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Abstract Accurate energy consumption modeling is an

essential prerequisite for sustainable manufacturing.

Recently, cutting-power-based models have garnered sig-

nificant attention, as they can provide more comprehensive

information regarding the machining energy consumption

pattern. However, their implementation is challenging

because new cutting force coefficients are typically

required to address new workpiece materials. Traditionally,

cutting force coefficients are calculated at a high operation

cost as a dynamometer must be used. Hence, a novel

indirect approach for estimating the cutting force coeffi-

cients of a new tool-workpiece pair is proposed herein. The

key idea is to convert the cutting force coefficient calcu-

lation problem into an optimization problem, whose solu-

tion can be effectively obtained using the proposed

simulated annealing algorithm. Subsequently, the cutting

force coefficients for a new tool-workpiece pair can be

estimated from a pre-calibrated energy consumption

model. Machining experiments performed using different

machine tools clearly demonstrate the effectiveness of the

developed approach. Comparative studies with measured

cutting force coefficients reveal the decent accuracy of the

approach in terms of both energy consumption prediction

and instantaneous cutting force prediction. The proposed

approach can provide an accurate and reliable estimation of

cutting force coefficients for new workpiece materials

while avoiding operational or economic problems

encountered in traditional force monitoring methods

involving dynamometers. Therefore, this study may sig-

nificantly advance the development of sustainable

manufacturing.
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Abbreviations

P Total power (W)

Pidle Idle power (W)

Pcutting Average cutting power (W)

f VB
� �

Tool wear propagation pattern

n Rotation speed (r/min)

rMRR Material removal rate (mm3/s)

C0, C1, C2, g Model coefficients

Pcutting Instantaneous cutting power (W)

P
0

cutting
Average cutting power without tool wear

(W)
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1 Introduction and literature review

The manufacturing sector constitutes a considerable por-

tion of the total energy consumed worldwide [1, 2] but with

remarkably poor efficiency [3], thereby suggesting sub-

stantial energy-saving potential. Therefore, both academia

and industry are focusing more on improving energy effi-

ciency in manufacturing. To achieve such an improvement,

a reliable estimation of the manufacturing energy con-

sumption is an essential prerequisite. Over the past dec-

ades, various models have been developed to estimate the

energy consumed in various manufacturing processes.

Distinguished by their approaches, these models can be

categorized into two major groups.

In the first group, the total energy consumption is esti-

mated by considering the energy required by different

machine states. Several major models of this group are

presented in Table 1 [4–9]. These models have been

experimentally validated in terms of energy consumption

estimation. However, owing to the difficulty in identifying

and modeling many machine states, their implementation is

typically tedious and challenging. In addition, some of the

process parameters are not explicitly involved in these

models, thereby limiting their application during process

parameter optimization to achieve higher energy

efficiency.

Unlike the first group, models in the second group aim

to estimate energy consumption based on the process

parameters of the manufacturing processes. Table 2 lists

the major reported models. A pioneering work was

demonstrated by Gutowski et al. [10] via a manufacturing

analysis cast in an exergy framework. In that study, the

energy consumed in the manufacturing process comprised

two parts. The first part was a constant energy consumption

of idle/auxiliary components, whereas the other part cor-

responded to variable energy consumption incurred by

material removal. However, despite the strong theoretical

background, the experimental validation was beyond the

scope of this study. Using an empirical approach, Li and

Kara [11] investigated the energy consumption of a turning

process. Following a similar approach, Li et al. [12]

modeled energy consumption empirically by additionally

considering the spindle speed. Subsequently, Liu et al. [13]

further revealed the effects of process parameters on mil-

ling energy consumption from the viewpoint of cutting

power. In that study, most of the parameters used were for

the cutting power analysis, such as the tool-workpiece

properties and various cutting parameters. The proposed

model was subsequently extended to the milling process

with tool wear propagation [14], general end-milling pro-

cesses [15], and drilling processes [16]. Compared with

other energy consumption models, these cutting-power-

based models have demonstrated remarkable advantages.

For example, Liu et al. [13] successfully provided accurate

power prediction, even for the same material removal rate

(MRR) and rotation speed. In addition, the extended model

reported by Shi et al. [14] could yield reasonable estima-

tions for the milling process involving a worn tool. To

further investigate effects of tool wear, Zhang et al. [17]

established a mechanistic model for estimating energy

consumption that emphasized the effect of stochastic tool

wear combined with tool run-out in the micromilling pro-

cess. In addition, the improved model by Shi et al. [15]

proved its generality and reliability for different workpiece

materials. However, for these cutting-power-based energy

consumption models to function as intended, coefficients

for the cutting force calculation must first be determined.

As indicated by Shi et al. [15], such coefficients may

change depending on the tool-workpiece pair. Therefore,

implementing these models may be challenging.

