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Abstract Modern chemical instrumentation has fostered a
revolution of sorts, in which epidemiologic studies of female
infertility can now devote attention to very low level,
Bbackground^ exposures to Bemerging^ non-persistent organ-
ic pollutants, rather than on Blegacy^ persistent organic pol-
lutants. Predicated on widespread and frequent contact, and
substantial experimental evidence of estrogen-disruptive ef-
fects, concern for phthalate diesters, environmental phenols
(bisphenol A and triclosan), and ultraviolet filters
(benzophenones) as risk factors for female infertility has
grown. We reviewed the contemporary epidemiologic evi-
dence for these emerging environmental pollutants as risk fac-
tors for female infertility. We conclude that the epidemiologic
evidence is insufficient to date, to substantiate background
exposures as risk factors for female infertility. However, very
few epidemiologic investigations have been published. To
more definitively address concerns, additional epidemiologic
investigations are needed, including longitudinal collection of
multiple biospecimens, simultaneous consideration of couple-

level exposures, and incorporating mixtures of these and ad-
ditional emerging organic pollutants.
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Introduction

Female Infertility

Recently, the International Federation of Gynecology and
Obstetrics (FIGO) joined with the American College of
Obstetrics and Gynecology (ACOG), the American Society
for Reproductive Medicine (ASERM), and the Endocrine
Society in calling for greater attention to the impacts of envi-
ronmental pollutants on human reproductive health [1•, 2•, 3].
Hundreds of chemicals, including environmental pollutants,
behave as Bendocrine disruptors^ in vitro or in vivo, acting
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as imperfect ligands to nuclear hormone receptors, non-
nuclear cell membrane receptors, or allosteric sites, and lead-
ing to agonistic, antagonistic, or even unexpected effects at
very low concentrations [4, 5]. However, impacts on human
health have remained controversial, given the small potency
relative to endogenous hormones and dietary phytoestrogens
[6–8]. Such properties, in particular, with respect to estrogen
[9], have galvanized concern among investigators and clini-
cians alike, in terms of a potential impact for environmental
pollutants on female infertility.

Using the clinical definition of no pregnancy within
12 months of regular, unprotected, heterosexual inter-
course [10, 11], approximately 9 % (72.4 million) of
women worldwide suffer from infertility [12], 15 % of
women in the U.S. [13•]. Around 30 % of infertility
cases are Bunexplained^ [14], and this appears to be
increasing. Between 1982 and 2002, the number of
U.S. women reporting difficulties conceiving and main-
taining a pregnancy grew by 60 %, whereas the change
exceeded 200 % for women <25 years of age [15].
Delayed childbearing, increasing obesity, changes in cig-
arette smoking, and shifts in the prevalence of sexually
transmitted infections are important determinants of fe-
male infertility [16]. However, an important role for
environmental pollutants is suspected by researchers
and clinicians [17, 18].

BEmerging^ Organic Pollutants

Since the mid-twentieth century, the enormous success of the
chemical industry has fostered an explosion in the volume and
array of synthetic organic compounds to which women
are exposed [19–21]. While these developments have
dramatically improved lives and augmented modern
conveniences and comforts, growing evidence also im-
plicates widely distributed organic agents as risk factors
for female infertility [22, 23].

Much epidemiologic attention to date has focused on the
impact Blegacy^ organic pollutants, compounds identified by
the Stockholm convention as persistent and toxic, tend to re-
distribute over large geographic areas via global distillation
process, and that bioaccumulate [24]. However, investigators
have more recently devoted greater attention to impacts of
non-persistent pollutants, that are rapidly metabolized and ex-
creted, yet demonstrate estrogenic activity in vitro or in vivo
[25]. Exposure to these Bemerging^ organic pollutants (EOPs)
is widespread and frequent, often via use of consumer and
personal care products (PCPs) [26, 27], potentially leading
to Bpseudo-persistence.^ In this paper, we focus on phthalate
diesters, environmental phenols (bisphenol A (BPA) and tri-
closan), and ultraviolet (UV) filters, EOPs which have gener-
ated the most attention to date as potential risk factors for
female infertility.

