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Abstract  Serving as a proof of concept, additive manufac-
turing and electrophoretic deposition are leveraged in this 
work to enable structural lithium-ion batteries with load-
bearing and energy storage dual functionality. The prepara-
tion steps of a complex 3D printed copper current collector, 
involving the formulation of a photocurable resin formula-
tion, as well as the vat photopolymerization process followed 
by a precursors-based solution soaking step and thermal 
post-processing are presented. Compression and microhard-
ness testing onto the resulting 3D printed copper current 
collector are shown to demonstrate adequate mechanical 
performance. Electrophoretic deposition of graphite as a 
negative electrode active material and other additives was 
then performed onto the 3D printed copper collector, with 
the intention to demonstrate energy storage functionality. 
Half-cell electrochemical cycling of the 3D multi-material 
current collector/negative electrode versus lithium metal 

finally demonstrates that structural battery components can 
be successfully obtained through this approach.

Keywords  Copper manufacturing · 3D printing · 
Structural batteries · Vat photopolymerization · 
Electrophoretic deposition

1  Introduction

Improvement in energy density of lithium metal and lith-
ium-ion batteries used in transportation and commercial 
electronic applications via active material optimization 
(e.g., anodes and cathodes) has been an important tech-
nological focus over the past two decades [1]. In electric 
vehicles, for instance, batteries with an energy capacity 
of ~100 kWh represent approximately 1/4 of the total 
weight [2–4]. To further increase the overall energy den-
sity, structural batteries, serving both as energy storage 
and structural support, have been recently proposed [5–8]. 
Approaches include structural power composites aimed 
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to provide lightweight energy storage for electrically 
powered systems such as carbon fibers within a structural 
electrolyte matrix material [8–11], and thin films depos-
ited onto composite laminates capable of sustaining high 
mechanical loads [12–14]. The majority of structural bat-
teries reported to date are planar and maintain the unidi-
mensional lithium-ion diffusion characteristic of commer-
cial batteries. Alternatively, shape-conformable batteries 
that can be produced through additive manufacturing, also 
known as 3D printing, stand to be optimized to provide 
both high energy density and load-bearing functionality 
[15–18].

In this context, recent interest in batteries with 3D inter-
nal architectures fabricated using a variety of 3D printing 
techniques has increased [17, 19–22]. Among the different 
3D printing technologies, vat photopolymerization (VPP) 
appears to be a promising technology for producing con-
formal batteries due to the high manufacturing resolution 
down to a few tens of nanometers for two-photon polymeri-
zation (2PP) and comparatively low cost and high surface 
quality [23, 24]. Of particular interest is the manufacturing 
process of copper current collector structures to be employed 
as structural battery components. VPP relies on layer-by-
layer photopolymerization of a UV-sensitive resin composed 
of a mixture of monomers, oligomers, photoinitiator, light 
absorbers and photosensitizers. While 3D printing of copper 
has been achieved via powder bed fusion [25–27] and mate-
rial extrusion [28–30], these techniques are complex, expen-
sive, or limited in resolution [31]. On the other hand, VPP 
of copper is less common with the generally-understood 
requirement of addition of copper particles within the resin, 
thus increasing viscosity and decreasing the photopolym-
erization efficiency due to sedimentation issues leading to a 
high light scattering. The viscosity issue can be resolved by 
increasing the resin temperature during printing [32], using 
smaller filler particles [33], and/or adding dispersant and 
diluent compounds [34]. The sedimentation issue and pho-
topolymerization efficiency, however, are difficult to control, 
requiring the use of either smaller copper particles or an 
adapted printer allowing a continuous recirculation of the 
resin. Recently, the Greer group demonstrated an unconven-
tional printing method in which 3D copper structures were 
obtained without the addition of solid particles [35, 36]. The 
process consisted of printing a resin containing water-sol-
uble salts, followed by their dissolution and finally soaking 
of the 3D structure within a copper precursor solution. The 
final copper piece is obtained after thermal post-processing. 
This novel approach for fabricating metal structures may 
lead to a dramatic increase in the spatial resolution and intri-
cate detail of geometrically-complex metallic structures, 
which could in turn enable new applications in terahertz 
electromagnetics, thermal management, printed electronics, 
and in the case of the current work, energy storage. The 

