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Abstract Advances in artificial intelligence (AI) technol-
ogy are propelling the rapid development of automotive 
intelligent cockpits. The active perception of driver emo-
tions significantly impacts road traffic safety. Consequently, 
the development of driver emotion recognition technology 
is crucial for ensuring driving safety in the advanced driver 
assistance system (ADAS) of the automotive intelligent 
cockpit. The ongoing advancements in AI technology offer 
a compelling avenue for implementing proactive affective 
interaction technology. This study introduced the multi-
modal driver emotion recognition network (MDERNet), a 
dual-branch deep learning network that temporally fused 
driver facial expression features and driving behavior fea-
tures for non-contact driver emotion recognition. The pro-
posed model was validated on publicly available datasets 
such as CK+, RAVDESS, DEAP, and PPB-Emo, recogniz-
ing discrete and dimensional emotions. The results indicated 
that the proposed model demonstrated advanced recogni-
tion performance, and ablation experiments confirmed the 
significance of various model components. The proposed 
method serves as a fundamental reference for multimodal 
feature fusion in driver emotion recognition and contributes 

to the advancement of ADAS within automotive intelligent 
cockpits.

Keywords Driver emotion · Artificial intelligence (AI) · 
Facial expression · Driving behavior · Intelligent cockpit

1 Introduction

The automotive intelligent cockpit refers to a mobile space 
incorporating advanced software and hardware systems, pos-
sessing the human-machine-environment fusion capabilities 
because of human-machine interaction, network-connected 
services, and scenario expansion, and offering occupants a 
comprehensive experience of safety, intelligence, efficiency, 
and pleasure. As a representative cyber-physical-social sys-
tem (CPSS), it seamlessly integrates diverse technologies, 
including artificial intelligence (AI), information communi-
cation, sensor networks, and augmented reality displays [1, 
2]. Intelligent cockpits actively sense the occupants’ state, 
offering an opportunity to address driving safety issues 
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conventionally attributed to human factors [3]. The advanced 
driver assistance system (ADAS) within an automotive intel-
ligent cockpit dynamically monitors and intervenes in the 
driver’s state [4]. This system is a prerequisite for ensuring 
the safe operation of human-machine co-driving vehicles 
[5]. In addition, it plays a crucial role in mitigating road 
traffic accidents that occur during the human-machine co-
driving stage, thereby enhancing overall road safety [6]. 
Driver-related factors contributed to over 90% of road traffic 
accidents [7], with approximately 15% attributed to drivers’ 
emotions and behaviors [8]. The heightened risk associated 
with driving under the influence of drivers’ emotions has 
emerged as a substantial contributor to road safety hazards 
[9]. Hence, the advancement of driver emotion recognition 
technology is paramount for enabling proactive affective 
interaction of ADAS within automotive intelligent cockpits.

Addressing the impact of driver emotions on road traffic 
safety necessitates precise, dependable, and efficient rec-
ognition of emotional states within automotive intelligent 
cockpits. Driver emotions exhibit multifaceted variations, 
encompassing intricate interplays between physiological 
and behavioral aspects within diverse driving contexts 
[10–14]. Conventional emotion recognition approaches, 
relying on facial feature modeling, face inherent chal-
lenges in achieving accuracy and practical reliability. The 
ongoing advancements in AI technology, particularly its 
robust feature extraction and modeling capabilities [15, 
16], offer a compelling avenue for implementing driver 
emotion recognition technology.

Facial expressions are fundamental manifestations of 
emotional states and constitute a pivotal route for imple-
menting emotion recognition within AI technology [17]. 

Nevertheless, within the context of the driving environ-
ment, subtle changes in the driver’s facial expressions 
prove more elusive than those encountered in daily life 
[18, 19]. This inherent subtlety poses significant chal-
lenges for vision-based AI emotion recognition techniques. 
Concurrently, the driver’s emotional representation mani-
fests across various dimensions, including driving behav-
ior and physiological signals [20]. Consequently, AI-based 
multimodal feature fusion techniques hold significant 
promise in enhancing emotion recognition accuracy [21].

This study introduced the multimodal driver emotion 
recognition network (MDERNet)  for automotive intel-
ligent cockpit to resolve the above mentioned limitations. 
MDERNet is a dual-branch deep learning architecture 
illustrated in Fig. 1, which employed facial expression and 
driving behavior.

The main contributions of this study could be concluded 
as follows.

 (i) A dual-branch driver emotion recognition model 
named MDERNet was proposed to achieve non-
contact dynamic driver emotion recognition with the 
fusion of facial expression and driving behavior.

 (ii) The frame attention and fusion modules in MDERNet 
facilitated the intermediate fusion process between the 
facial expression feature extraction branch and the 
driving behavior feature extraction branch, resulting 
in enhanced performance for driver emotion recogni-
tion.

