of Inference

Another key aspect of design is the choice of a target popula-
tion, which hinges on the underlying clinical question. When
interested in treatment effects among the study sample, the
focus of this review, one may seek to estimate effects among
the entire sample (average treatment effect (SATE)) or among
a treatment group (average effect of treatment on the treated
(SATT)) [10]. These estimands will differ when there are het-
erogeneous effects and the distributions of effect modifiers
vary across treatment groups [11]. When the distributions

are grossly dissimilar (an extreme being ubiquitously pre-
scribed or withheld treatment for certain types of patients),
lack of overlap precludes estimating the SATE and, in severe
cases, the SATT [12, 13]. In a later section, we discuss possi-
ble strategies to estimate the SATTor effects among an “over-
lap” population that has shared common support [12, 13].

Causal Inference, Potential Outcomes,
and the Propensity Score

Potential Outcomes

Propensity score methods draw on the potential outcomes
framework that was developed for randomized trials [14, 15].
Therein, we consider potential outcomes Yi(A = a) under treat-
ment Yi(1) and no treatment Yi(0), observing only one for a
given individual i. Under some circumstances, we can expect
individuals to share the same distribution of potential outcomes
regardless of their actual treatment status, i.e., Y(a)∐ A for all
a, allowing a contrast of outcomes among those actually treated
vs. not E[Y| A = 1] − E[Y|A = 0] to stand in for a causal contrast
of outcomes had everyone been treated vs. not E[Y(a = 1)] −
E[Y(a = 0)]. This is an unbiased estimate in a randomized trial,
where we know that treatment assignment is independent of
potential outcomes. When treatment is merely observed, that
assumption is not guaranteed. We attempt to measure enough
covariates X such that the potential outcomes are rendered con-
ditionally independent of treatment, i.e., Y(a)∐ A ∣X, and then
estimate the conditional average causal effect E[Y|A = 1,X] −
E[Y|A = 0, X]. Independence between potential outcomes and
treatment is often referred to as “ignorability” or “exchange-
ability” [15, 16]. Moving from potential to observed outcomes
often relies on the Stable-Unit-Treatment-Value-Assumption
(SUTVA)which encodes that (i) the treatment of one individual
does not affect the outcome of another (“no interference”) and
(ii) the outcome observed under actual treatment and a hypo-
thetical intervention assigning treatment are equivalent (“treat-
ment-version irrelevance” and consistency) [17, 18]. Some
methods have been extended to relax SUTVA [19, 20].

The Propensity Score for Binary and Categorical
Treatments

For a binary treatment A of use (A = 1) vs. non-use (A = 0), the
propensity score e(X) is the probability of use given the co-
variatesX, i.e., P(A = 1|X). Rosenbaum and Rubin proved that
(i) among patients with the same propensity score e(X), the
covariates X will be balanced; (ii) if one can estimate causal
treatment effects by adjustment for X (i.e., ignorability holds
given X), then one can estimate causal treatment effects by
adjusting for the propensity score (i.e., ignorability holds giv-
en e(x)) [15].
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To compare treatments 1 (A = 1) and 2 (A = 2) with a com-
mon referent of non-use (A = 3), one needs to balance covar-
iates across all three groups. This can be achieved by defining
a propensity score function—the generalized propensity
score—that describes how the distribution of treatment A de-
pends on covariates X. This is a set of probabilities P(A = a| X)
that sum to one, in this case P(A = 1| X), P(A = 2| X),
and P(A = 3|X) [21, 22]. Among individuals with the same
propensity score function, the covariate distributions of all
three treatment groups are balanced. The generalized propen-
sity score can be extended to continuous and ordinal treat-
ments such as dose [22, 23].

Building the Propensity Score Model

In modeling the propensity score, the goal is not to perfectly
predict treatment. (In fact, perfect prediction implies intracta-
ble confounding). Rather, it is to reduce confounding by (i)
selecting enough covariates to render potential outcomes in-
dependent of treatment; (ii) producing estimates of the proba-
bility of treatment that accurately reflect how treatment is re-
lated to the covariates; and (iii) using those probabilities to
create treatment and comparison groups with similar covariate
distributions. In this sense, measures of discriminatory power
of a predictive model such as the c-statistic should not guide
covariate choice nor model specification [24, 25].