present work investigates a new metal fabrication approach 
with additional electrophoretic deposition to manufacture 
battery electrodes. To obtain complex structures of pure 
copper, a base resin (with no additional water-soluble salts) 
was 3D printed via VPP, followed by a dehydration step of 
the printed items, a subsequent soaking step within a cop-
per precursor solution, and finally, thermal post-processing. 
This method facilitates the uptake of the copper precursor 
salt by the dehydrated printed items. This research presents 
an optimization of the thermal post-processing steps, based 
on the analysis of the thermogravimetric data, followed by 
mechanical testing to appraise the use of the 3D printed 
copper current collectors in structural batteries. Finally, the 
electrophoretic deposition of graphite, a common negative 
electrode material for lithium-ion batteries, and other addi-
tives onto the printed current collector enabled evaluation of 
the electrochemical performance of the resulting structure 
in half-cell configuration.

2 � Materials and methods

2.1 � Base resin preparation, 3D printing, and precursor 
uptake

The base resin was prepared by mixing poly(ethylene glycol) 
diacrylate (PEGDA avg. Mn 575, (C2H4O)nC6H6O3, Sigma 
Aldrich) and diphenyl(2,4,6-trimethylbenzoyl) phosphine 
oxide (TPO, 97%, Sigma Aldrich) as a photoinitiator in a 
mass ratio PEGDA:TPO of 1:0.005 2 and magnetically stir-
ring the mixture for two hours. After this period, water was 
added in a mass ratio PEGDA:H2O of 1:1.12, and the mix-
ture was stirred for one hour. The base resin was kept inside 
a UV-blocking container  at 10 °C until used for 3D printing.

3D models were designed with Fusion 360 (Autodesk, 
USA) and nTopology softwares (nTopology, USA). The 
architectures consisted of six discs (16 mm diameter and 3 
mm thick) exhibiting various infill patterns (octet, fluorite, 
splitP, cylindrical gyroid, classical gyroid, and diamond) 
with 30% infill density. The models in Standard Tessellation 
Language (.stl files) were sliced into 50 μm thick 2D slices 
using Tethonware software (Tethon 3D, USA). Printing of 
the 3D structures was performed at 25 °C using a Bison 
1000 Digital Light Processing (DLP) 3D printer (Tethon 
3D, USA) after loading the 100 mL of resin. An initial light 
exposure time of 25 s was set for the 20 first printed lay-
ers to ensure good printing quality. Subsequent layers only 
required a light exposure of 2.5 s and a dwell time of 45 
s between each layer. Brightness was set to 700 mW/cm2. 
Prior to printing, the resin was magnetically stirred for 
30 min, and the bed platform and tank were cleaned with 
2-propanol.
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3D printed items were stored in an oven for 12 h at 60 °C 
under air to promote gentle dehydration. The copper precur-
sor was subsequently infiltrated by soaking the dehydrated 
pieces in an aqueous 4.5 mol/L solution of copper II nitrate 
hemipentahydrate (Cu(NO3)3·2.5H2O) for four days.

2.2 � Thermal post‑processing

Precursor-soaked 3D structures were placed in an alumina 
boat for the thermal treatment inside a GSL-1700X tubular 
furnace (MTI Corporation, USA). The thermal post-process-
ing profile was deduced from experimental thermogravimet-
ric analysis. The purpose of the first step of the thermal post-
process performed under flowing air at a pressure of 0.025 
MPa is to eliminate the polymeric resin and components 
and produce sintered copper oxide. This step is followed by 
reduction of the copper oxide to yield metallic copper by 
heating the sample at 950 °C for 5 h under flowing 5 mol% 
of H2 in argon.