 (iii) The proposed model effectively recognized seven dis-
crete emotions (anger, disgust, sadness, fear, happi-
ness, surprise, and neutral) and three types of dimen-

Fig. 1  Architecture of driver emotion recognition model based on facial expression and driving behavior



AI‑enabled intelligent cockpit proactive affective interaction: middle‑level feature fusion…

sional emotions (arousal, valence, and dominance). 
The results demonstrated MDERNet’s strong perfor-
mance in driver emotion recognition.

The remainder of this study is as follows. Related works 
about emotion recognition are summarized in Sect. 2. The 
proposed MDERNet is introduced in detail in Sect. 3. Sec-
tion 4 introduces the experimental setup and analyzes the 
results of MDERNet. The conclusion is described in Sect. 5.

2  Related works

2.1  Discrete emotion and dimensional emotion

Emotions can be classified into two main categories: discrete 
and dimensional, as proposed by various emotion models. 
Ekman [22] proposed that emotions were discrete, identify-
ing six fundamental emotions: happiness, sadness, anger, 
fear, surprise, and disgust. In addition, other emotions were 
regarded as intricate combinations of these foundational 
states. However, the discrete emotion model relies on verbal 
descriptions for emotion categorization rather than quantita-
tive analysis. This approach poses challenges in analyzing 
complex emotions [23].

Lang [24] introduced the “two-dimensional valence-
arousal model”, which categorized emotions along two 
dimensions: valence and arousal. Valence represents the 
degree of pleasure associated with an emotion, while arousal 
reflects the intensity of the emotional experience. Mehra-
bian’s extension of the emotion model introduces a third 
dimension—dominance [25], representing the continuum 
from submissiveness to dominance. This dimension reflects 
an individual’s capacity to regulate emotions. Therefore, 
the dimensional emotion model quantitatively characterizes 
emotions across three primary dimensions: valence, arousal, 
and dominance. Here, we balanced the assessment of model 
performance between the discrete emotion model and the 
dimensional emotion model.

2.2  AI‑based emotion recognition

During driving, the driver’s emotional representation is 
mainly reflected in the driver’s facial expression [26, 27], 
driving behavior [28], vocal responses [29], and physi-
ological indicators [30]. In AI-based emotion recogni-
tion approaches, researchers commonly focus on facial 
expressions as a primary modality and integrate additional 
modalities.

Physiological features are suitable for recognizing inter-
nal emotions. Wu and Li [18] introduced a multimodal 
approach for emotion identification that combined facial 
expression analysis utilizing a multi-level convolutional 

neural network (CNN) model and electroencephalography 
(EEG) information with a stacked bidirectional long short 
term memory (Bi-LSTM) model. The D-S evidence theory 
was employed at the decision level to fuse the emotion iden-
tification results. Ali and Hughes [31] introduced the unified 
biosensor-vision multimodal transformer-based (UBVMT) 
method, which classified emotions in an arousal-valence 
space by integrating a 2D representation of an electrocardio-
gram/photoplethysmography (ECG/PPG) signal with facial 
information. However, the method of physiological signal 
acquisition faces limitations owing to its invasive nature and 
susceptibility to interference, rendering it less suitable for 
specific applications.

Extracting speech features for emotion recognition has 
proven to be an effective method [32]. Liu et al. [33] intro-
duced a multimodal fusion network (M2FNet) that leveraged 
complementarity and importance for emotion recognition. 
By accounting for critical differences between multiple 
modalities (vision and audio), they assign weights through 
an attention network based on their relative significance. 
Mocanu et  al. [34] proposed an end-to-end multimodal 
emotion recognition framework incorporating self-attention 
mechanisms for audio and visual modalities. The fusion 
strategy involves cross-attention for combining audio and 
video features. Nevertheless, this method necessitates high-
quality speech signals and encounters challenges in noisy 
driving environments.

The fusion of driver facial expression and driving behav-
ior features exhibited non-invasiveness and stable anti-
interference properties, effectively addressing the above-
mentioned challenges. In addition, data-level fusion, the 
middle-level feature fusion and decision-level fusion are 
widely employed multimodal information fusion ways in 
AI technologies [18]. However, the middle-level feature 
fusion is the most effective but challenging. In our pro-
posed method, we accounted for the continuity of emotional 
expression by fusing facial expression and driving behavior 
features along the time dimension. This approach maximizes 
the extraction of the driver’s emotional features.