Generally, the calculation of the cutting force coeffi-

cients requires a measured cutting force profile [18]. Based

on literature review, direct measurement is the most

extensively applied approach, in which the cutting force is

estimated from the machining process directly using

advanced dynamometers, e.g., a plate dynamometer on a

workbench [19] and a rotatory dynamometer on a tool

holder [20]. Using such devices, the cutting force can be

measured accurately. However, for such devices to func-

tion as intended, strict requirements are imposed on their

operating conditions and workpiece dimensions. For

example, it is typically challenging to monitor the

Table 1 Major machine state-based energy consumption models

No. Reference Process Considered machine states

1 Avram and Xirouchakis [4] Milling Spindle acceleration, deceleration and steady rotation, cutting

2 Mori et al. [5] Milling Spindle acceleration and deceleration states, positioning state, non-cutting state, cutting state

3 He et al. [6] Milling Spindle rotation, axes feed, tool change, coolant pump, fixed

4 Balogun and Mativenga [7] Milling Basic, ready, tool change, air cutting, cutting

5 Sealy et al. [8] Milling Spindle rotation before, after, and during material removal, air cutting and net cutting

6 Edem and Mativenga [9] Milling Baseline, spindle rotation, tool change, coolant pump, cutting
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machining process of blades owing to the fixture incom-

patibility between the workpiece and dynamometer. In

addition, the non-negligible weight of such devices may

affect the dynamic characteristics of the machine tool or

workpiece, resulting in instability in the machining pro-

cess. Finally, such devices are generally expensive, which

may further restrict their application in the industry. To

solve the abovementioned problems using direct measure-

ment, many indirect methods for cutting force estimation

have been proposed from an electric perspective, such as

current and power. For example, Jeong and Cho [21]

revealed a relationship between the cutting force and cur-

rent signals from the rotating and stationary feed drive

motors of a milling machine [21]. Similarly, Li [22] pro-

posed a model to evaluate the cutting forces from current

data in the turning process; the model exhibited better

performance than other approaches in terms of multi-di-

rection cutting force monitoring. Furthermore, Kim and

Jeon [23] analyzed the alternating current induction motor

of feed and spindle systems and developed a current-based

approach to estimate the milling force. The results sug-

gested that the spindle motor current with a higher quasi-

static sensitivity was more applicable for predicting the

cutting force. To determine the tangential cutting coeffi-

cients, Aggarwal et al. [24] estimated the cutting torque via

spindle motor current measurements in the milling process.

Subsequently, Aslan and Altintas [25] presented a novel

approach to estimate cutting forces in a five-axis milling

process from the current of a CNC feed drive system. This

approach is appropriate for the sensorless monitoring of the

cutting force during the machining of complex compo-

nents. Recently, power-based methods for cutting force

monitoring have garnered attention. Using power signals in

the turning process, Qiu [26] presented an approach for

calculating turning force coefficients. The abovementioned

indirect cutting force evaluation methods provided

promising substitutes for direct cutting force measurement,

and experimental results demonstrated their decent accu-

racy. However, to apply the abovementioned approaches,

most of the sensors must be installed in the internal circuit

of the machine tool. As such, the implementation of such

approaches remains challenging owing to the highly

dynamic operating environment of the sensors. Further-

more, the installation of such sensors may jeopardize the

dynamic stability of the machining process. Therefore, a

cutting force evaluation approach that is independent of the

internal circuit/component of the machine tool is necessi-

tated. In this regard, another power-based method was

proposed by Lu et al. [27] to evaluate the cutting force in a

micromilling process from real-time power reading.

However, only the average cutting forces were obtained,

i.e., the calculation of the cutting force coefficients and the

prediction of the instantaneous cutting force were exclu-

ded. In addition, owing to the limitations of the micro-

milling force, their approach is not applicable to traditional

milling processes.

In this study, recent developments in energy consump-

tion modeling are utilized; subsequently, a novel approach

is proposed to estimate milling force coefficients. The

proposed approach can facilitate the implementation of

cutting-power-based energy consumption models, thereby

advancing the development of energy consumption mod-

eling. In the proposed approach, sensors are installed at the

mains of the machine circuit, independent of its internal

circuit/component. Hence, the installation of the sensors is

easy and straightforward, and the internal circuit of the

machine tool is not exposed. More importantly, the sensors

function in a stable environment impose negligible effects

on the machining process.

The remainder of this paper is organized as follows.