2.3 � Materials characterization

Thermogravimetric analysis - mass spectrometry (TGA/
MS) was achieved by means of a STA 449F3 instrument 
(NETZSCH, Germany) placed inside an argon-filled glove 
box (O2 and H2O < 0.1 ppm, Jacomex). The experiments 
were performed from 25 °C to 900 °C at a rate of 5 °C/min 
under an argon flow rate of 40 mL/min.

X-ray powder diffraction (XRD) patterns were acquired 
with an Empyrean-2 X-ray diffractometer (Malvern Panalyti-
cal, UK) using Cu Kα radiation (λ = 0.154 18 nm), 45 kV 
of accelerating voltage, and a current of 40 mA. Data were 
recorded from 10° to 90° 2θ with a step size of 0.013° and 
a scan rate of 8°/min.

Secondary electron or backscattered electron images of 
the 3D printed items were obtained by means of an S-4800 
(Hitachi, Japan) field emission scanning electron microscope 
(SEM) operating in high vacuum mode and 15 kV of accel-
eration voltage.

Quasistatic compression testing was performed using 
Instron, a universal mechanical testing machine with a 
Berkovich indenter. The testing and reporting were based 
on ISO 13314. A NANOVEA M1 Hardness tester was used 
to perform the microhardness testing. The software associ-
ated within the instrument is defaulted to follow the ASTM 
E2546 standard to calculate hardness and elastic modulus 
[37]. The area function for a Berkovich indenter is shown in 
Eq. (1), where hc is the contact depth and calculated using 
Eq. (2). Here, hmax, Pmax and S are the maximum contact 
depth, the maximum load and the load slope, respectively. 
The hardness is calculated using Eq. (3).

A Keyence VHX 7000 optical microscope was used to 
conduct the surface roughness analysis on the surface and 
struts of the printed lattice.

The resistance of the item was measured at room tem-
perature using a Keysight Truevolt digital multimeter. The 
electronic conductivity σ was calculated using Eq. (4), where 
R is the resistance; A is the contact area of the sample; and 
t is the thickness.

2.4 � Electrophoretic deposition (EPD)

For the EPD bath, 230 mg of graphite (Timcal TIMREX 
SLS, ~1.5 m2/g), 10 mg of conductive carbon black Tim-
cal Super C45 (BET = 45 m2/g and 20 nm particle size, 
MSE Supplies), 10 mg of polyvinylidene difluoride (Sigma 
Aldrich), 0.2 mL of Triton-X100 (Sigma Aldrich) and 10 mg 
of iodine (≥99.8% Sigma Aldrich) were magnetically stirred 
with 50 mL of acetone (ACS reagent ≥99.5%) for 5 min and 
sonicated for an additional 10 min. Selected copper current 
collectors (planar foil or 3D printed) were used (one at a 
time) as substrates, and a platinum wire ~ 8 mm apart was 
used as a counter electrode. A voltage difference of 65 V and 
a current of 0.1 A were applied between the electrodes for 5 
min to promote the deposition of the EPD bath components. 
The resulting electrodes were washed lightly with acetone to 
eliminate unbonded residues, and dried overnight at 70 °C.

2.5 � Electrochemical characterization

After EPD, the 3D electrode structures or the planar 
ones were employed as working electrodes within a 
Swagelok®-type half-cell. The counter and reference elec-
trode was a lithium foil (0.38 mm thick ribbon, 99.9% purity, 
Sigma Aldrich), and as a separator, a fiberglass (Whatman 
GE Healthcare) impregnated with 200 µL of 1 mol/L LiPF6 
in ethylene carbonate (EC) and dimethyl carbonate (DMC) 
(EC:DMC 1:1 wt, Sigma Aldrich) was used. Prior to cycling, 
the cells were left to rest for 10 h to allow complete elec-
trolyte impregnation. Cells were galvanostatically charged 
and discharged at C/20 (18.6 mA/g), C/10 (37.2 mA/g), C/5 
(74.4 mA/g) and again at C/20, in a potential window of 

(1)Ac = 24.5h2
c
,

(2)hc = hmax −

3Pmax

4S
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0.01−2.5 V vs Li/Li+, and at 25 °C by means of a LBT gal-
vanostat (Arbin Instruments, USA).