3  Description of MDERNet model

3.1  Overall structure of MDERNet model

The proposed MDERNet model based on facial expression 
and driving behavior is a two-branch network that com-
bines multimodal data for discrete and dimensional emo-
tion recognition utilizing sparse representations and atten-
tion mechanisms, as illustrated in Fig. 1. The two branches 
of MDERNet handle facial expression modal and driving 
behavior modal features, respectively. MDERNet utilizes 
facial expressions to generate temporal attention and driving 
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behavior to refine input features for feature fusion between 
these two modalities. The two-branch MDERNet model 
comprises five modules: facial expression feature extrac-
tion module (FEFEM), fusion module (FM), frame attention 
module (FAM), driving behavior feature extraction module 
(DBFEM), and decision module (DM).

Each MDERNet input sample comprises a sequence of 
consecutive frame images from a single video and a cor-
responding numerical sequence of driving behavior data. 
Firstly, the facial expression branch represents preprocessed 
video frames as consecutive face images fed into FEFEM, 
a deep CNN without fully connected or classification lay-
ers. Consecutive frames of the same video are sent through 
FEFEM to obtain primary video-level features in FM. The 
FAM is the attention module that determines the overall 
importance of each frame in the video. The FAM module 
has two inputs: deep features obtained by FEFEM for each 
frame image, and video-level features obtained by FEFEM 
and FM for all frame images in that video. FAM’s frame 
attention weights reflect critical deviations in the temporal 
sequence data. These weights are multiplied with their corre-
sponding deep feature outputs from FEFEM, which are then 
integrated with other frames’ deep features after recalibra-
tion. The refined overall features of the video are obtained by 
inputting these integrated features into FM. Simultaneously, 
the driving behavior branch receives integrated frame atten-
tion weights chronologically. Another branch of MDERNet 
processes driving behavior data, normalized with a mean 
of 0 and a variance of 1. Frame attention weights from the 
facial expression branch are processed, up-sampled to match 
driving behavior data length, and benchmarked to obtain 
binarized continuous values. The driving behavior features 
are obtained by multiplying the binarized continuous val-
ues with the driving behavior data individually and input-
ting them into DBFEM. Finally, the features extracted from 
the two branches are spliced and inputted into DM, which 
comprises a conventional multilayer fully connected layer to 
recognize the driver’s emotions based on facial expressions 
and driving behavior features.

3.2  Facial expression branch

3.2.1  FEFEM

The FEFEM utilizes a convolutional neural network to 
extract deep features of faces with input facial expressions. 
Because ResNet is currently the most widely utilized CNN 
feature extraction network, this paper utilizes ResNet18 to 
extract expression features. The input to the FEFEM is a 
112×112 resolution grayscale image Iframe of a face, and the 
output is a 512-dimensional 1×1 feature map Mfefem , which 
proceeds as

where ffefem is a function of the FEFEM, and Mfefem repre-
sents the feature vector for each frame of the face image out-
put. All frame feature vectors belonging to the same video 
are input into FM and utilized as part of FAM input.

3.2.2  FM

The FM module is illustrated in Fig. 2. The input to FM is a 
set of feature vectors obtained from all video frame images 
through FEFEM. FM comprises two steps: channel blending 
and 1×1 convolution. Inspired by ShuffleNet [35], the Chan-
nel blending operation arranges face feature vectors channel-
by-channel in a time sequence such that all frame feature 
maps of each channel can be conveniently convolved in a 
1×1 group to form a video feature map by channel. All video 
feature maps of all channels form the overall features of 
the video. Feature vectors extracted by FM as overall video 
feature vectors are input into FAM along with frame feature 
vectors output from FEFEM. The process is expressed as

where ffm is a function of FM, including channel mixing 
and group convolution operations, and k is the number of 
sampled frames of the video. Mfefemi

 is the feature mapping 
obtained from the i-th image frame after FEFEM, and Mfm is 
the overall feature vector of the video after FM processing.

(1)Mfefem = ffefem(Ifefem),

(2)Mfm = ffm(Mfefem0
,⋯ ,Mfefemk−1

),

Fig. 2  Fusion module
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3.2.3  FAM

As illustrated in Fig. 3, the FAM is similar to the SE module 
[36], including two fully connected layers and the Sigmoid 
function, and the FAM is implemented as

where ffam is the module of FAM, Mfefemi
 the feature map-

ping of the i-th frame image obtained by FEFEM, Mfm the 
preliminary video feature mapping of the video to which the 
i-th frame image belongs, the generated Wfami

 denoted as the 
weight value of the i-th frame image, and Mfami

 the feature 
mapping of the i-th frame image after weighting.

The weight sequence generated by FAM serves two pur-
poses: one is to calibrate deep features Mfefemi

 across all 
image frames with Wfami

×Mfefemi
 , and the other is to refine 

driving behavior data through another branch of the multi-
modal model.