Phthalate Diesters

These high volume production compounds are variously
mixed into plastics to impart flexibility and are used as sol-
vents for cosmetics, PCPs, and fragrances [28]. Phthalates
exposure is widespread in the U.S.; seven urine monoesters
were detected in >75 % of the 1999–2000 population, with
higher levels measured in females [29]. Humans are exposed
when phthalate diesters in packaging migrate into food or
beverages, shed from surfaces, or volatilize, with subsequent
gastrointestinal, dermal, and respiratory absorption [30].
Absorbed phthalate diesters are rapidly hydrolyzed into pri-
mary monoester forms and may undergo further oxidative
metabolism into secondary forms [31]. The parent diesters
and their metabolite monoesters possess various estrogenic
and anti-estrogenic activities in vitro with ovarian and uterine
toxicity in vivo [28]. In humans, urine phthalates have been
associated with endometriosis [32], and higher levels around
the time of conception have been associated with pregnancy
loss [33].

Environmental Phenols

BPA is a high volume production compound used in the man-
ufacture of polycarbonate plastics, epoxy resin can liners, and
heat transfer papers [34]. Estrogenic and anti-estrogenic activ-
ities have widely been reported in vitro [35] and in vivo [36],
and the experimental literature describes ovarian and uterine
toxicity [34]. In humans, higher levels of BPAwere associated
with poorer ovarian response and lower fertilization rates dur-
ing in vitro fertilization (IVF) cycles [37–39], polycystic ova-
ry syndrome [40], and pregnancy loss [41]. Still, experimental
human data suggests rapid inactivation and excretion of
ingested BPA, the primary exposure route [42]. This has led
to an ongoing controversy regarding the relevance of back-
ground exposures for human health [43, 44]. BPAwas detect-
ed in 92.6 % of urine specimens collected from the 2003–
2004 U.S. population, with higher levels in females [45].

Triclosan is added to myriad consumer goods and PCPs to
impart Bantibacterial^ properties [46]. It is structurally homol-
ogous to BPA [47], and experimental evidence in vitro indi-
cates estrogenic, anti-estrogenic, and anti-androgenic activi-
ties [48, 49], however not necessarily confirmed in vivo
[46]. Still, experimental data reported a higher rate of implan-
tation failures among mice treated with high doses of triclosan
[50]. Triclosan was detected in 74.6 % of urine specimens
collected from the 2003–2004 U.S. population [51].

Ultraviolet Filters

Benzophenones comprise a family of compounds and their
metabolites, used as chemical UV filters in sunscreens and
cosmetics. These are absorbed through the human dermis
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[52] and metabolize rapidly, having estrogenic, anti-estrogen-
ic, and anti-androgenic properties in vitro and in vivo [53–55].
Experimental studies in fish showed that benzophenone 2
(BP-2) inhibited oocyte development, decreased egg produc-
tion, and inhibited spawning [56]. Human exposure to benzo-
phenones is widespread, and sunscreen use appears to be a
major contributor [57]. Benzophenone 3 (BP-3) was detected
in 96.8% of urine samples collected from the 2003–2004U.S.
population, with higher levels for reproductive age women
[58].

Summary

Our aim in this paper was to identify and summarize the con-
temporary epidemiologic evidence for EOPs as female infer-
tility risk factors, and to offer recommendations to help guide
more definitive future investigations. Throughout this paper,
we used the terms Bfertility^ and Bfecundity^ synonymously,
as the ability to conceive a recognized pregnancy, and infer-
tility as the inability to conceive a recognized pregnancy with-
in 12 months of regular, unprotected, heterosexual intercourse
[10, 11].

Literature Search and Evaluation Strategy

We used PubMed and Google Scholar to search the English
language literature published during the past 10 years ending
October 31, 2015. Using a combination of keywords andman-
ual reference list searches, we captured epidemiologic studies
exploring associations between EOPs and female infertility.
We retained nine papers for review, describing results from
eight epidemiologic studies. As most retained papers ad-
dressed several EOPs, we reviewed each study and assigned
a relative weight to the results based on a qualitative assess-
ment of study design, study population and size, outcome and
exposure assessment strategies, and the data analysis.