3 � Results and discussion

One of the challenges associated with copper 3D print-
ing via VPP is the high viscosity of the resin when loaded 
with copper powder, and the associated sedimentation of 
the metallic particles. In this context, the use of a precursor 
approach involving a photocurable resin loaded with soluble 
metallic salts followed by printing and additional thermal 
post-processing to obtain pure metals represents an attractive 
manufacturing process [38]. However, this approach needs 
to be adapted for copper, as Cu2+ quenches UV-generated 
radicals [39] thus preventing the photopolymerization pro-
cess. The fabrication process that was followed in this work 
is displayed in Fig. 1. The first step consisted in 3D print-
ing the PEGDA/photoinitiator/H2O base resin by means of 
a DLP 3D printer. For demonstration purposes, a variety 
of intricate lattice structures were printed (see Fig. S.1). 
Among the printed items, discs with different infill patterns 
were specifically designed to fit within a Swagelok®-type 
cell for subsequent half-cell electrochemical testing. The 
second step was performed immediately after printing and 
consisted in a dehydration step to remove moisture from the 
printed samples. The third step consisted in soaking the 3D 
printed structure into a solution containing copper precur-
sors (4.5 mol/L). Thanks to the previous dehydration step, 
the absorption of the aqueous copper precursor solution into 
the polymer lattice structure was promoted. It is important to 
note that among the different air-stable water-soluble precur-
sor salts CuCl2, CuSO4·5H2O, and Cu(NO3)3·2.5H2O that 
were considered, the latter was selected due to its greater 
water solubility (138 g/100 mL at 0°C [37]) and due to its 
thermal decomposition into mostly harmless gaseous prod-
ucts. To transform the copper precursors into pure copper, 
the next step was to subject the structures to two consecutive 
thermal post-processing treatments: the first under flowing 
air, and the second under flowing Ar/H2. During thermal 
processing under air (fourth step displayed in Fig. 1), the 
polymer matrix is eliminated, while at the same time the 
copper salts contained within the polymer matrix turn into 
copper oxide. Subsequently, during the thermal post pro-
cessing step under a reductive atmosphere of Ar/H2 (fifth 
step displayed in Fig. 1), the copper oxide turned into pure 
copper metal. Finally, the last step consisted in performing 
EPD of the negative electrode material in order to obtain a 
current collector-negative electrode system.

TGA/MS of the 3D printed structures with and without 
copper precursors were performed in order to establish an 
adequate thermal post-processing profile. The decomposi-
tion of the base resin without copper precursor (serving here 

as reference) showed thermal degradation up to 600 °C (see 
Fig. 2a). The first decomposition step started at 205 °C with 
a DTG peak centered at 410 °C, along with the production of 
CO2 and H2O. Then, a second CO2 production occurred one 
hundred degrees higher, with a DTG peak centered at 516 °C. 
This suggests a two-step decomposition process of the poly-
meric matrix PEGDA. Interestingly, when the copper precur-
sor is contained within the 3D printed piece, the combustion 
of PEGDA was confirmed to occur below 400 °C (see Fig. 2b). 
A previous analysis by Martinez et al. [38] based on a similar 
study proposed that the decomposition temperature lowered at 

Fig. 1   Optical images of the fabrication steps leading to a negative 
electrode coated onto a VPP 3D printed current collector
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least one hundred degrees in the presence of metal nitrate salts 
catalyzing the PEGDA combustion.