Covariate Definition and Selection

Choosing covariates to measure is challenging when the un-
derlying causal structure is unknown. For a thorough over-
view of relevant issues, see the review by Sauer et al. [26].
A safe strategy is to include risk factors for the outcome (these
will improve statistical precision) [27]. Covariates that predict
treatment but not the outcome (true instruments) are best
avoided as these can not only reduce precision [27] but also
inflate any bias from any remaining confounding, a phenom-
enon described as Z-bias [28]. For all other covariates, simu-
lation and theoretical results favor adjusting for the covariate
to reduce potential confounding [28–30, 31•].

In databases where it is possible to measure hundreds of
covariates, algorithms have been proposed to help investiga-
tors choose among them. The high-dimensional propensity
score (hdPS) approach selects all covariates that are associated
with treatment and outcome, in the hope that adjusting for a
rich set of proxy covariates will protect against unmeasured
confounding [32]. Recent work on hdPS warns against pre-
screening covariates by their prevalence and suggest that its
performance in studies with few exposed outcomes can be
enhanced by incorporating machine learning tools and
Bayesian estimation of the covariate-outcome association
[33–35]. A variety of other algorithms have been developed

to improve the treatment effect estimate in high-dimensional
settings while limiting the selected covariates to a set that
suffices to control for confounding. In one, a backwards se-
lection algorithm sequentially discards variables that are inde-
pendent of the outcome given treatment and the remaining
covariates [36]. In another, the “least absolute shrinkage and
selection operator” (lasso) is applied to an outcome regression
model to select covariates for inclusion in the propensity score
[34]. Several methods seek to also optimize the mean square
error of the treatment effect, including procedures that itera-
tively select variables for candidate outcome and propensity
score models (Collaborative Targeted Maximum Likelihood
(C-TMLE); and Bayesian Adjustment for Confounding
(BAC)) and modified stepwise “change-in-estimate” selection
strategies [37–41]. All of these strategies presume a single
outcome. When several are of interest, simulation results sug-
gest that a generic propensity score model based on their
shared confounders performs nearly as well as separate
models built for each outcome [42]. These algorithms appear
promising for variable selection but have not been studied in
depth.

In defining and measuring covariates, one must ensure that
they are truly pre-treatment covariates. This follows naturally
in a design that aligns cohort entry, the start of follow-up, and
treatment definitions at a change in treatment, e.g., the index
date. If covariates are not stable attributes over the study pe-
riod, such as a measure of symptoms, care must be taken to
ensure that such time-varying covariates are not effects of
treatment. One should assess these before the index date and
determine whether the immediate pre-treatment value or a
richer summary of its history are most predictive of the out-
come and the indexing treatment decision [43]. Assessments
should also consider the sensitivity of defining covariates by
drawing on all available data or restricting to a fixed window
of some length [44]. Though some exploratory studies have
examined these strategies empirically and through simulation,
there is not unequivocal evidence regarding their merits and
shortfalls [45]. An excellent review by Brookhart et al. de-
scribe additional concerns that arise when using medical bill-
ing and service codes to assess health status [46].

Modeling the Propensity Score

In observational studies, the true propensity score is unknown
and must be estimated. For binary treatments, this is typically
accomplished through a logistic regression model with at least
main effects. The impact of iteratively adding interaction and
higher terms can be evaluated by how well the resulting pro-
pensity score approach balances covariates (discussed later).
Some alternatives seek to automate the process of covariate
and model selection by leveraging machine learning tools,
regularization, or loss-based estimation. For example,
implementations of ensemble methods of bagged/boosted
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classification and regression trees and random forests appear
to balance covariates better than logistic regression in simula-
tion studies though the reverse has been seen with empirical
data [25, 47]. Other approaches seek to optimize not predic-
tion error but covariate selection and the propensity score’s
performance in constructing comparable treatment groups.
These include C-TMLE mentioned above [39, 40]; the
outcome-adaptive lasso, which uses shrinkage to deselect var-
iables that predict exposure but not the outcome [48]; gener-
alized boosted models which combine piecewise regression
trees to capture interactions [49, 50]; and the covariate
balancing propensity score which uses a generalized method
of moments approach [51, 52]. Early simulations suggest that
these methods perform well though their limits and tradeoffs
have yet to be fully characterized [53].

Some complexities are worth mentioning. Measurement
error in covariates often occurs in administrative healthcare
data and can lead to residual confounding [2, 46]. Recent
theoretical work on leveraging prior knowledge and external
validation samples for correcting the propensity score could
be explored as a solution [54–56]. Another complexity is that
treatments may be administered differently across time, phy-
sicians, health institutions, and systems, reflecting gradients in
practice or quality of care. Some argue against estimating
propensity scores within clusters when they have no effect
on outcomes (i.e., the clustering variables are instruments)
[57]. Others point out that failing to reflect heterogeneous
relationships between covariates and treatment can lead to a
mis-specified propensity score model [58] and propose a
model-fitting strategy to confront this [59]. These concerns
can be evaluated empirically through checking whether the
estimates from propensity scores that ignore clustering pro-
duce comparable treatment groups. Future empirical work on
this issue should consider therapeutic examples where there is
considerable clinical uncertainty and discretion (e.g., psychi-
atry), complex trade-offs between benefits and risks (e.g., an-
ticoagulant therapy), and where treatment rules are less
established (e.g., newly marketed medications).