(3)
{

Wfami
= ffam

(

Concat
(

Mfefemi
,Mfm

))

,

Mfami
= Wfami

×Mfefemi
, i ∈ [0, k − 1],

3.3  Driving behavior branch

3.3.1  Driving behavior data refinement module

Driving behavior data refinement involves filtering and high-
lighting data from the driving behavior modality with tempo-
ral attention obtained from the facial expression modality to 
achieve information fusion between multiple modalities at the 
input information level.

The filtering and highlighting of driving behavior data with 
Wfami

 involves two main steps, as illustrated in Fig. 4. Firstly, 
Wfami

 is up-sampled to match the numerical length of driv-
ing behavior data Idb . Next, Wfami

 is binarized by applying a 
threshold, and the resulting binary values are multiplied with 
the driving behavior data individually. The implementation 
process is shown as

where Binary and Upsample denote a binarization operation 
and an upsampling operation, Wbinary

fam
 a sequence of temporal 

frame attentional weights after upsampling and binarization, 
and Irefined

db
 the refined driving behavior data.

3.3.2  DBFEM

DBFEM is a multilayer perceptual machine. The input com-
prises refined driving behavior data that include steering 
wheel rotational speed, accelerator pedal angle, brake pedal 
force, longitudinal velocity, longitudinal acceleration, lat-
eral velocity, and lateral acceleration. Firstly, normalized 
preprocessing is performed on the input data to ensure con-
sistency in scale. Next, the temporal frame attention weight 
sequence filters and highlights the sampled driving behavior 
data. Finally, the selected driving behavior data are spliced 
together and fed into DBFEM for processing as

(4)

{

W
binary

fam
= Binary

(

Upsample
(

Wfam

))

,

Irefined
db

= W
binary

fam
× Idb,

Fig. 3  Frame attention module

Fig. 4  Process of driving behavior data refine Fig. 5  Decision module
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where fdbfem is a function of DBFEM, and Mdbfem is the 
extracted driving behavioral features.

3.4  DM

The DM is a one-layer, fully connected layer with an 
attached Softmax function for discrete emotion classifica-
tion. The driving behavior features and facial expression fea-
tures extracted from the two branches of MDERNet serve as 
inputs, as illustrated in Fig. 5. The facial expression feature 
is obtained by passing the weighted frame image feature 
Mfami

 through another FM with the following process

where fdm is a function of DM, and ŷ is the model predic-
tion result.

3.5  Loss function

This paper employed different loss functions to evalu-
ate various emotion recognition metrics. Specifically, the 
cross-entropy [37] loss function was utilized to measure. 
Accuracy, the F1 loss function [38] was utilized to calculate 
F1-score, and the mean square error (MSE) loss function 
[39] was utilized to quantify MSE. The consistency correla-
tion coefficient (CCC) loss function [40] assessed the CCC. 
The corresponding formulas are expressed as

where xi represents the i-th sample’s input feature in the 
final classification layer. The true label and predicted label 
of the i-th sample are represented by yi ∈ {1, 2,⋯ ,C} and 
ŷi ∈ {1, 2,⋯ ,C} , respectively. The corresponding aver-
ages for yi and ŷi are represented by y and ŷ . The variances 
for yi and ŷi are represented by S and Ŝ , respectively. SC 
represents the covariance between yi and ŷi . The network’s 

(5)Mdbfem = fdbfem
(

Irefined
db

)

,

(6)ŷ = fdm
(

Concat
(

Mdbfem, ffm
(

Mfam0
,⋯ ,Mfamk−1

)))

,

(7)Lcross entrophy loss = −
1

N

N
�

i=1

log

�

ehyi
∑C

j=1
ehj

�

,

(8)LF1 loss = 1 − 2
precision ⋅ recall

precision + recall
,

(9)LMSE loss =
1

N

N
∑

i=1

M
∑

t=1

(

Ii
t

)2
,

(10)LCCC loss = 1 −
2SC

S2 + Ŝ2 + (y − ŷ)2
,

output for recognition of the i-th sample is represented by 
h =

(

h1, h2,⋯ , hC
)T , where C represents the number of 

classes.

4  Experimental setup and results

4.1  Data utilized

Because the sample sizes of existing facial expression data-
sets are generally small, the MS-Celeb-1M face dataset [41] 
is utilized to pre-train the FEFEM. This pre-training endows 
the FEFEM with more robust feature extraction and expres-
sion recognition capabilities.

This paper validates the effectiveness of the MDERNet 
model from two perspectives: the discrete sentiment model 
and the dimensional sentiment model. CK+ and RAVDESS 
datasets with discrete sentiment labels were selected to vali-
date their performance on discrete sentiment classification 
tasks. The DEAP dataset with dimensional sentiment labels 
was selected to validate its performance on the dimensional 
sentiment regression task. The PPB-Emo dataset was uti-
lized for both classification and regression tasks to validate 
the effectiveness of the MDERNet model, as it included data 
on driving behavior in addition to discrete and dimensional 
sentiment labels.