Indeed, around 58% of weight loss was observed in the item 
containing copper precursors below 130 °C, which according 
to the mass spectrometry data corresponds to gasses with m/z 
18, 44, 30, and an almost undetectable 46 (see Fig. 2b). These 
gasses correspond to H2O, CO2, NO, and NO2, respectively. 
The water lost at this temperature corresponds mainly to water 
from the precursor solution, and also from the combustion of 
PEGDA that is accompanied by CO2 release (see Eq. (5)). 
As for the detected NO and NO2, they are both products of 
the decomposition of copper nitrate in air. Copper is multi-
valent, so during its decomposition it may form CuO, Cu4O3 
and Cu2O, the final chemical composition depending on the 
oxygen concentration and temperature. Under the conditions 
used in this work, CuO was the most favorable because cop-
per maintains its oxidation state (see Eqs. (6) and (7)) [40]. 
From 130 °C to 400 °C, with a DTG peak centered at 251 
°C, another weight loss accounting for ~27.5 % of the total 
weight was recorded. Mass spectrometry data registered the 
production of CO2 and H2O, which corresponded to the ther-
mal decomposition of the polymeric resin up to 500 °C.
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From these observations, the following thermal post-
processing profile was established (see Fig. 3a). The profile 
consists of heating at 1 °C/min until a plateau at 120 °C to 
allow water-removal and polymer combustion, a slow heat-
ing step at 0.2 °C/min until 250 °C to favor the production of 
CuO, and heating at the same rate until a debinding plateau 
450 °C to completely combust the polymer. Then, heating 
at 2 °C/min up to a plateau 750 °C was implemented to fuse 
together the CuO particles, followed by a cooling step at 
the same rate. Finally, heating at 4 °C/min until a plateau 
of 900 °C was performed for 5 h under a flowing reducing 
atmosphere in order to yield pure copper. When comparing 
the dimensions of the 3D printed polymer structure to the 
pure 3D printed copper current collector, a shrinkage of 65% 
was witnessed along the X and Y axes while a shrinkage of 
41% was observed along the Z axis. In terms of surface area, 
the 3D printed copper current collector with a diameter of 
5.6 mm exhibited a calculated surface area of 186.81 mm2 
(not considering the rugosity that adds up to the available 
surface). In comparison, a conventional planar current col-
lector with the same diameter would only present a surface 
area of 24.63 mm2.

XRD analysis of the 3D printed pieces after the first step 
of thermal post-processing under air revealed the presence of 
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Fig. 2   TGA/MS analyses under air flow of a a dehydrated 3D printed polymer structure, and b the same structure after copper precursor solu-
tion infiltration
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CuO, Cu2O and metallic Cu (see Fig. 3b, black color data). 
Although the formation of metallic Cu from Cu(NO3)2 is 
theoretically possible through a two-step decomposition pro-
cess reducing intermediary Cu2O above 900 °C (see Eqs. (8) 
and (9) [41], this reaction is not favorable as the maximum 
temperature employed in this work is 750 °C. Instead, we 
propose that a carbothermal reaction took place, as already 
reported for copper oxides starting around 700 °C [42]. This 
reaction implies that Cu(II)O can be reduced at high tem-
perature in the presence of a carbon source into Cu(0) with 
CO as a byproduct (see Eq. (10)). Alternatively, CO could 
react in gaseous form with the oxide to form Cu(0) and CO2 
(see Eq. (11)), as proposed by L’vov [42]. Both options are 
equally probable, and discernment is for now not possible at 
this stage because the mass spectrometry data show that both 
CO and CO2 are produced in equal and minimal quantities 
above 700 °C (zoom beyond 600 °C displayed in Fig. S.2).

Following the thermal treatment of the CuO structures 
under a reducing atmosphere, the metallic copper composi-
tion was confirmed by XRD (see Fig. 3b, orange color data). 
No oxide impurity was found, only copper indexed to a face 
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centered cubic lattice (JCPDS No. 040836) with 2θ positions 
at 44.2°, 51.0°, and 74.8°, corresponding to the (111), (200) 
and (220) planes, respectively.