Evaluating the Propensity Score Approach

The performance of the propensity score approach should be
assessed in terms of howwell it has balanced covariates across
treatment groups. Technically speaking, perfect balance
would imply the same multivariate covariate distributions
across treatment groups, though this is likely impossible to
achieve let alone diagnose. A less ambitious goal is to only
balance covariates in ways that reflect their role in a hypoth-
esized model for the outcome [60•]. For example, an additive
outcomemodel would suggest that balance of marginal means
is sufficient, whereas a non-additive model would suggest that
relevant interactions also be balanced. Moreover, balance on

covariate transformations (such as a log-transformation or
higher-order terms) should also be achieved if these are related
to the outcome [61]. Therefore, aggregate measures of balance
such as overlap in treatment densities, the Mahalanobis dis-
tance, or average standardized mean difference, may be useful
in detecting gross imbalance but could still mask important
differences [62•, 63].

Balance should thus be assessed for each covariate. While
hypothesis tests of equality of means tend to reject when re-
sidual imbalances threaten causal inference, they are generally
avoided in propensity score analyses as balance is an “in-sam-
ple” property and hypothesis tests conflate substantive differ-
ences with sample size [10, 64]; in large healthcare datasets,
even clinically irrelevant differences can manifest as statisti-
cally significant. The standardized mean difference across
each covariate can be reported by dividing the difference in
covariate means by the pooled standard deviation in the orig-
inal population (e.g., unmatched/unweighted). In terms of
benchmarks, absolute standardized mean differences of less
than 0.25 or 0.1 have been put forth as a rule of thumb, but
ideally imbalances should be minimized without limit [10,
60]. One can go beyond the means to diagnose differences
in covariate distributions using ratios of variance, the
Kolmogorov-Smirnov distance, or box plots. It is worth
pointing out that covariate balance is merely a sufficient con-
dition for comparability of treatment groups [65]. The predict-
ed counterfactual outcome among the referent treatment group
can be leveraged to assess “prognostic” balance that summa-
rizes over multiple covariates [66]. With all balance measures,
their assessment should align with how the propensity score is
to be used. They should be applied in matched samples, after
inverse probability weighting, or within levels of propensity
score subclasses [67, 68•, 69]. Residual imbalances can be
tackled by including the unbalanced covariates in the outcome
model, which is a form of double robustness [70].

Estimating Treatment Effects in Observational
Studies

Matching

Matching is the most popular use of the propensity score
in pharmacoepidemiology and will generally estimate the
SATT [63]. Here, the propensity score is used as a mea-
sure of distance between treated and comparison units.
The simplest algorithm is to use the propensity score to
find a “matched” comparison for each treated unit (“one-
to-one matching”). Differences in the outcome between
treated and comparison groups in the matched sample,
achieved non-parametrically or otherwise, provide esti-
mates of the treatment effect. A frequent modification to
this nearest neighbor approach is to only select
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comparisons that fall within a certain distance of the pro-
pensity score (a caliper). Though this leads to better bal-
ance, it can cause some treated units to be discarded, such
that the target reflects an “overlap” population rather than
the full treated group [71]. Most implementations of
matching use a “greedy” algorithm that can exhaust the
best matches early in the process without regard for the
overall similarity of the treated and comparison groups.
An alternative, optimal matching, seeks to minimize the
average distance across pairs. Another variation finds
more than one match for each treated unit (1:k matching,
variable ratio matching). While improving precision, this
can increase bias due to the inclusion of more distant
comparisons [72]. See Stuart for a discussion on these
tradeoffs [67]. It may be possible to apply a weight of
1/k after variable ratio matching to decrease the influence
of larger matched sets, but the implications and utility of
this proposal should be studied further. Extending these
matching approaches to the generalized propensity score
requires choosing an appropriate distance measure
targeting a particular SATT or a population with common
support, but success will depend on the degree and nature
of overlap [73]. Exciting new methods such as cardinality
matching and others bypass estimation of the propensity
score entirely while optimizing sample size given speci-
fied covariate balance constraints (even for categorical
treatments) [60]. Future empirical research might compare
their performance with existing approaches, especially
when the propensity score and prognostic score are inte-
grated as distance measures.