– We considered prospective cohort studies with precon-
ception enrollment as an ideal, although admittedly high-
ly resource-intensive design. This approach ensures that
exposures preceded outcomes (temporality) [59], and al-
lows for capture of often unrecognized preclinical losses
[60]. Prospective approaches also preclude bias from ret-
rospective evaluation of clinically pregnant women,
which exclude by design, those with preclinical loss and
infertility [61]. Still, couples planning a pregnancy tend to
be less fertile on average than all pregnancies including
highly fertile contraception failures, which account for
almost half of all U.S. pregnancies [62]. This might in-
troduce a selection bias towards the null hypothesis, if
failures have substantially lower exposure, or away from

the null if exposure is substantially higher among failures
[60].

– We considered general population samples as ideal, with
larger sizes likely to have greater sensitivity (statistical
power) and to provide more precise effect estimates.
Populations using assisted reproductive technologies
(ART), including IVF, tend to be Bhighly selected,^ com-
prised of couples who intensely desire but are unable to
have a child, seek medical attention for infertility, and
have exhausted conventional treatments [63, 64]. If social
and economic factors governing ART usage, such as
higher income, are also associated with exposure to
EOPs, generalizability may be limited [63, 65]. For ex-
ample, greater wealth was associated with higher urine
BP-3 levels and lower urine MBP and MiBP levels in
U.S. biomonitoring studies [66]. Still, general population
recruitment poses significant challenges, given that <1–
2 % of reproductive aged couples reported to be planning
near future pregnancies [67–69], and high participant
study burdens appear to be better tolerated by reproduc-
tive health clinic populations [65].

– We considered prospective capture of time to pregnancy
(TTP), the number of menstrual cycles with unprotected
heterosexual intercourse prior to a pregnancy, coupled to
hCG testing on the day of expected menses, as ideal for
outcome assessment. TTP is Bfunctional^ in that it inte-
grates various couple-level biological and behavioral pro-
cesses necessary for pregnancy [60]. Although retrospec-
tive self-report appears valid [70], moderate-level mis-
classification is likely in particular for womenwith longer
waiting times [71]. Use of hCG urine biomarkers of im-
plantation on the day of expected menses also allows for
capture of otherwise unobserved preclinical losses [72].
We also considered repeated collection of valid exposure
biomarkers as ideal [73]. EOPs have short ½-lives in
vivo, and exposure may be episodic, leading to high
within-woman variability and lower statistical power
[74]. Prospective collection of biologic specimens timed
to critical biologic windows for pregnancy was similarly
of importance [75].

– Infertility data are frequently hierarchical in nature, and
so, use of appropriate statistical techniques to accommo-
date correlated outcomes was essential [76]. Outcomes
from individual menstrual cycles or ART/IVF cycles are
correlated within woman, violating the independent out-
comes assumption underpinning conventional statistical
tests. Investigators frequently employed Cox-discrete
time regression to assess relations between EOPs and
TTP [77]. Exponentiation of the regression coefficients
provide fecundability (fertility) odds ratios (FORs),
interpreted as a lower odds for pregnancy with an increase
in the predictor if FOR<1.0 (lower fertility) and a higher
odds for pregnancy if FOR>1.0 (higher fertility). We
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likewise assessed appropriate statistical adjustment for
confounders, additional infertility risk factors also associ-
ated with exposure to EOPs, yet not falling within the
causal pathway, such as age, race, body mass index
(BMI), and cigarette smoking, inattention to which biases
results [78].

Results and Discussion

We identified seven studies that assessed female infertility and
phthalates [79••, 80, 81••, 82••, 83–85], five for BPA [79••,
80, 81••, 82••, 86••], and one study each for triclosan [79••]
and UV filters [87••]. Table 1 provides an overview of all
studies, including detailed lists of exposures and confounders.

Longitudinal Investigation of Fertility
and the Environment Study

This prospective investigation with preconception enrollment
recruited 501 couples fromMichigan and Texas, during 2001–
2009. Of eligible couples, 42 % agreed to participate; most
were white and had high incomes [81••, 87••]. Couples were
followed from the time they stopped using contraception until
either a pregnancy or 12 months of trying, completed study
questionnaires and daily journals, and provided biologic spec-
imens. Women were provided with fertility monitors to help
time intercourse to ovulation and with digital pregnancy de-
tection devices for use on the day of expected menses.