To appraise the potential of the 3D printed copper cur-
rent collectors as load-bearing current collectors within a 
structural battery, compression and microhardness tests 
were performed onto gyroid copper lattice. The compres-
sion tests were conducted based on ISO 13314 at a rate of 
1 mm/min and showed that the copper lattice displayed a 
compressive strength of 19.39 MPa. Based on the standard, 
the plateau stress was calculated to be the arithmetic mean 
of compressive stress between 20% and 40% of compressive 
strain. Copper being ductile and malleable, all the compres-
sive forces subjected onto the struts of the gyroid during 
the testing had resulted in a permanent deformation and the 
part post testing resembled a thin coin. Even though there 
were cracks on the struts of the lattice before the test, it 
was observed that they did not have significantly impacted 
the results. This can be attributed to the properties of cop-
per and the loading rate. For the microhardness testing, a 
Berkovich microindenter was used. The specimen area at 
the indentation site, the load-depth curves and the summary 
of the results are shown in Figs. 4a and b and Table S.1. 
The calculated microhardness value of 0.272 ± 0.039 GPa 
for the 3D printed copper current collector is about 2 times 
lower to what was reported by McLaughlin and Clegg [43] 
in their work on the copper single crystal as 0.622 GPa. In a 
related work, Saccone et al. [36] measured the hardness of 
hydrogel-infusion-manufactured copper to be 1.81 ± 0.37 
GPa employing an Agilent G200 Nano Indenter and a Berko-
vich tip. Further optimization to enhance the density and 

Fig. 3   a Thermal post-processing profile established from TGA/MS analysis, b XRD of the printed pieces after thermal treatments under air 
and H2/Ar atmospheres
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mechanical performance of these printed current collectors 
is currently underway.

The electrical conductivity of the printed gyroid disc 
was measured in order to determine if this item is suf-
ficiently electronically conductive to undergo EPD of the 
battery material and other additives. The obtained value 
was 3.09 × 103 S/m, which appeared low in comparison 
with the electrical conductivity of annealed copper of 5.8 
× 107 S/m [44]. However, it should be considered that 
the contact area used in the electrical conductivity for-
mula is always significantly lower for a 3D printed sample 
due to the surface rugosity caused by the manufacturing 
process. To evaluate the extent of the surface rugosity, 
Figs. 5a and b show the surface analysis of the 3D printed 
copper current collector. The selected area displayed an 
arithmetical mean height of the surface value (Sa) of 10 
µm and the maximum height value (Sz) of 30 µm. Since 

the Sz value is defined as the sum of the largest peak height 
and the largest pit depth within the selected area, it can 
be concluded that the layered pattern indeed provides 
considerable rugosity that affects considerably electrical 
conductivity measurements. Furthermore, a copper gyroid 
cube was 3D printed and sintered from a resin containing 
copper particles in view to obtain a conductivity refer-
ence from 3D printed copper (see Fig. S.3). The resulting 
value was 1.25 × 103 S/m, which confirms that the value 
obtained previously seems low due to the surface rugo-
sity conferred by 3D printing, but is sufficiently high to 
perform EPD experiments. It is important to note that the 
electrical conductivity measurement can also be affected 
by the purity of copper and the material imperfections 
such as cracks created as a consequence of shrinkage dur-
ing thermal post-processing [45, 46], but those are not 
extensively evaluated in this work.

Fig. 4   Microhardness results a the sample at one of the indentation 
sites, b load-depth curves

Fig. 5   a Optical image of the copper 3D current collector where the 
surface analysis was performed, b depth view of the valley and hills 
on the selected area
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EPD was employed to deposit the components of a lith-
ium-ion negative electrode onto the conductive 3D printed 
copper gyroid disc in order to explore its potential use as a 
current collector. The EPD process has been studied in the 
past to produce battery cathodes and anodes [47–50], how-
ever, it has never been adopted for scalable manufacturing 
of complex 3D battery architectures due to the existence of 
substrate defects in spite of the fast deposition rates, out-
standing throwing power, and cost-effectiveness [51]. The 
EPD process was chosen in this work due to its ability to 
coat conductive or insulating materials onto a conductive 
substrate, even when the substrate was geometrically com-
plex [52, 53]. The EPD bath was composed of an optimized 
mixture of graphite as electroactive material, C45 as con-
ductive carbon, polyvinylidene difluoride as binder, iodine 
as charging agent, Triton-X100 as dispersant agent, and ace-
tone as solvent, in the amounts specified in the Materials and 
Methods section. The stability of the coating was ensured by 
the addition of a small amount of binder and dispersant that 
did not compromise the electrochemical performance [52, 
54]. In regards to the role of iodine, the mechanism widely 
accepted considers the formation of iodoacetone, suggesting 
that the surface of suspended graphite and carbon particles 
become positive as a consequence of the proton formation 
during acetone iodination ((CH3)2CO + I2 → CH3COCH2I 
+ I− + H+) [55]. After deposition, the 3D gyroid electrode 
was washed and dried. These conditions promoted thin and 
homogeneous coverage, with a  calculated loading of 36 
mgEPDcomponents/gcurrent collector. Note that under different con-
ditions of voltage, temperature and time, the coating thick-
ness and mass can be tuned.