CK+ [42]. CK+ is a dataset that contains 593 video 
sequences of spontaneous and performs facial expressions 
of emotions from 123 participants, along with other meta-
data. The participants were predominantly female and aged 
between 18 and 30 years old. Out of the 327 video sequences 
from 118 participants, seven discrete emotions were labeled: 
anger, disgust, sadness, fear, happiness, surprise, and con-
tempt. The image sequences had 640 × 480 and 640 × 490 
pixel resolutions.

RAVDESS [43]. The RAVDESS dataset comprises 7 356 
audiovisual files of emotional speech and singing perfor-
mances captured by 24 professional actors (12 female, 12 
male). The video-voice files are labeled with eight categories 
of emotions: calm, happy, sad, angry, fearful, surprised, dis-
gusted, and neutral. Each category comprises two emotional 
intensities: normal and strong. The videos have a pixel reso-
lution of 1 280 × 720.

DEAP [44]. The DEAP dataset contains physiological 
signals (peripheral physiological data, EEG data, and frontal 
face data) from 32 participants. Each participant rated their 
arousal, dominance, and valence on a 9-point scale based on 
the dimensional emotion model. Each participant watched 
40 1-min-long music video elicitation materials, resulting 
in 880 facial video sequences with a pixel resolution of 720 
× 576.
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PPB-Emo [45]. The PPB-Emo dataset comprises 280 
facial video sequences and driving behavior sequences from 
40 participants who were successfully emotionally induced. 
The emotions were labeled according to seven categories 
of discrete emotions (anger, disgust, sadness, fear, happi-
ness, surprise, and neutral) and the dimensional emotions 
of arousal-valence-dominance. The face expression video 
sequences and driving behavior data from 15 s following 
the start of driving were processed as valid data. The videos 
have a pixel resolution of 640 × 480.

4.2  Data preprocessing

4.2.1  Facial expression sequence data

The preprocessing of face images mainly involves detecting 
key points, aligning faces, geometrically normalizing face 
images, and normalizing brightness. The preprocessing pro-
cess is presented in Fig. 6.

Firstly, the face image was recognized with the multitask 
cascade convolutional network (MTCNN) [46] to obtain 68 
face key points. Secondly, the angle between the line connect-
ing the left eye center and the right eye center and the horizon-
tal line was then calculated, and the image was rotated such 
that the line connecting the left eye center and the right eye 
center was horizontal to achieve face alignment. The distance 
between the center of the left eye and the center of the right 
eye is represented by a, and the vertical difference between the 
center of the left eye (or right eye) and the center of the mouth 
is represented by b. Finally, the face image was cropped to 2a 
width and 2b height before being scaled to an image of 112 × 
112 pixels, as illustrated in Fig. 6.

Geometric normalization enables the same facial feature 
points to coexist roughly in the exact same location in dif-
ferent video frames. This process also discards background 
details and facial regions, such as ears and forehead, which 

are unrelated to facial expressions, as they do not represent 
expression-specific information. The luminance of cropped 
facial images was normalized to reduce the impact of illumi-
nation changes on image signals. We sampled 30 frames from 
each video for each dataset as training samples for the model.

4.2.2  Driving behavior data

This study selected seven types of driving behavior data: steer-
ing wheel rotational speed, accelerator pedal angle, brake 
pedal force, longitudinal velocity, longitudinal acceleration, 
lateral velocity, and lateral acceleration. The selected driving 
behavior data were normalized as

where x is the raw driving behavior data, u the mean of all 
data of a particular type, � the variance of all data of that 
type, and x′ the normalized data.

4.3  Experiment details and evaluation metrics

4.3.1  Experiment details

This study’s hardware configuration utilized for model train-
ing and testing comprised an NVIDIA Tesla V100 GPU 
with 32 GB of video memory, running on the Ubuntu 18.04 
operating system. The deep learning framework utilized 
was PyTorch 1.5. During training, we utilized the stochastic 
gradient descent (SGD) optimizer with a Nesterov momen-
tum of 0.9 and a batch size of 64. The learning rate decay 
strategy was cosine decay, and the learning rate hot restart 
epoch was set to 5.

To ensure that the tasks were independent, i.e., no one’s 
video sequences would be present in two-fold and above 
data segmentation, and all datasets utilized for recognition 

(11)x� =
x − �

�
,

Fig. 6  Process of facial expression preprocessing
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training here were constructed as training/testing sets by 
10-fold cross-validation. The datasets were ordered by 
participant number and sampled at intervals of 10 to cre-
ate a ten-fold data subset. The final experimental results in 
this paper were the average results obtained from ten-fold 
cross-validation.

