
Vol.:(0123456789)1 3

Adv. Manuf. (2024) 12:335–348 
https://doi.org/10.1007/s40436-023-00466-w

A novel weld‑pool‑length monitoring method based on pixel 
analysis in plasma arc additive manufacturing

Bao‑Ri Zhang1   · Yong‑Hua Shi2   

Received: 20 February 2023 / Revised: 12 May 2023 / Accepted: 11 September 2023 / Published online: 4 January 2024 
© Shanghai University and Periodicals Agency of Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract  The real-time monitoring of the weld pool dur-
ing deposition is important for automatic control in plasma 
arc additive manufacturing. To obtain a high deposition 
accuracy, it is essential to maintain a stable weld pool size. 
In this study, a novel passive visual method is proposed to 
measure the weld pool length. Using the proposed method, 
the image quality was improved by designing a special visual 
system that employed an endoscope and a camera. It also 
includes pixel brightness-based and gradient-based algo-
rithms that can adaptively detect feature points at the bound-
ary when the weld pool geometry changes. This algorithm 
can also be applied to materials with different solidifica-
tion characteristics. Calibration was performed to measure 
the real weld pool length in world coordinates, and outlier 
rejection was performed to increase the accuracy of the algo-
rithm. Additionally, tests were carried out on the intersection 
component, and the results showed that the proposed method 
performed well in tracking the changing weld pool length 
and was applicable to the real-time monitoring of different 
types of materials.

Keywords  Plasma arc additive manufacturing (PAAM) · 
Weld pool geometry · Gradient analysis · Real-time 
detection

List of symbols
CDL	� Center detecting line
CNC	� Computer numerical control
ROI	� Region of interest
DL	� Detecting line
b	� Interval between two pixels when determin-

ing the gradient
bc	� Bias of the CDL in the image coordinate
br	� Bias of the reference line in the world 

coordinate
B
n

a
(k)	� Smoothed brightness

Bmax	� Maximum global brightness of all iterations
Bn(k)	� Discrete brightness function along the nth 

DL
cx,cy	� Displacement away from the axis
d	� Distance between each DL
dx,dy	� DL axis increment based on the CDL
fs(x)	� Smooth function
fx, fy	� Focal length on the optic axis
Gmin	� Minimum global gradient of all iterations
Gn(k)	� Pixel gradient
G

n

a
(k)	� Smoothed gradient

H	� 3×3 Homography matrix
W	� Array sliding over Bn

a
(k) and Gn

a
(k)

j	� Index in W
kc	� Bias of the CDL in the image coordinate
kr	� Slope of the reference line in the world 

coordinate
Ld	� Distance used to define the points falling on 

DL
Mn	� Number of pixels points in Pn

DL

n	� Index of the DLs
N	� Number of DLs on one side of the CDL
O,X,Y	� Origin and axis of the world coordinate
o, x, y	� Origin and axis of the image coordinate
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P(x, y)	� Point within the ROI
Pc1

(

xc1, yc1
)

	� Starting point of the CDL
Pc2

(

xc2, yc2
)

	� Ending point of the CDL
Pn
DL

	� Points falling on the nth DL
Pn
L1

,Pn
L2

	� End points of the nth DL
PL,PL1,PL2	� Molten length and its two portions
PR1

(

xR1, yR1
)

	� Upper left corner point of the ROI
PR2

(

xR2, yR1
)

	� Upper right corner point of the ROI
PR3

(

xR2, yR2
)

	� Lower right corner point of the ROI
PR4

(

xR1, yR2
)

	� Lower left corner point of the ROI
r1 , r2, r3	� 3×1 vectors of the rotation transformation
s	� Scale factor
t	� 3×1 vector of the translation transformation
wd	� Width of W
Xm,Ym	� Mean coordinates of the remaining feature 