Longitudinal investigation of fertility and the environment
(LIFE) investigators measured 14 phthalate monoesters, BPA,
and five benzophenones in baseline urine specimens.
Associations were evaluated for each phthalate, BPA, and
benzophenone on TTP censored at 12 months in 424 couples,
adjusted for male exposure and confounders, and accounting
for left truncation due to pre-study time off of contraception
[81••, 87••]. One standard deviation higher concentrations of
mono (2-ethyl-5-carboxypentyl) phthalate (MECPP)
(FOR=1.22; 95 % CI= 1.02–1.47; P<0.05) and mono-n-
octyl phthalate (MOP) (FOR=1.18; 95 % CI =1.03–1.35;
P<0.05) were associated with shorter TTP, although MOP
was mostly below the limit of detection (LOD). No other
statistically significant female effects were reported.
However, significant FORs <1.00 were reported for male ex-
posure to mono-methyl phthalate (MMP), monobenzyl
phthalate (MBzP), and BP-2. LIFE Study EOPs were gener-
ally lower than those reported for U.S. women of reproductive
age in 2001–2009 [88].

Overall, we afforded high weight to the LIFE Study results.
Although of moderate sample size, a general population sam-
ple was enrolled preconception, and male partner data was
concurrently modeled with females in a comprehensive

analysis incorporating confounding variables. However, the
use of a single baseline urine may havemisclassified exposure
at conception, leading to underestimated effects, in particular
for phthalates and BPA [89, 90].

North Carolina Early Pregnancy Study

This prospective investigation with preconception enrollment
recruited 221 women planning pregnancies from North
Carolina, in 1982–1986 [82••]. Women were followed from
the time they stopped using contraception until either a preg-
nancy or six months of trying, completed study questionnaires
and daily diaries, and collected first morning urine voids. The
investigators analyzed a panel of 11 common phthalate mono-
esters and BPA in pooled residual weekly urine specimens
from each menstrual cycle. Confounder-adjusted associations
were evaluated for cycle-specific phthalates and BPA with
TTP censored at six months, as determined by urine hCG
testing. There were no statistically significant associations
for phthalates or BPA and fertility. In fact, higher concentra-
tions of several phthalates were associated with a lower odds
for preclinical pregnancy loss. Still, in an unadjusted analysis
of n=94 contributing both non-conception and conception
cycles, the odds for pregnancy was lower with higher
monobutyl phthalate (MBP) (odds ratio [OR]3rd vs. 1st

tertile =0.3; 95 % CI 0.1–0.8; P=0.01) and the sum of diethyl
hexyl phthalate (DEHP) metabolites (OR3rd vs. 1st tertile = 0.4;
95 % CI 0.2–1.0; P=0.04). However, this paired analysis
excluded the most and the least fertile women, as defined by
those who conceived in the first study cycle and those who did
not conceive during follow-up, respectively. North Carolina
Early Pregnancy Study (NCEPS) EOPs were generally higher
than those reported for U.S. women of reproductive age in
2009–2010.

Overall, we afforded high weight to the NCEPS results.
Women were enrolled preconception, and urine biomarkers
were employed to ascertain pregnancy and exposures. This
was also the first study to leverage cycle-specific exposures
in a general population sample, and multiple specimens were
pooled to reduce exposure variability within-cycle. However,
the study results were limited by the absence of male partner
data and a modest sample size. Still, data were appropriately
analyzed, confounding addressed, and appropriate sensitivity
analyses conducted.