4.3.2  Evaluation metrics

This study employed both discrete and dimensional emo-
tion models to quantify emotions. The discrete emotion 
model categories included anger, disgust, fear, happiness, 
neutral, sadness, and surprise. Positive real values for the 
arousal, valence, and dominance dimensions characterized 
the dimensional emotion model. The discrete emotion and 
dimensional emotion recognition tasks corresponded to the 
classification and regression tasks in deep learning, respec-
tively. Accuracy and F1 score were utilized in the classifica-
tion task as evaluation metrics of model performance, while 
the regression task utilized mean square error (MSE) and 
concordance correlation coefficient (CCC) [47]. MSE was 
utilized to measure the overall mean deviation between the 

true value � and its estimate �̂� . The smaller the MSE, the bet-
ter the model performance. In addition, CCC, whose value 
ranges from −1 (completely inconsistent) to 1 (completely 
consistent), was utilized to measure the consistency between 
real and predicted emotions.

4.4  Experimental results and discussion

4.4.1  Facial expression branch ablation experiment

As previously mentioned, the facial expression branch of 
the MDERNet model includes FEFEM, FM, and FAM. 
FEFEM is a ResNet18 model without the classification 
layer and is widely utilized in various feature extraction 
tasks. To verify the effectiveness of the proposed FM 
and FAM for facial expression-based emotion recogni-
tion, this study designed the facial expression branch 
ablation experiment for discrete and dimensional emo-
tion recognition. The model was evaluated by including 
or removing FAM and FM in the facial expression branch. 
The prediction results of all frame images were averaged 

Table 1  Discrete emotion recognition experimental results of facial expression branch

Note: FEB represents the facial expression feature extraction branch with FAM and FM. FEB (w/o FAM) represents only the facial expression 
feature extraction branch without FAM. FEB (w/o FAM/FM) represents the facial expression feature extraction branch without FAM and FM.

Models CK+ RAVDESS PPB-Emo

Accuracy F1 score Accuracy F1 score Accuracy F1 score

FEB 0.895 1 0.867 3 0.628 1 0.611 8 0.343 2 0.319 2
FEB (w/o FAM) 0.875 0 0.845 2 0.580 2 0.572 5 0.316 1 0.278 1
FEB (w/o FAM/FM) 0.835 2 0.808 3 0.540 6 0.544 8 0.278 6 0.245 9

Fig. 7  Discrete emotion recognition experimental results of facial expression model (FEB represents the facial expression feature extraction 
branch with FAM and FM. FEB (w/o FAM) represents the facial expression feature extraction branch without FAM only. FEB (w/o FAM/FM) 
represents the facial expression feature extraction branch without FAM and FM.)
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as the final result for the facial expression branch model 
without FAM and FM.

4.4.1.1 Discrete emotion Table  1 presents the results of 
discrete emotion recognition ablation experiments con-
ducted on the CK+, RAVDESS, and PPB-Emo datasets. 
The accuracy and F1 score outcomes are presented in 
Figs. 7a and b, respectively. Higher accuracy and F1 scores 
correspond to superior performance. Table  1 presents the 
facial expression feature extraction branch with FAM and 
FM (FEB) performed best in CK+, RAVDESS, and PPB-
Emo, and the facial expression feature extraction branch 
without FAM only (FEB (w/o FAM)) performed second 
best. Moreover, the facial expression feature extraction 
branch without FAM and FM (FEB (w/o FAM/FM)) per-
formed the worst. On CK+, the FEB accuracy (89.51%) is 
2.01% and 5.99% higher than the FEB (w/o FAM) (87.50%) 
and FEB (w/o FAM/FM) (83.52%), respectively. The FEB 
F1 score (86.73%) is 2.11% and 5.90% higher than the FEB 

(w/o FAM) (84.52%) and FEB (w/o FAM/FM) (80.83%), 
respectively. On RAVDESS, the FEB accuracy (62.81%) is 
4.79% and 8.75% higher than the FEB (w/o FAM) (58.02%) 
and FEB (w/o FAM/FM) (54.06%), respectively. The FEB 
F1 score (61.18%) is 3.93% and 6.70% higher than the FEB 
(w/o FAM) (57.25%) and FEB (w/o FAM/FM) (54.48%), 
respectively. On PPB-Emo, the FEB accuracy (34.32%) is 
2.71% and 6.46% higher than the FEB (w/o FAM) (31.61%) 
and FEB (w/o FAM/FM) (27.86%), respectively. The FEB 
F1 score (31.92%) is 4.11% and 7.33% higher than the FEB 
(w/o FAM) (27.81%) and FEB (w/o FAM/FM) (24.59%), 
respectively. The effectiveness of our proposed FEB in dis-
crete emotion recognition was proved.