points
xn, yn	� Image coordinates of the detected feature 

points
Xn, Yn	� World coordinates of the detected feature 

points
�y	� Mean of Y

n

�y	� Standard deviation of Y
n

1  Introduction

Plasma arc additive manufacturing (PAAM) is a promis-
ing additive manufacturing process with a high resource 
efficiency and low device cost compared with conventional 
machining processes. A wide range of materials, including 
titanium alloys, steels, and aluminum alloys, can be used in 
PAAM processes [1, 2]. PAAM is characterized by a high 
deposition rate for large-scale components. During the depo-
sition of mid-complexity components, the thermal masses of 
different parts of the components change with the geometry, 
which affects the thermal behavior of the weld pool. There-
fore, the weld pool size is not typically kept constant during 
the deposition process, potentially resulting in defects in the 
components [3–5]. Some researchers have attempted to use 
path optimization methods to compensate for the deposi-
tion defects caused by thermal mass changes. For example, 
a high-quality T-crossing component can be deposited by 
increasing the deposition distance to the intersecting area 
[6, 7]. Li et al. [8] proposed a new path strategy called end 
lateral extension (ELE) for additive manufacturing, while 
Davis and Shin [9] increased the wire feeding speed when 
depositing around an intersection to improve the deposition 
quality. However, these methods were realized by adjusting 
some parameters offline and not maintaining a stable weld 
pool size in real time. However, the real-time measurement of 
the weld pool size is highly beneficial because this informa-
tion can be used as a feedback signal for deposition control. 
Consequently, the weld pool size can be stabilized, thereby 

improving the geometric accuracy of the deposited compo-
nents and preventing potential defects.

Studies have been previously conducted on the monitor-
ing of the weld pool size. Researchers have used additional 
light sources such as LED lights [10] or laser dot arrays [11] 
to illuminate the molten area and obtain the weld pool size 
by analyzing the reflected images. Dual cameras have also 
been used to obtain the pool width [12], and an infrared 
camera has been used to obtain the temperature distribution 
on the metal surface [13, 14]. The light emitted from the 
plasma beam has a high intensity over the entire waveband; 
therefore, it is difficult for the camera to record the LED 
light. Laser dot array systems or binocular vision systems 
require multiple cameras, which means that errors accumu-
late when each camera is calibrated. An infrared camera is 
required to estimate the reflectivity of the weld pool surface, 
which changes with the pool temperature during deposition. 
Because of these factors, existing methods potentially cause 
measurement errors in weld pool monitoring, resulting in 
a low feedback control accuracy. Other researchers have 
focused on simpler and more applicable monitoring systems. 
Setting a pixel value threshold for image segmentation can 
assist in the extraction of the boundary of a steel weld pool 
[15–17]; however, this is not applicable when the contrast 
around the boundary is not evident [18]. A numerical simu-
lation method was used to predict the size of a titanium alloy 
weld pool in laser welding [19] and powder bed fusion [20]. 
The weld pool size was controlled through calculations using 
physical models [21]. However, various types of materials 
are employed in additive manufacturing using plasma arcs. 
Moreover, plasma arcs have different reflection and radiation 
characteristics during the deposition process, which limits 
the applicability of the pool size measurement method.

For the deposition of mid-complexity components, the 
weld pool width is limited by the widths of the previously-
deposited layers, such as the T-crossing component, as 
shown in Fig. 1b. In this case, the weld pool size is primarily 
influenced by the pool length. Therefore, a novel method that 
is suitable for different types of materials is proposed in this 
study for the real-time measurement of the weld pool length 
in plasma arc additive manufacturing. Applying this method, 
the length of the weld pool was monitored and compared 
with reference data to determine the wire feeding speed that 
produced steady deposition, and to the ensure that the proper 
component size was used during the plasma arc additive 
manufacturing process. The rest of this study is structured 
as follows. Section 2 describes the visual monitoring system, 
which comprises an endoscope used to capture close images 
of the weld pool at a high resolution. Section 3 introduces 
the algorithms for processing both the brightness and bright-
ness gradients of the image pixels, which are used to detect 
the boundary between the solid and liquid metals at the rear 
of the weld pool. The visual system is then calibrated in 
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Sect. 4 to realize the conversion between image and world 
coordinates. In Sect. 5, the measurement of the weld pool 
length based on the detected feature points is presented. 
Finally, the algorithms are integrated into software and 
tested by depositing different materials on the intersection 
components in Sect. 6. A comparison of the results revealed 
the optimal algorithm for extracting the length of the weld 
pool for different materials.