Subclassification

An alternative to matching is to divide the population into
subclasses according to the propensity score distribution in
the overall populations or a particular treatment group [74].
Subclass indicators and their interactions with treatment can
be entered as covariates in a regression model, otherwise mar-
ginal estimates of the SATE or SATT can be obtained by
averaging over the subclass-specific effects through weighting
[75]. The subclasses may be based on percentiles, quantiles, or
some other scheme. The optimal classification strategy and its
granularity may depend on whether treatment and outcome
are rare, e.g., as in the case of safety outcomes for newly
marketed medications [76]. Nevertheless, the working as-
sumption is that within chosen subclasses, the treated and
comparisons have similar covariate distributions which can
be confirmed empirically [66]. It has been shown that creating
just five to ten subclasses can remove at least 90% of the bias
attributable to the covariates used to construct the propensity
score [77]. With very fine strata, subclassification is akin to
full matching; at its limit, it implies inverse probability

weighting [78]. Subclassification can also be used with the
generalized propensity score [23].

Weighting

In both matching and subclassification, the values of the pro-
pensity score are used to create sets where the treated and
control have similar propensity scores (though not exactly
so) and thus similar covariate distributions. In contrast,
weighting uses the propensity score values directly. A
weighting approach that estimates the SATE defines weights
as the inverse of the probability of treatment received 1

P A¼ajX½ � ,

mirroring weights in survey sampling [79]. The weights can
then be used in non-parametric or parametric analyses of the
SATE. Hypothesis tests and 95% confidence intervals can be
constructed with a robust sandwich variance estimator [80].
To achieve more precision, the weights can be standardized by
including the unconditional probability of treatment received

in the numerator P A¼a½ �
P A¼ajX½ �. Assessments of effect heterogeneity

across a moderator V should include it within the conditioning

event of the numerator and denominator, i.e., P A¼ajV½ �
P A¼ajX ;V½ � [81].

This formulation can also be extended to continuous treat-
ments [16]. If interest lies in the effect among a particular
treatment group (i.e., the SATT) then a weighting strategy
sometimes coined as “weighting by the odds” or “SMR
weighting” uses that treatment’s conditional probability as

the numerator, i.e.,
P A¼a

0 jX½ �
P A¼ajX½ � , where a′ is the reference treat-

ment level of interest and a denotes the unit’s actual treatment
condition [82]. By definition, the weights for individuals in
the reference treatment group of interest reduce to 1.

A limitation of weighting is that areas of limited overlap
can result in low treatment probabilities and extremely large
weights for certain individuals. These result in wider 95%
confidence intervals, though if the propensity score model
and weight specifications are correct, this level of influence
and uncertainty are appropriate. In practice, though, it is com-
mon to sacrifice a little validity for precision by truncating the
weights to the 99th or other percentile [83]. The impact of this
procedure can be assessed by inspecting covariate balance
[68•, 84••].

To some extent, areas of non-overlap can be addressed by
“trimming” the sample to remove treated observations in the
tails of the propensity score distribution that may lack com-
parison or treated units (as with caliper matching) [12, 13].
This can be particularly relevant, and important, in
pharmacoepidemiology contexts where there is a group of
people who would never be prescribed one of the drugs
(treatments) of interest, because of contraindications or some
other reason. Restricting attention to individuals in the area of
common support can be thought of as focusing on the indi-
viduals for whom there is some clinical equipoise in terms of
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which treatment to provide [85]. An exciting advance is the
development of weighting strategies that target not the SATE
or SATT but the treatment effect among the population with
common support. These include the “matching weight”which
asymptotically targets a one-to-onematched sample by replac-
ing the numerator with the minimum of the conditional treat-

ment probabilities: e.g., min P A¼0jX½ �;P A¼1jX½ �ð Þ
P A¼ajX½ � in the binary case

[86]. An alternative is the “overlap weight” which targets the
entire population of common support by replacing the numer-
ator with the product of the conditional treatment probabili-

ties: e.g., P A¼0jX½ ��P A¼1jX½ �
P A¼ajX½ � [87]. Like standard inverse proba-

bility weighting, they can accommodate categorical treat-
ments but have the added benefit of being bounded between
0 and 1 [87, 88]. For categorical treatments, they do, however,
presuppose sufficient overlap across all (and not just pairwise)
comparisons. Early studies suggest that, in the context of up to
three unequally sized treatment groups and rare binary out-
comes, matching weights exhibit better balance and lower bias
and mean square error compared to standard inverse probabil-
ity weighting and matching [88, 89]. But their performance in
simulated or empirical cases with more than three treatment
groups (a realistic setting in pharmacoepidemiology) has yet
to be evaluated.