Maternal-Infant Research on Environmental Chemicals
Study

This retrospective investigation enrolled 2001 pregnant wom-
en prior to 14-week completed gestation, residing in ten
Canadian cities, from 2008–2011 [79••]. Of eligible women,
39 % agreed to participate and tended to be wealthier and
more educated than the general population. Participants
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completed questionnaires and provided biologic specimens.
The investigators analyzed 11 phthalate monoesters, BPA,
and triclosan in the first trimester urine specimens.
Associations were evaluated for urine phthalates (n=1491),
BPA (n=1623), and triclosan (n=1583) with TTP, adjusted
for confounders. Urine triclosan >75th percentile was associat-
ed with longer TTP (FOR=0.84; 95%CI 0.72–0.97; P<0.05),
although not statistically significant when expressed as standard
deviations or quartiles. No other statistically significant effects
were reported. Results were similar when including pregnan-
cies resulting from contraception failures, to accommodate po-
tential selection bias associated with higher fertility in this
group. Maternal-infant research on environmental chemicals
(MIREC) triclosan was lower than reported for prior studies
of pregnant women, BPA was lower than that reported for
Canadian females in 2007–2009, and phthalates levels were
similar to those in Canadian women in 2009–2011.

Overall, we afforded moderate weight to the MIREC Study
results. Women with pregnancies were recruited, and TTP was
assessed retrospectively without incorporation of male factors.
Furthermore, misclassification associated with the use of a first
trimester urine biomarker for retrospective exposure assignment
is likely to underestimate effects, in particular for phthalates and
BPA [89, 90]. However, the large study size provided for ample
statistical power to detect modest associations, and comprehen-
sive statistical and sensitivity analyses were completed.

INUENDO Study

This retrospective investigation recruited 1710 pregnant wom-
en and male partners from Warsaw (Poland), Kharkiv
(Ukraine), and across Greenland [85], in 2002–2004.
Overall, 44.6 % of eligible women enrolled, tending to be
somewhat older than non-enrollees, although this varied by
site. Participants completed a study questionnaire and provid-
ed a blood specimen, in which three secondary phthalate
monoesters of DEHP and diisononyl phthalate (DiNP) were
determined, the concentrations of which varied by site. Sums
of DEHP metabolites (Bproxy-MEHP^) and DiNP metabo-
lites (Bproxy-MiNP,^mono-isononyl phthalate) were assessed
as predictors of TTP censored at 13 months, and as predictors
of TTP >13 months, adjusted for confounders, in 938 women.
Log unit increases in proxy-MEHP were associated with
shorter TTP in the overall sample (FOR=1.14; 95 % CI
1.00–1.30; P<0.05), driven primarily by the Greenland sub-
sample. No statistically significant associations were reported
for proxy-MiNP or for TTP >13 months. Similar results were
reported using tertiles of exposure and restricted to first time
pregnancies, although a log unit increase in proxy-MiNP di-
minished fecundity in primiparous women from Greenland
(FOR = 0.72; 95 % CI 0.54–0.95; P < 0.05). Men from
Greenland had shorter TTP with higher proxy-MEHP and
proxy-MiNP, and for proxy-MiNP in all men.

Overall, we afforded moderate weight to the results of the
INUENDO Study. Despite retrospective capture of TTP in a
pregnant cohort, coupled to a single measure of phthalates ex-
posure, primarily in mid to late pregnancy, the study sample
was large overall. Serum specimens were used to measure
phthalate exposure, yet the analysis was limited to secondary,
oxidative metabolites, and so, the results are unlikely to be
vulnerable to criticism levied against determination of primary,
hydrolytic phthalate monoesters and BPA in bioactive media
including blood [91]. Unfortunately, the results for individual
phthalates as predictors were not provided (although reported to
be similar), complicating interpretation of the proxy-DEHP and
proxy-DiNP effects. Furthermore, female models were not ad-
justed for males, although exposure was captured. Still, the data
were comprehensively analyzed and confounding addressed.
However, there exists debate with respect to adjustment for
parity in studies of non-persistent exposures [92]. Similar re-
sults were generated for n=552 primiparae, but results restrict-
ed to multiparous women were not reported.