2 � System overview

A schematic of the main component of the system is shown 
in Fig. 1a. The system includes a plasma arc torch, an endo-
scope, an XIRIS camera, and a metal blocking plate. The 
samples were sealed in a glove box and moved using a 3-axis 
computer numerical control (CNC) system. The plasma 
power source, wire feeder, and computer were placed out-
side the glovebox and connected to the torch and camera by 
cables. The glovebox was filled with argon gas for global 
protection to prevent the oxidation of the deposited metal. 
When deposition began, the CNC motion system moved the 
torch along the substrate, and an image of the weld pool 
was collected using the endoscope and camera. The images 
were then transmitted to a computer, where the weld pool 

geometry was detected, and the processed results were dis-
played on the monitoring screen.

The main technical specifications of the XIRIS camera are 
listed in Table 1. The dynamic range of the chosen camera was 
sufficiently wide to record the entire plasma weld pool and 
prevent over- or under-exposure in the image. The emission 
spectrum of the plasma-arc light has several peaks within the 
wavelength range of 300–600 nm [22], whereas the selected 
camera has a high spectral response within 400–650 nm. 
Therefore, a 10 nm wide, 550 nm thick hard-coated bandpass 
interference filter was used to block extra light and record the 
image of the weld pool. To obtain a better image of the weld 
pool, a special vision system that includes a light-blocking 
plate was used. The endoscope was connected coaxially to 
the camera, and changed the light path by 90 °, allowing the 
camera to be placed beside the substrate and have a clear view 
of the back of the weld pool at a vertical capturing angle. This 
protected the camera from damage caused by heat generated 
during deposition. To prevent the plasma arc light from affect-
ing the image quality, a blocking plate was fixed between the 
endoscope and torch. By adding a blocking plate and adjusting 
the position of the endoscope, the effect of the specular reflec-
tion of the arc light was reduced, thereby allowing the deter-
mination of the boundary of the weld pool, as shown in Fig. 2. 
The original, blocked titanium, and blocked steel images are 
shown in Figs. 2a–c, respectively. Figure 2d shows the changes 

Fig. 1   Schematic diagram of the PAAM a monitoring system structure, b top view and front section of the weld pool

Table 1   Main technical specifications of the selected camera

Name Dynamic range Spectral response range (>60%) Spectral filter

XIRIS 120 dB 400–650 nm wavelength 10 nm width, 550 nm wavelength hard coated bandpass 
filter
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in the brightness of the pixels along the weld pool centerline 
in Figs. 2a–c. Figure 2a shows a record of the reflection of 
the arc light in the middle of the pool and behind the pool, 
which hinders the recognition of the boundary in the image. 
By adding a blocking plate, the influence of the reflected light 
is prevented, as shown in Fig. 2b. In addition, Fig. 2d shows 
that the curvature of the curve at the boundary position in 
Fig. 2b is larger than that in Fig. 2a. Consequently, the change 
in the brightness at the boundary is larger and easily detected 
when the blocking plate is used. Figure 2c shows an extension 
of the application of the plate in steel, and the result shows a 
more evident boundary than that of the titanium alloy.

3 � Image processing method

3.1 � Problem analysis

To achieve the best detection performance while minimizing 
the computational cost, it is necessary to obtain the optimal 
extraction algorithm for different materials. For certain types 
of metals such as steel, the boundary appears clearly in the 
image, which indicates that the pixel brightness from the 
weld pool center to the edge suddenly changes, as shown in 
Fig. 2c. This is owing to the unsmooth metal surface that is 
formed after the liquid solidifies. For other metals, such as 
titanium alloys, the surface brightness from the weld pool 
to the solid metal slowly decreases without forming a clear 

Fig. 2   Image improvement with the blocking plate a original deposition image, b titanium alloy deposition with blocking plate, c steel deposi-
tion with blocking plate, d pixel brightness changes along the centerline of the weld pool in a–c 
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contrast in the brightness, as shown in Fig. 2b. A series of 
tests were conducted to obtain images of titanium alloy 
deposition under different torch speeds, currents, and wire 
feeding speeds, as shown in Fig. 3. Based on these images, 
it can be concluded that although the weld pool maintains its 
shape, there is a change in the size. In addition, the bright-
ness of the pixels along the pool length direction varies 
following a certain trend. Therefore, brightness-based and 
gradient-based algorithms corresponding to metals with dif-
ferent surface smoothness during the solidification process 
(steel and titanium alloy, respectively) were included in the 
weld pool boundary detection method proposed in this study. 
This process is illustrated in Fig. 4.