The microstructure of the negative electrode EPD coat-
ing was evaluated using SEM analysis and compared to the 
bare 3D printed copper current collector as reference (see 
Figs. 6a−f). As shown in Figs. 6a and d, the macroporosity 
and printed features created by 3D printing were maintained 
after the EPD process, denoting a thin coating of the EPD 
bath components of about 10 μm (see Figs. 6g−i). Interest-
ingly, before EPD, the bare 3D printed copper current collec-
tor presents pixel-like features (see Fig. 6b) that are intrinsic 
to the UV projector of the DLP 3D printer. It also exhibits 
micro-cracks (about 30−35 μm wide × 200 μm long, as 
shown in Fig. S.4) that were created during the debinding 
step of the thermal post-processing. As shown in Figs. S.4b 
and c, the micro-porosity throughout the copper structure 
consists of holes of about 10 μm × 15 μm, or stripes of 
about 20 μm long × 2−6 μm wide. After EPD, these features 
are no longer visible (see Fig. 6e), and it seems that the 
micro-cracks and surface defects created during the thermal 
post-processing steps did not affect the adhesion of the EPD 
coating. Upon closer examination of the lateral side of both 
samples (see Figs. 6c and f), it can be observed that the 
features related to the stacking of the successive layers of 

~20 µm (intrinsic to the 3D printing process) are no longer 
visible after EPD of the electrode materials. Homogeneity 
of the coating was finally confirmed as no uncovered spots 
were found throughout different areas of the sample.

The energy storage capability of the 3D multi-material 
current collector/negative electrode was finally demon-
strated by performing electrochemical testing in a half-cell 
configuration. All electrochemical testing was done inside 
Swagelok®-type cells, where lithium foil was used both as 
a counter and reference electrode. The electrochemical test-
ing started with ten charge-discharge cycles at C/20 (18.6 
mA/g) (see Fig. 7a). The initial discharge capacity was 
371 mAh/g, very close to the theoretical capacity value for 
graphite of 372 mAh/g with an irreversible capacity loss 
in the first cycle of 13.2% due to solid electrolyte interface 
(SEI) formation [56]. According to the capacity vs voltage 
plot of the first discharge (see Fig. 7b), different plateaus 
were observed at around 0.80 (SEI formation), and at 0.35, 
0.18, and 0.10 V vs Li/Li+, attributed to the typical graphite 
intercalation stages [57, 58]. Also note that since there is 
no copper oxide, no conversion reaction exists between 1.3 
V and−1.5 V vs Li/Li+ [59]. After ten cycles, the rate was 
changed to C/10 (37.2 mA/g), and the discharge capacity 
was observed to drop to 153 mAh/g in the 11th cycle and 
to 108 mAh/g in the 20th cycle (see Fig. 7a). At C/5 (74.4 
mA/g), the discharge capacity remained for ten cycles at val-
ues between 75 mA/g and 60 mA/g. When coming back to 
C/20 the capacity slightly recovered to values of 150 mA/g. 
The gradual capacity loss upon cycling (see Fig. 7b) could 
be related to the loss of mobile Li+ through side reactions 
that occur with the electrolyte to form compounds which 
trap free lithium, reducing the number of Li+ that could shut-
tle between the electrodes. The loss of mobile ions reduces 
the maximum capacity that can be achieved by the battery. 
Another potential explanation is related to the electrode 
structure as well as electrode adhesion to the copper cur-
rent collector backbone being damaged upon repetitive Li+ 
intercalation and deintercalation taking place during cycling. 
These structural disorders and adhesion issues could poten-
tially arise during cycling as a result of the movement of Li+ 
in and out of the electrodes, thus reducing the number of Li+ 
that the electrode can accept into its structure, thus reducing 
the battery capacity. In future studies, tuning the EPD bath 
composition could be envisioned. Moreover, this trend can 
also be partially attributed to the non-optimized geometry 
of our test cell that uses a planar counter electrode, instead 
of a complementary 3D electrode.