Generation R Study

This retrospective investigation recruited 8880 pregnant wom-
en residing in Rotterdam (Netherlands) and with delivery
dates from 2002–2006 [84]. Overall 61 % of eligible women
enrolled, tending to be older, more educated, and non-
minority relative to non-enrollees. Workplace phthalates ex-
posure was assessed as a predictor of TTP >6 months, adjust-
ed for confounders and additional workplace risks, in 3719
women. Using a job-exposure-matrix (JEM), women with
phthalates exposure had higher odds for TTP >6 months than
women without exposure (OR=2.16; 95 % CI 1.02–4.57;
P<0.05), similar to the unadjusted effect (OR=2.70; 95 %
CI 1.31–5.55; P<0.05), and when limited to only primiparous
women (OR=1.84). Statistically significant effects were not
detected using self-reported workplace exposures.

Overall, we afforded moderate weight to the results of the
Generation R Study. Despite retrospective capture and dichot-
omization of TTP at mid-pregnancy, this was a population-
based study with a large sample. Exposure was assessed indi-
rectly using questionnaire data, but also integrated into a JEM
to reduce misclassification. However, JEM assignment was
based solely on job title, and a validation analysis reported
poor agreement with urine exposure biomarkers [93]. Yet,
exposure misclassification would be likely to have attenuated
effect estimates. Still, the data were comprehensively analyzed
and confounding addressed.

Environment and Reproductive Health Study

This prospective investigation of couples using assisted repro-
ductive technologies to conceive began in 2004 at a
Massachusetts reproductive health center and is ongoing
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[86••]. Approximately 60 % of eligible women agreed to en-
roll. The most recent Environment and Reproductive Health
(EARTH) analysis considered 256 women who completed ≥1
non-donor, fresh embryo transfer, and IVF cycle from 2004–
2012. Participants completed study questionnaires, and most
provided two urine specimens per cycle, in which BPA was
determined. Associations were assessed between cycle-
specific BPA and embryo implantation, assessed by serum
hCG, clinical pregnancy, assessed by ultrasound, and live
birth, adjusted for confounders. Contrary to an early report
analyzing n=137 recruited from 2004–2010 [94], no associ-
ations were indicated in this larger analysis. Secular changes
in IVF success rates and BPA exposures did not account for
the discrepancy. The average BPAwas similar to that reported
for 2009–2012 U.S. females.

Overall, we afforded high weight to the EARTH Study
results. Although a clinic study population of moderate size
was considered, the prospective nature of the design, and com-
prehensive specimen collection and follow-up allowed for
capture of cycle-specific exposures and a spectrum of out-
comes. Exposure misclassification is possible given the short
half-life of BPA, yet it was likely modest given that two spec-
imens were averaged for most cycles. Furthermore, an infertile
reference group precluded the introduction of selection bias,
likely if comparing clinic to non-clinic populations [65].
However, this also may limit generalizability of study results,
as women conceiving spontaneously may have different char-
acteristics leading to exposure [63, 64]. In addition, male ex-
posures were not incorporated. However, the data were com-
prehensively analyzed and confounding addressed. There ex-
ists debate with respect to adjustment for infertility diagnosis
in studies of clinic populations [95], yet similar results were
generated when excluding diagnosis from the models.
Discrepancies between the results of the recent [86••] and
the 2012 [94] analyses demonstrate the difficulties inherent
to this area of research.

Italian Studies

From 2009–2010, the pilot PREVIENI Study enrolled 48
women receiving infertility treatment at a reproductive health
center in Rome and 13 residents who had conceived sponta-
neously within one year [80]. Participants completed a study
questionnaire and a fasting blood specimen was collected into
glass. Proportions of values >LODs for serum MEHP, DEHP,
and BPAwere compared between infertile and fertile women.
There were no statistically significant differences for MEHP
or DEHP, although a higher proportion of infertile women had
BPA>LOD (49.8 %; P<0.05). Higher concentrations of es-
trogen, androgen, and pregnane X receptors measured in pe-
ripheral blood monocytes were also reported for infertile vs.
fertile women (P<0.05).

A second study conducted in Rome enrolled 56 cou-
ples receiving treatment for infertility at a reproductive
health center and 56 local couples with a history of
childbirth following spontaneous conception [83]. Five
phthalate monoesters were determined in spot urine
samples, and participants completed a study question-
naire. Higher median levels of creatinine-corrected urine
MBP (P < 0 . 0 0 1 ) , MEHP + mono ( 2 - e t h y l - 5 -
hydroxyhexyl) phthalate (MEHHP) (P = 0.076), MBzP
(P= 0.071), and monoethyl phthalate (MEP) (P< 0.001)
were reported for infertile vs. fertile women. Significant
differences in urine MBP and MEP were also reported
for male partners.