4.4.1.2 Dimensional emotion Table 2 presents the results of 
dimensional emotion recognition ablation experiments con-
ducted on the DEAP and PPB-Emo datasets. The MSE and 
CCC outcomes are illustrated in Figs. 8a and b, respectively. 
Lower MSE and higher CCC correspond to superior perfor-
mance. Table 2 presents the FEB that performed best in DEAP 
and PPB-Emo and the FEB (w/o FAM) that performed second 
best. Moreover, the FEB (w/o FAM/FM) performed the worst. 
On DEAP, the FEB MSE (3.708 3) is 0.705 2 and 4.248 2 less 
than the FEB (w/o FAM) (4.413 5) and FEB (w/o FAM/FM) 
(7.956 5) respectively. The FEB CCC (0.180 0) is 0.042 2 and 
0.071 5 higher than the FEB (w/o FAM) (0.137 8) and FEB 
(w/o FAM/FM) (0.108 5) respectively. On PPB-Emo, the FEB 
MSE (4.8478) is 0.6559 and 3.351 3 less than the FEB (w/o 
FAM) (5.503 7) and FEB (w/o FAM/FM) (8.199 1) respec-
tively. The FEB CCC score (0.219 0) is 0.022 0 and 0.049 2 
higher than the FEB (w/o FAM) (0.197 0) and FEB (w/o FAM/
FM) (0.169 8), respectively. The effectiveness of our proposed 
FEB in dimensional emotion recognition was proved.

Table 2  Dimensional emotion recognition experimental results of 
facial expression branch

Note: FEB represents the facial expression feature extraction branch 
with FAM and FM (FEB (w/o FAM) represents only facial expres-
sion feature extraction branch without FAM. FEB (w/o FAM/FM) 
represents the facial expression feature extraction branch without 
FAM and FM.)

Models DEAP PPB-Emo

MSE CCC MSE CCC 

FEB 3.708 3 0.180 0 4.847 8 0.219 0
FEB (w/o FAM) 4.413 5 0.137 8 5.503 7 0.197 0
FEB (w/o FAM/FM) 7.956 5 0.108 5 8.199 1 0.169 8

Fig. 8  Dimensional emotion recognition experimental results of facial expression model (FEB represents the facial expression feature extraction 
branch with FAM and FM. FEB (w/o FAM) represents the facial expression feature extraction branch without FAM only. FEB (w/o FAM/FM) 
represents the facial expression feature extraction branch without FAM and FM.)
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The facial expression branch exhibited optimal perfor-
mance when incorporating FAM and FM across all data-
sets (see Tables 1 and 2). Subsequent removal of the FAM 
module resulted in a consistent decline across all evaluated 
metrics. Thus, the absence of FAM in the current network 
architecture prevented direct emphasis on the features of the 
peak expression frame image, resulting in performance deg-
radation. The model’s performance degrades significantly 
when the facial expression branch omits FAM and FM. This 
observation underscores the importance of fusing deeper 
features extracted from all frames of facial expressions for 
accurate video emotion recognition. The results demonstrate 
the efficacy of the proposed FAM and FM in emotion recog-
nition from facial expression video data.

4.4.2  Multimodal feature fusion recognition results 
of MDERNet model

The multimodal fusion in the MDERNet model comprised 
a DBFEM module and a refinement processing module for 
driving behavior data. The DBFEM was a multilayer per-
ceptual machine, while the refinement processing module 
comprised a sequence of temporal frame attention weights derived from branching facial expressions. These atten-

tion weights served to filter and emphasize relevant driving 
behavior data. Therefore, this study employed the model 
without the refinement processing module as the multimodal 
baseline. This approach allowed us to assess the efficacy of 
the refinement module in emotion recognition. Notably, for 
a comprehensive assessment of MDERNet’s performance, 
the complete facial expression branch containing FAM and 
FM modules was utilized in this experiment.

Table 3 presents the experimental results for discrete 
and dimensional emotion recognition utilizing the MDER-
Net model in the context of multimodal recognition on 
the PPB-Emo dataset. Figure 9 presents the performance 

Table 3  Discrete and dimensional emotion recognition experimental 
results of MDERNet

Note: MDERNet (w/o refine) represents the MDERNet model with-
out the refinement module.

Models PPB-Emo

Accuracy F1 score MSE CCC 

MDERNet 0.416 7 0.353 1 4.647 5 0.266 1
MDERNet (w/o 

refine)
0.380 7 0.346 1 4.791 1 0.245 5

Fig. 9  Discrete and dimensional emotion recognition experimental results of MDERNet (MDERNet (w/o refine) represents the MDERNet 
model without the refinement module.)