Regression

A final approach is to regress the outcome on treatment and
the estimated propensity score. In pharmacoepidemiology
where outcomes are often non-linear and treatment effects
are heterogeneous, estimating unbiased treatment effects will
require that such models are correctly specified (which might
involve higher order or spline terms for the propensity score
and its interaction with treatment) [90]. For this reason, other
uses of the propensity score are generally favored.
Nonetheless, in recent years, some recent theoretical insights
have been developed [90]. If the propensity score model is
correct, in large samples, one can obtain valid tests of the null
hypothesis of no treatment effect (on the difference or ratio
scale) provided a robust variance estimator is used [90]. It
remains unclear how to diagnose the balancing property of
the estimated propensity score when it is to be used as a
regressor.

Joint and Time-Varying Treatments

Our review has focused on causal inference for treatment
decisions at a common (single) decision point. But
pharmacoepidemiology often explores effects of discontinuing
therapy or of adhering to treatment plans. Moreover, treatment
decisions involving the addition or withdrawal of a second
drug to increase effectiveness, mitigate side-effects, or to treat

an emerging comorbidity, are vitally important. With each of
these questions, including that of drug-drug interaction, naïve
regression on time-varying versions of propensity scores can
be inappropriate and induce bias because time-varying covar-
iates (and propensity score summaries of them) may be affect-
ed by treatment [91, 92]. Special methods such as marginal
structural models, structural nested models, or adaptations of
the g-formula are required to adequately adjust for confound-
ing in the presence of such feedback loops [80, 81, 93–96]. The
spirit of design in propensity score approaches can be retained
in these analyses by empirically assessing feedback and
adapting balance measures to account for treatment history
[84••].

Bias Correction for Unobserved Confounding

So far our discussion has assumed that there is no unmeasured
confounding. When this assumption fails, the treatment effect
estimate will be biased. Techniques are available to help quan-
tify the potential bias. If the unmeasured confounder(s) are
measured in a subset or external sample, a technique known
as propensity score calibration has been proposed along with a
two-stage approach that avoids its surrogacy assumption
[97–99]. An alternative strategy is to carry out a sensitivity
analysis (subsumed within “bias analysis”) that models poten-
tial bias from unmeasured confounding as a function of how
strongly the treatment and outcome are associated with an
unmeasured confounder [100–102]. Practical implementa-
tions of these tools rely on certain no-interaction assumptions,
but recent work has provided new bounding formulas that do
not require them and are much easier to use [103••]. One can
also pursue a sensitivity analysis by defining a bias parameter
as the difference in potential outcomes across treatment
groups given the propensity score [104]. Uncertainty in the
parameters can be incorporated using frequentist or Bayesian
frameworks, as in probabilistic bias analysis [105, 106]. The
concept of design sensitivity extends the logic of sensitivity
analysis to compare implications of potential unmeasured bias
across a range of study design features and can be suited to
evaluate effects that are substantial but rare [107••].
Concerning longitudinal treatment effects, many important
time-varying confounders are often not available in electronic
healthcare databases. Though a few correction and sensitivity-
analysis techniques exist, the easier-to-use tools we have de-
scribed have yet to be translated to these settings [108, 109].

Conclusions

Since their adoption into pharmacoepidemiology, propensity
score methods have expanded in ways that are important for
studies of comparative effectiveness and drug safety.
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Extensions include ways to simultaneously compare multiple
drugs, both after a fixed decision point and over time. Novel
matching algorithms have emerged that provide greater con-
trol over balance and sample size. Weighting estimators have
evolved to target matched and overlap estimands and in doing
so avoid potentially harmful extrapolation. Sensitivity and bi-
as analysis techniques have emerged that can leverage valida-
tion data or examine robustness to unobserved confounding.
And although not covered in detail in this review, extensions
for time-varying exposures have also progressed, including
our ability to approach such questions in a design-based par-
adigm. The field is still wrestling with issues of covariate and
model selection, as well as variance estimation, and machine-
learning algorithms are being re-tuned away from minimizing
prediction error towards improving the quality of the treat-
ment effect estimate [110, 111]. Many of these new and excit-
ing developments will need to be explored through further
simulation and empirical examples, but together they repre-
sent a bright path ahead in overcomingmany of the design and
analytic challenges in the study of therapeutic effects and
harms.
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