3.2 � Feature point detection

3.2.1 � Determination of the ROI and CDL

Image processing was used to detect the boundary of the 
weld pool in the image captured by the monitoring system 
mentioned above. The boundaries of the steel and titanium 
weld pool in the images are both parabola to ensure that the 
intersection between the CDL and boundary can be used as 
the feature point for determining the size of the weld pool. 
The image process starts with the determination of ROI 
and CDL. Subsequently, the pixels from the line segments 
parallel to the CDL are extracted for data processing. The 

Fig. 3   a–c changing torch speed with the same current of 180 A and 
wire feeding speed of 1 800 mm/min, d–f changing current with the 
same torch speed of 4.5 mm/s and wire feeding speed of 1 800 mm/

min, g–i changing wire feeding speed with the same current of 180 A 
and torch speed of 4.5 mm/s
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useful information is only contained in the circular area of 
the image captured by the endoscope. The image is then 
cropped into a rectangular ROI to reduce the computation 
cost. Finally, the image coordinate is set up within the image, 
as shown in Fig. 5.

The upper left corner was taken as the origin of the coor-
dinates o . The line along the width was taken as the x axis, 
whereas that along the height was taken as the y axis. Two 
points in the image were selected in advance and defined as 
the upper left corner PR1 and lower right corner PR3 of the 
ROI rectangle. The four corners of the ROI were defined as 
PR1

(

xR1, yR1
)

 , PR2

(

xR2, yR1
)

 , PR3

(

xR2, yR2
)

 and PR4

(

xR1, yR2
)

 . 
It should be noted that the size of the ROI should include only 
the circular area in the image, as indicated by the red rectangle 
in Fig. 5. Moreover, the boundary profile is parabolic. This 
means that on the centerline of the deposition layer, the posi-
tion of the boundary is the farthest from the front of the weld 
pool. Therefore, a CDL can be drawn along the deposition 
layer to detect the feature point, which is the farthest posi-
tion of the boundary. Because the positions of the camera, 
endoscope, blocking plate, and torch were relatively fixed, 
the position of the CDL could be determined in advance and 

fixed along the deposition layer. Two points, Pc1

(

xc1, yc1
)

 and 
Pc2

(

xc2, yc2
)

 were then selected within the ROI and used as the 
start and end points of the CDL, respectively. The CDL should 
be close as possible to the centerline of the deposition layer, 
as shown by the blue line segment in Fig. 5. The expression of 
the CDL in image coordinates is

where kc is the slope of the CDL and bc is the bias. Con-
sequently, a feature point can be obtained from the CDL. 
To avoid the low extraction accuracy caused by extraction 
errors, more DLs were drawn to obtain more feature points. 
This is achieved by drawing 2N  line segments parallel to 
the CDL. These line segments are equally distributed on 
both sides of the CDL, with N  on one side and N  on the 
other, as indicated by the green line segment in Fig. 5. The 
distance between the detection lines was fixed at d . The end-
points of these line segments were then obtained based on 
the CDL endpoints by adding the increments dx and dy . For 
the nth DL, the starting point Pn

L1
 and ending point Pn

L2
 can 

be expressed as

where n ∈ [−N,N] and { Pn
L1
,Pn

L2
 } are the endpoint of the 

nth detection line. When n < 0 , the detection line is on the 
left side of the CDL, and when n > 0 , the line is on the right 
side. n = 0 refers to the CDL itself. The coordinates of the 
endpoints for each DL can be obtained as shown below.

As shown in Fig. 6, the distance between the CDL and the 
nth DL is nd . Moreover, the increment in the coordinate is 
n ⋅ dx and n ⋅ dy, respectively. By drawing a dashed line par-
allel to the x and y axes, two similar triangles, ΔPc1O1P

n
L1

 
and ΔPc2O2Pc1, can be formed. For triangles with a similar 
property, the ratios of the corresponding sides are the same.