Firstly, in Sect. 2, the energy consumption model used in

the proposed approach is briefly introduced, following

which a simulated annealing (SA) algorithm for the esti-

mation of milling force coefficients is described. Section 3

describes the experimental details, such as the installation

of a power meter and dynamometer. In Sect.4, the appli-

cation of the developed SA algorithm for solving the cut-

ting force coefficients is discussed; subsequently, a

Table 2 Major process parameter-based energy consumption models

No. Reference Process Model expression

1 Gutowski et al. [10] General manufacturing P ¼ C0rMRRþC1

2 Li and Kara [11] Turning P ¼ C0rMRRþC1

3 Li et al. [12] Milling P ¼ C0rMRRþC1nþ C2

4 Liu et al. [13] Milling P ¼ C0þC1Pcutting

5 Shi et al. [14] Milling P ¼ P0þf VB
� �

P
0

cutting

6 Shi et al. [15] Milling P ¼ PidleþPcutting

�
g

7 Wang et al. [16] Drilling P ¼ PidleþC0Pcutting

Indirect approach for predicting cutting force coefficients and power consumption in milling process 103

123



comparative study with the measured cutting force profile

is presented and discussed. Finally, Sect. 5 presents the

conclusions and future studies.

2 Cutting force coefficients prediction in end-
milling process

In this section, the relationship between cutting force and

total power is established; subsequently, an SA developed

for estimating the cutting force coefficient from the input

power data is described.

2.1 Mapping from cutting force to total power

consumption

Generally, the total power Ptotal of a milling machine tool

includes the idle power required by the auxiliary compo-

nent and the additional power due to the cutting material

[14, 15]. The relationship can be expressed as

Ptotal ¼ Pidle þ Pcutting

�
g; ð1Þ

where Ptotal (W) and Pidle (W) are the total power and idle

power, respectively; Pcutting(W) is the power consumed at

the tool tip owing to material removal; g denotes the

energy efficiency for converting additional power into

cutting power.

In Ref. [12], Pidle is described as the power consumed by

the auxiliary components to obtain the machine tool for

machining. When the machine tool is idle, the spindle

rotates at a certain rotation speed, but the cutter is not

engaged in cutting. Owing to the significant inertia of the

spindle, Pidle is generally expressed as a function of the

rotation speed, shown as

Pidle ¼ f nð Þ: ð2Þ

Depending on the specific energy consumption, the

function f may be linear [28], quadratic [29], or piecewise

[30].

When the cutter is engaged in cutting, additional energy

is consumed for material removal. To calculate the power

consumed due to material removal at the tool tip, the cut-

ting force model was introduced. For a general milling

process involving a flat-end mill, as shown in Fig. 1, the

cutting forces (N) are expressed as [31, 32]

dFt h; zð Þ ¼ Ke;tdSþ Kc;tst sinwdz;
dFr h; zð Þ ¼ Ke;rdSþ Kc;rst sinwdz;
dFa h; zð Þ ¼ Ke;adSþ Kc;ast sinwdz;

8
<

:
ð3Þ

where Kc;� (N/mm2) and Ke;� (N/mm) are the cutting and

edge milling force coefficients, respectively; subscripts t, r,

and a denote three orthogonal cutting directions, i.e.,

tangential, radial, and axial, respectively; st (mm/r),

dS (mm), h (rad), z (mm), and dz (mm), w (rad) denote the

feed per tooth, edge length, cutter rotation angle, edge

height, differential edge height, and edge rotation angle,

respectively.

According to a previous study [15], the total instanta-

neous cutting power can be obtained as

dPcutting h; zð Þ ¼ dPn þ dPf

�� ��

¼ Ke;tdSþ Kc;tst sinwdz
� �

2pnr=60 000
�� ��

þ dFt sinwþ dFr coswð Þf=60 000j j0;
ð4Þ

where dPcutting, dPn, dPf (W), n (r=min) and f (mm=min)

are the total cutting power, rotating component of cutting

power, feeding component of cutting power, spindle speed,

and feed speed, respectively. In a practical milling process,

f=60 000 (m=s), the spindle moving speed, is typically

sufficiently small; hence, the instantaneous power can be

approximated as

dPcutting h; zð Þ � Ke;tdSþ Kc;tst sinwdz
� �

2pnr=60 000
�� ��:

ð5Þ

The average power at the tool tip Pcutting can be esti-

mated over one cutter rotation as

Pcutting ¼
1

2p

Z h2¼2p

h1¼0

Z z2¼ap

z1¼0

dPcutting h; zð ÞC wð Þ; ð6Þ

where h1, h2(rad), and z1, z2 (mm) denote the angular and

axial ranges of the engaged cutting edges, respectively.

C wð Þ is a binary function that determines the cutting edge

status, with ‘‘true’’ representing cutting engagement.

Based on the abovementioned equations, the mapping

from the cutting force to the energy consumption can be

Fig. 1 Milling process with a flat end mill
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established using the tangential milling force coefficients

as

Ptotal ¼ g Ke;t;Kc;t

� �
: ð7Þ

2.2 Estimation of cutting force coefficients

from power data

Theoretically, after performing mapping from the cutting

force to the power, the cutting force coefficients can be

solved inversely using the power data. However, owing to

the complexity introduced by oblique cutting (e.g., cutter

engagement issue), a direct inverse solution is not practical.