Fig. 10  Confusion matrix of discrete emotion recognition results 
(MDERNet)
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comparison between the complete MDERNet model (indi-
cated by yellow bars) and the MDERNet model without the 
refinement module (represented by blue bars as MDERNet 
(w/o refine)). The accuracy and F1 score metrics for dis-
crete emotion recognition are presented in Fig. 9a. In addi-
tion, the MSE and CCC metrics for dimensional emotion 
recognition results are presented in Fig. 9b. The confu-
sion matrix for recognizing discrete emotions utilizing the 
MDERNet model is demonstrated in Fig. 10. Table 3 pre-
sents that the MDERNet performed better than MDERNet 
(w/o refine) in discrete and dimensional emotion recogni-
tion. As for discrete emotion recognition, the MDERNet 
accuracy (41.67%) is 3.60% higher than the MDERNet 
(w/o refine) (38.07%). The MDERNet F1 score (35.31%) 
is 0.70% higher than the MDERNet (w/o refine) (34.61%). 
As for dimensional emotion recognition, the MDERNet 
MSE (4.647 5) is 0.143 6 less than the MDERNet (w/o 
refine) (4.791 1). The MDERNet CCC (0.266 1) is 0.020 6  
higher than the MDERNet (w/o refine) (0.245 5). The 
effectiveness of our proposed MDERNet in discrete and 
dimensional emotion recognition was proved.

4.4.3  Discussion

Comparing Tables 1, 2, and 3, we observed that the MDERNet 
model, which incorporated both facial expression and driv-
ing behavior modal data, outperformed the facial expression 
branch containing only facial expression data. This finding 
underscored the effectiveness of adding the driving behavior 
modality for accurate emotion recognition. Table 3 revealed 
that including the refinement module in the driving behavior 
branch led to significant improvement across all performance 
indicators for the MDERNet model. The results indicated that 
enhancing feature fusion between two modalities was more 
effective when temporal attention was generated through the 
facial expression modality. In addition, filtering and highlight-
ing input data from the driving behavior modality contributed 
to refining input features. The efficacy of the proposed mod-
ules in the MDERNet model was empirically verified.

Regarding the CK+, RAVDESS, and DEAP datasets, 
the performance of the facial expression branch within 
the proposed MDERNet model fell short of achieving the 
optimal results observed in prior studies [48–50]. This dis-
crepancy primarily arises from variations in data processing 
techniques and sampling methodologies. As illustrated in 
Fig. 10, the MDERNet model performed well in identify-
ing drivers’ angry, fear, and happy emotions in the PPB-
Emo dataset, effectively distinguishing between positive and 
negative emotions. However, the recognition results for dis-
gust, neutrality, sadness, and surprise emotions were poor. 
The impact of driving tasks on drivers’ facial expressions 

and driving behavior might explain this phenomenon [51]. 
Overall, the multimodal driver emotion accuracy based on 
facial expression and driving behavior (PPB-Emo dataset) 
remained suboptimal compared to the emotion recogni-
tion results obtained from facial expression data in real-life 
scenarios (CK+, RAVDESS, and DEAP datasets). Conse-
quently, future research should incorporate additional multi-
modal data to advance our understanding of driver emotion 
recognition.

5  Conclusions

This study established a multimodal driver emotion recog-
nition model based on driver facial expressions and driv-
ing behavior. MDERNet was a deep learning network that 
achieved the fusion of driver facial expressions and driving 
behavior for emotion recognition. The model’s performance 
was validated utilizing both the discrete and dimensional 
emotion models, and the generalizability and sophistication 
of the model were also validated on other publicly available 
datasets. The validity of the proposed model architecture 
and the importance of multimodal fusion in driver emotion 
recognition methods were verified through branch ablation 
experiments. The results indicate that MDERNet detection 
architecture can achieve good detection results for differ-
ent databases on discrete and dimensional emotion models, 
respectively. Our proposed method achieves non-contact 
dynamic driver multiple emotion recognition. The results 
demonstrated that MDERNet effectively detected emo-
tions across different databases on discrete and dimensional 
emotion models. In addition, our proposed method achieved 
non-contact dynamic driver emotion recognition. It serves 
as a fundamental reference for multimodal feature fusion 
in driver emotion recognition, contributing to ADAS’s 
advancement within automotive intelligent cockpits.

While this article successfully validates the efficacy of the 
proposed MDERNet model in identifying driver emotions, it 
is essential to acknowledge certain limitations. Specifically, 
the accuracy of driver emotion recognition remains subopti-
mal owing to the intricate nature of the driving environment. 
Subsequent research endeavors should consider incorporat-
ing additional features influencing driver emotions, includ-
ing driver attributes (such as driving experience, gender, 
and age) and physiological signals captured by wearable 
devices (such as photoplethysmography). These augmenta-
tions are expected to enhance the accuracy of driver emotion 
recognition.
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