(1)y = kcx + bc =
yc1 − yc2

xc1 − xc2
x +

yc2xc1 − yc1xc2

xc1 − xc2
,

(2)Pn
L1

=
(

xc1 + n ⋅ dx, yc1 + n ⋅ dy
)

,

(3)Pn
L2

=
(

xc2 + n ⋅ dx, yc2 + n ⋅ dy
)

,

(4)
n ⋅ dx

n ⋅ dy
=

yc1 − yc2

xc1 − xc2
= kc.

Fig. 4   Flow chart of the image processing method for weld pool monitoring

Fig. 5   Setting of the ROI, the CDL and the DL in the image coordi-
nate
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According to the Pythagorean Theorem, the following 
equation holds

By combining Eqs. (4) and (5), the increment in the 
endpoints can be obtained as follows

Consequently, when n ∈ [−N,N] , the general expression 
for the nth DL is

3.2.2 � Pixel extraction from the DL

Each DL intersects the boundary at a point that can be 
considered a feature point. To obtain the feature point 
from the DL, it is necessary to first extract the pixels fall-
ing on the DL. Because the pixels are discrete rather than 
continuous points, the pixels whose distance from the DL 
was less than Ld were defined as points falling on the DL. 
Therefore, by traversing all the pixels in the ROI, the pix-
els falling on the DL can be extracted. Taking P(x, y) as a 
pixel point at a certain position (x, y) within the ROI, Pn

DL
 is 

a set containing all the pixel points that fall on the nth DL.

(5)(n ⋅ dx)2 + (n ⋅ dy)2 = (n ⋅ d)2.

(6)

⎧

⎪

⎨

⎪

⎩

dx =
kc⋅d

√

kc
2+1

,

dy =
d

√

kc
2+1

.

(7)y = kcx + bc + n ⋅ dy.

where x ∈ [xR1, xR2] , y ∈ [yR1, yR2] , and n ∈ [−N,N] . There 
are (2N + 1) different Pn

DL
 values corresponding to each DL. 

Consequently, the values of the pixel points from every Pn
DL

 
can be processed to obtain the feature points.

3.2.3 � Brightness‑based algorithm

An image of the deposited steel is shown in Fig. 7a. It was 
found that the liquid and solid metals in the weld pool 
exhibited different properties in terms of the amount of 
light reflected and radiated from their surfaces, resulting in 
a change in brightness at the boundary of the image.

In this section, a brightness-based algorithm is intro-
duced to detect the steel pool boundaries. According to 
the method described in Sect. 3.2.1, a group of DLs was 
determined along the deposited layer, and the pixel bright-
ness was obtained. One DL was selected as an example for 
further examination, as indicated by the blue line in Fig. 7a. 
The brightness of the pixels in Pn

DL
 can be represented by 

{

Bn(1),Bn(2),⋯ ,Bn
(

Mn

)}

, and Mn is the number of pixel 
points in Pn

DL
 . k ∈ {1, 2,⋯ ,Mn} , Bn(k) is a discrete func-

tion that shows the change in brightness along the nth DL. 
Because Bn(k) contains the signal noise produced by the 
camera, a smoothing function, fs(x), is used to reduce it. 
The smoothing function is defined as follows

where A(i) is a discrete array containing L elements and 
(2a + 1) is the number of adjacent values used for averag-
ing. Taking Bn

a
(k) = fs

(

Bn(k),Mn

)

, the curve of the filtered 
brightness changing function is as shown in Fig. 7b, where 
the first peak from the back to the front represents the change 
in the brightness at the boundary. This implies that the peak 
position can be regarded as a feature point. Therefore, a peak 
search algorithm was proposed, and its flowchart is shown 
in Fig. 8. An array W =

{

W(1),W(2),⋯ ,W
(

wd

)}

 that has a 
width of wd and slides over Bn

a
(k) with an index j was defined. 