Overall, we afforded the results of the two Italian studies
modest weight. Although employing biomarkers of exposure,
the small sample sizes and cross-sectional nature of the assess-
ments limited the impact of the results. In addition, no adjust-
ments were made for confounders, although PREVIENI re-
ported similar age and BMI in the groups. Importantly, wom-
en receiving infertility treatment may be dissimilar to the gen-
eral population in terms of behavior influencing exposure [63,
64], and medical therapy may itself inflate exposure [30], and
so, a clinic-based comparison group is preferable [65]. An
additional concern comes from the use of serum biomarkers
to determine primary phthalate monoesters and BPA, which
was criticized due to a possibility for extraneous introduction
of parent compounds into the specimen during collection,
with subsequent in situ metabolism by endogenous hydro-
lases, and so urine preferred [91].

Conclusions

Whereas a substantial experimental literature has begun to
accumulate, very few epidemiologic studies considering the
impact of EOPs on female infertility have been published to
date. We afforded high weight to the results in four of nine
identified publications [81••, 82••, 86••, 87••] and moderate
weight to three [79••, 84, 85]. Results were almost uniformly
null, although study participants tended to be wealthier and
more highly educated than the general population, and expo-
sure levels for contemporary samples tended to be lower, po-
tentially limiting extrapolation to poorer, less educated groups.
Overall, we conclude that insufficient evidence exists at pres-
ent to implicate background exposures to phthalates and BPA
as risk factors for women’s infertility, defined as 12 months of
unprotected heterosexual intercourse without a pregnancy [10,
11], although more highly exposed groups may be vulnerable.
As only one reviewed study reported results for triclosan and
one for UV filters, we are unable to draw conclusions. Still,
given the paucity of data and limitations to available evidence,
we believe additional investigations are needed to more defin-
itively assess the risks.
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Female infertility is a critical human health issue, and ap-
parent increases over recent decades implicate environmental
in addition to sociologic factors [17, 18]. Exposure to EOPs is
frequent and widespread among women of reproductive age,
drawing considerable attention to impacts onwomen’s fertility
[1•, 2•, 3]. EOPs are not limited to the phthalates, BPA, and
UV filters considered in this paper, but encompass a broader
array of compounds to which women are exposed as new and
replacement compounds enter the market [96]. However, pop-
ulation data are scant. For example, parabens, used as preser-
vatives and anti-oxidants in PCPs and dietary applications
[97], were detected in 99 % of U.S. females in 2005–2006
[98]. Recent human evidence suggests associations between
parabens and diminished ovarian reserve [99], yet no epide-
miologic studies of female infertility appear to have been pub-
lished to date.

The evolution of the exposome paradigm [100] has brought
greater attention to the relevance of chemical mixtures, con-
tact with which more accurately reflects the human experience
than domodels of isolated exposures. The Bmixing^ of female
and male exposures reviewed in this paper speak to this issue
as well, as suggested by the couple-level exposure results from
the LIFE study [81••, 87••]. Additive or synergistic effects
may manifest in the absence of individual effects at low doses
[101], and impacts may be higher in susceptible groups, due to
genetic background, co-existing exposures, and pre-existing
conditions [102]. Yet, exposure assessment presents a chal-
lenge. The large within-woman variabilities for many
EOPs may lead to Bfalse negative^ studies when relying
on single or Bmistimed^ biomarker collections [74].
Longitudinal designs with repeated specimen collection
to reduce exposure misclassification, comprehensive
chemical analyses, and appropriate statistical methods
to assess mixtures are desired in both the general pop-
ulation and high-risk groups to more definitively assess
impacts. Epidemiologists have only begun to piece to-
gether the relevance of EOPs to female infertility.
Additional well-planned studies will help to build the
critical literature mass necessary for identifying modifi-
able environmental risk factors, to prevent and to help
to treat female infertility.
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