For comparison purposes, a planar copper foil was 
used as a substrate in the same EPD procedure to create 
a planar graphite electrode. The resulting electrochemical 
results are shown in Figs. 7c and d. The planar EPD elec-
trode showed equivalent excellent coulombic efficiencies 
and better cycling stability along the 40 cycles at different 
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C-rates, in comparison with the 3D multi-material current 
collector/negative electrode. These results indicate that the 
non-optimized geometry of our test cell is an important 
cause for capacity fading when cycling the 3D electrode 
(see Fig. 7a), because the cell geometry impacts the SEI 
formation across the 3D surfaces of the electrode and the 
battery kinetics upon cycling. Nonetheless, it is important 
to mention that 3D printing appears as a solution to manu-
facture unique and intricate shape-conformable electrode 
geometries. These geometries can be tailored on demand 
to maximize the energy storage capability within the final 
application (eg., smartwatch, drone) while also providing 
the load-bearing capability. Future studies regarding struc-
tural batteries should envisage designing complementary 

electrodes that incorporate a solid or gel printed electrolyte 
that allows optimal compatibility.

4 � Conclusions

This work demonstrates the 3D printing by means of the 
VPP process of intricate 3D current collector architectures 
that can be effectively used as substrates for subsequent 
EPD of battery electrode materials. Thanks to 3D printing, 
the development of intricate shape-conformable batteries 
that can be tailored on-demand can now be envisioned. 
Shape-conformable 3D batteries could potentially maxi-
mize the energy storage capability within the final object in 

Fig. 6   SEM images of the 3D printed current collector before (a, b and c) and after the EPD process (d, e and f), cross-sectional view of the 3D 
current collector/negative electrode after EPD (g, h and i)
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comparison with conventional configurations restricted to 
stacking or rolling of planar components. The results shown 
in this paper elucidate that the pairing of 3D printing with 
electrophoretic deposition has the potential for structural 
battery manufacturing exhibiting dual functionality: load-
bearing and energy storage capabilities. Our results also 
point to numerous opportunities for further optimization of 
the manufacturing process steps: on the formulation of the 
base resin, on the printing parameters, on the design of the 
printed pieces, on the thermal post-processing, and on the 
EPD process. Regarding the production of full structural bat-
teries, we envision that the assembly of complementary cur-
rent collectors containing deposited electroactive materials, 
as has been shown schematically before [17, 20, 38, 60–64], 
will allow us to produce full 3D batteries. The separator and 
electrolyte, as well as the cathode electrode are fertile areas 
for study and the subject of future work.

Equally significant, this work provides the basis for future 
3D printing of complex copper current collector shapes oth-
erwise unattainable by regular means, using a process that 
requires less energy in comparison with traditional metal 3D 
printing. Since our copper manufacturing process starts sim-
ply with the 3D printing of a photocurable resin, we believe 
that it could be successfully applied to VPP processes with 
much higher spatial resolution, such as the process based on 
two-photon photopolymerization. By leveraging the sub-100 
nanometer scale resolution of this technique it is plausible 
to imagine printing microbattery components and other 
small consumer electronics such as biomedical implants 
and micro-UAVs.
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