For every iteration, W  was used to store Bn
a
(k) values from j 

to j − wd . Initially, j is equal to Mn , which means that array 
W slides from the end to the beginning within Bn

a
(k) . During 

each iteration, the maximum value of W, Max{W} = W(i), 
was obtained. Max{W} is the maximum of the array in one 
iteration, and i is the position of Max{W} in W  . Addition-
ally, Bmax is the global maximum of all iterations. When the 

(8)Pn
DL

=

⎧

⎪

⎨

⎪

⎩

P(x, y)�
�

�

kcx + bc + n ⋅ dy − y�
�

�

kc
2 + 1

< Ld

⎫

⎪

⎬

⎪

⎭

,

(9)fs(A(x), L) =

⎧

⎪

⎨

⎪

⎩

1

2a+1

∑k+a

i=k−a
A(i), a ≤ k ≤ L − a,

1

2k

∑2k

i=1
A(i), k < a,

1

2(L−k)

∑L

i=2k−L
A(i),L − a < k < L,

Fig. 6   Geometric relationship between CDL and DL
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Max{W} in an iteration was larger than Bmax , a new peak 
was observed. Subsequently, Bmax = Max{W} was updated 
and j was updated to j − wd + i before starting the next itera-
tion. The iterations were then stopped when Bmax no longer 
changed. This indicated that the position of the peak was 
found. The final j was then used as the output. Consequently, 
the pixel point corresponding to the jth element in Bn

a
(k) was 

considered as the feature point.

3.2.4 � Gradient‑based algorithm

For the titanium alloys, the brightness of the weld pool is 
similar to that of the solid material. Figure 9a shows an 
example of the deposition of Ti6Al4V, and Fig. 10b shows 
its brightness curve. No peak can be observed at the fea-
ture point position in the brightness curve along the DL. 
Instead, the brightness remains at a high level in the molten 
area before slowly decreasing at the boundary position. This 
implies that the brightness-based algorithm does not perform 
well for titanium alloys.

In this section, a gradient-based algorithm is proposed for 
detecting the pool boundaries of titanium alloys. First, the 
pixel gradient Gn(k) was defined to describe the changes in 
the slope of the brightness

where b is the interval between the two pixels and 
k ∈ [1,Mn − b] . Additionally, Mn − b is the number of 
elements in Gn(k); and Gn

a
= fs(G

n
(k),Mn − b) is used to 

smoothen the gradient. The smoothed curve is shown in 
Fig. 10.

(10)Gn(k) = Bn
a
(k + b) − Bn

a
(k),

The first trough from the back to the front of the gradient 
curve corresponds to the position where the brightness sharply 
changes. Therefore, the position of the trough can be used to 
locate the feature points. To this regard, the trough search 
algorithm was proposed, which was similar to the peak search 
algorithm described in Sect. 3.2.2. Its flowchart is shown in 
Fig. 11. For the trough search algorithm, a wd-wide W with an 
index j was used to slide over Gn

a
(k) . For every iteration, W was 

Fig. 7   Feature point detection with brightness-based algorithm a the image of the steel deposition, b the smoothed brightness curve got via 
brightness-based algorithm

Fig. 8   Flow charts of the peak-search algorithm



343A novel weld‑pool‑length monitoring method based on pixel analysis in plasma arc additive…

1 3

used to store Gn
a
 values from j to j − wd . Initially, j is equal to 

Mn − b . Moreover, Min{W} = W(i) represents the minimum 
value of each iteration, and Gmin is the minimum global gradi-
ent. When the Min{W} in one iteration was smaller than Gmin , 
Gmin = Min{W} was updated and j was updated to j − wd + i 
before starting the next iteration. The iterations were stopped 
when Gmin no longer changed. The final j was used as the 
output. Consequently, the pixel point corresponding to the jth 
element in Gn

a
(k) was considered as a feature point.

4 � Calibration

The feature points were detected in the image coordinates; 
therefore, they have to be converted into world coordinates 
to obtain the real size of the weld pool [23]. For camera-
based monitoring systems, the inherent characteristics of 
the lens and photosensitive element are described using the 

Fig. 9   Feature point detection with gradient-based algorithm a ROI of the titanium alloy deposition image, b smoothed brightness curve got via 
brightness-based algorithm

Fig. 10   Smoothed gradient curve got via gradient-based algorithm

Fig. 11   Flow charts of the trough-search algorithm
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internal parameters that determine the distortion produced 
in the captured image. In addition, the relative position of 
the camera with respect to the weld pool is described using 
the external parameters that show the rotation and transla-
tion of the images. Consequently, a conversion formula can 
be used to describe the mapping relationship between the 
three-dimensional world coordinates and two-dimensional 
image coordinates

where x and y are the coordinates of the point in the image. 
Additionally, s is the scale factor, fx and fy are the focal 
lengths on different optical axes, and cx and cy are the dis-
placements away from the axis. These enabled the formation 
of a 3 × 3 matrix of the internal parameters. r1 , r2 , and r3 
are 3 × 1 vectors representing the rotational transformation, 
and t is a 3 × 1 vector representing the translation transfor-
mation. Moreover, r1 , r2 , r3 , and t form a 4 × 3 matrix of 
the external parameters, and X , Y  , and Z denote the world 
coordinates of the feature points. In this study, the length of 
the weld pool was considered as the distance between the 
feature point and front of the weld pool. This implies that 
the size of the weld pool can be measured on a plane parallel 
to the layer surface. Therefore, only two-dimensional world 
coordinates were considered. The conversion formula can 
be simplified by setting Z = 0

where H is a 3 × 3 matrix (called a homography matrix) 
that comprises a combination of all the parameters in the 
function. In this study, the method described in Ref. [24] 
was used for calibration. As shown in Fig. 12, a chessboard 
was placed on the deposition plane for calibration. The cor-
ner points of the square in the chessboard image were then 
selected. Additional corner points were averaged to reduce 
the influence of noise, and their coordinates were input into 
the formula to obtain the equations. Finally, H was solved 
as follows

(11)
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5 � Weld pool length measurement

To measure the length of the weld pool, the positions of 
the feature points and front of the weld pool were obtained. 
Owing to the limitations of the blocking plate and gas 
shield, only a part of the weld pool could be recorded in 
the images. To solve this problem, the weld pool length, 
represented as PL , was divided into two portions using 
a reference line. The reference line is defined as a line 
segment that passes through the CDL starting point, is 
orthogonal to the CDL, and is fixed in the image coordi-
nates. As shown in Fig. 13a, the first portion is the distance 
between the feature point and reference line, represented 
as PL1 . The second portion is the distance between the ref-
erence line and front of the weld pool, represented as PL2.

To obtain PL1 , the coordinates of the detected feature 
points and reference line were converted from image coor-
dinates to world coordinates based on the conversion for-
mula obtained during calibration

where Xn and Yn are the world coordinates of the detected 
feature points; xn and yn are the image coordinates; and H−1 
is the inverse matrix of H . The positions of the detected 
points and reference line before and after conversion are 
shown in Figs. 14 and 15, respectively. The reference line 
was converted into world coordinates with the formula 

(14)
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Fig. 12   Square corners are chosen from the chessboard for calibra-
tion



345A novel weld‑pool‑length monitoring method based on pixel analysis in plasma arc additive…

1 3

Y = krX + br , where kr and br are obtained based on the defi-
nitions of the reference line. Certain points may be incor-
rectly detected during the detection of feature points. To 
reduce the effects of these incorrect points on the meas-
urement accuracy, an outlier elimination method was used 
[25]. First, the mean and standard deviation of the Y

n
 were 

obtained as follows

(15)�
y
=

1

2N + 1

N
∑

n=−N

Y
n
,

Subsequently, the points whose Y coordinate is within 
[�y − 3�y,�y + 3�y] were considered and the other points 
were removed as outliers. The mean of the X and Y coor-
dinates of the remaining feature points were then obtained 
and represented as Xm and Ym , respectively. Consequently, 
PL1 is equal to the distance between the point (Xm,Ym) and 
reference line.
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Fig. 13   Schematic diagram of the weld pool length a two portions PL1 and PL2 of the weld pool length PL , b manual measurement of PL2

Fig. 14   Position of the detected feature points and the reference line in the image coordinate a steel, b titanium alloy
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The reference line was fixed because the camera and torch 
positions were fixed. Although there was a slight change in 
the weld front position when the parameters were different, 
this change stabilized under a specific set of fixed param-
eters, as listed in Table 2. The PL2 values were manually 
measured using the method shown in Fig. 13b. For the vari-
ous groups of tests, the shared settings were current of 180 
A current and wire feeding speed of 1 800 mm/min. Table 2 
shows that the position of the weld pool front was stable 
when a certain set of parameters were used for deposition. 
Therefore, PL2 can be obtained beforehand through trials. 
The complete weld pool length can be obtained as follows

6 � Test and verification

Tests were conducted to verify the performance of the pro-
posed weld pool length detection algorithm. The substrates 

(17)PL1 =
|

|

krXm + br − Ym
|

|

√

kr
2 + 1

.

(18)PL = PL1 + PL2.

were machined to form an intersection where metal layers 
were deposited, as shown in Figs. 16a and b. Two materi-
als were tested, Ti6-Al-4V and S355 steel. The deposition 
parameters of the two materials are listed in Table. 3. The 
proposed monitoring method was integrated into a software 
to detect the weld pool length in real time during deposition. 
The interface allowed the parameters to be set and displayed 
the value of the detected length. The raw image and detec-
tion results are shown in the picture for monitoring purposes.

The data for the different depositions are shown in 
Figs. 16c and d. During the deposition of the titanium alloy 
and steel, the software tracked the change in the weld pool at 
a frequency of approximately 2–3 Hz. After experiencing a 
change at the start of deposition, the pool length stabilized. 
When passing through the intersection, the weld pool length 
decreased rapidly before slowly recovering. The change in 
the detected data was synchronized with the change in the 
actual weld pool. Consequently, the proposed weld pool 
detection algorithm effectively tracked the change in the size 
of the weld pool during the intersection deposition process. 
Therefore, the feasibility was verified to have good reliability 
by testing titanium 6-Al-4V alloy and S355 steel.

7 � Conclusions

This study proposes a novel method for monitoring the 
change in the length of the weld pool caused by a thermal 
mass change in a component. This method can be used to 
ensure the geometric accuracy of the deposited component 
by stably controlling the size of the weld pool. It includes the 
establishment of a special imaging system, the rapid extrac-
tion of feature points on the boundary of the weld pool, out-
lier rejection for accuracy improvement, the measurement of 
the weld pool length based on calibration, and the analysis 
of the optimal algorithm for different materials. The rest of 
this study was organized as follows.

	 (i)	 An endoscope and a shielding plate were added to 
the monitoring system to obtain a vertical viewing 
angle and prevent arc interference, which improved 
the image quality of the weld pool boundary.

Fig. 15   Position of the detected feature points and the reference line 
in the world coordinate

Table 2   Value of PL2 under different parameters (mm)

Parameters Group 1 Group 2 Group 3 Group 4 Group 5 Average Variance

Current:160 A 4.16 4.21 4.22 4.17 4.20 4.192 0.023
Current:180 A 4.47 4.53 4.52 4.51 4.52 4.510 0.021
Current:200 A 5.25 5.30 5.29 5.31 5.26 5.270 0.022
Wire feeding speed: 1 400 mm/min 4.98 5.13 5.15 4.99 5.02 5.050 0.072
Wire feeding speed: 2 200 mm/min 4.29 4.41 4.39 4.32 4.26 4.330 0.057
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	 (ii)	 A gradient-based algorithm was proposed to detect the 
boundary of a titanium alloy weld pool, which solved 
the monitoring problem caused by the low brightness 
contrast on the pool surface.

	(iii)	 For comparison, the optimal extraction algorithms 
for the S322 steel and titanium 6-Al-4V alloys were 
determined.

	(iv)	 The pixel extraction method based on the detection 
line was used to reduce the computational cost of the 
entire algorithm, which was beneficial for realizing 
real-time monitoring.

However, the proposed method requires some parameter 
settings to be set in advance, and more materials need to be 
tested. Therefore, future work will focus on the following: 
(i) automatic setting of the software parameters based on 
the signal from the manipulation system, (ii) additional tests 
using other materials commonly used in plasma arc additive 
manufacturing.
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