An exhaustive search (EX) appears to be a feasible solu-

tion, but the time required is unreasonable owing to the

high resolution of the solution space. In this study, the

problem is converted to an optimization problem whose

objective is to obtain a pair of cutting force coefficients

Ke;t;Kc;t

� �
that minimizes the following error function

E Ke;t;Kc;t

� �
¼
g Ke;t;Kc;t

� �
� Pm

Pm

� 100%; ð8Þ

where E represents the estimation error, and Pm (W) is the

measured total power consumption.

To solve this optimization problem, an SA algorithm

modified from Ref. [33] is proposed to obtain a solution for

the cutting force coefficient from power data. The SA

algorithm is a metaheuristic-based algorithm that proba-

bilistically approximates the global optimal solution in a

vast solution space. Similar to annealing in metallurgy,

starting from a sufficiently high initial temperature (Tinitial),

which indicates high thermodynamic free energy, the SA

process accepts a changing solution even if its quality is

deteriorated, thereby encouraging exploitation to avoid

Fig. 2 Flowchart of the proposed SA method for cutting force coefficients
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local minima. As the temperature is reduced based on a

specified annealing schedule, the exploitation probability

(exp Ecurrent � Etemp

� ��
T

� �
) becomes increasingly lower,

resulting in an increasing rejection chance for the solution

without quality improvement. Finally, the process termi-

nates at the final temperature (Tfinal) and the final solution is

output. The details of the algorithm are shown in Fig. 2.

3 Experiment details

A set of experiments was designed and performed to

evaluate the effectiveness of the proposed approach.

A Panasonic Eco-Power Meter KW9M, which costs less

than $300, was used for power data acquisition, the

installation diagram of which is shown in Fig.3. At one side

of the terminal block, three current transformers were used

to proportionally convert the primary current to the sec-

ondary current; on the other side of the terminal block,

three phases/four wires were directly connected. During the

experiment, the power data were acquired at a sampling

frequency of 10 Hz. To measure the average cutting power

under a specific cutting condition, the power data acquired

were averaged over 2 s during stable cutting.

To provide the ground truth of the cutting force, a

Kistler 9255 B three-channel dynamometer was installed

on the machining table to record the force profile at 20

kHz. The force registration and fixture details are shown in

Fig.3. A charge amplifier (Kistler 5080) was used to

amplify the cutting force signals obtained using Kistler

9255 B, and a digital collector (DEWE3010) was used to

obtain the cutting force data.

Two three-axis vertical milling centers, LEADWELL

MCV-1500i? and VMC-850, were used to perform the

cutting experiments. The experimental details are listed in

Table 3. Firstly, two 165 mm 9 60 mm 9 42 mm alu-

minum alloy Al-7050-T7451 workpieces were used to

calibrate the power model of the two machine tools. Sub-

sequently, two titanium alloy Ti6Al4V workpieces with the

same dimensions were used to test the proposed approach.

In each experiment, a two-flute solid carbide flat-end mill

(40� helix and 5 mm radius) was used for dry cutting. For

each experiment, the cutting conditions were set based on

the Taguchi L27 orthogonal array, with n and f varying in

[1 000, 1 500, 2 000] and [100, 200, 300], respectively.

When machining Al-7050-T7451 (i.e., Experiments I and

II), ap (mm), the depth of cut, was varied in [1, 2, 3]; when

machining Ti6Al4V (i.e., Experiments III and IV), ap was

varied in [0.3, 0.6, 0.9].

Fig. 3 Experiment setups for cutting force measurement and power measurement

Table 3 Machining experiments details

No. Workpiece Machine tool Milling type

I Al-7050-T7451 LEADWELL MCV-1500i? Slotting

II Al-7050-T7451 VMC-850 Slotting

III Ti6Al4V LEADWELL MCV-1500i? Slotting

IV Ti6Al4V VMC-850 Slotting

106 K.-N. Shi et al.
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4 Results and discussions

4.1 Calibration of power models with Al-7050-

T7451

Experiments I and II were performed to calibrate the power

models of the machine tools according to the procedure

specified in Ref. [15]. Firstly, the idle power model shown

in Eq. (2) was calibrated using idle power data collected

when the spindle was rotating at various speeds but not

engaged in cutting. The calibrated results of the two

machine tools are presented in Figs. 4(a) and 4(c), sepa-

rately. Subsequently, 27 slot milling experiments were

conducted to calibrate the relationship between the addi-

tional power (Paddtional ¼ Ptotal � Pidle) and average cutting

power, and the results are presented in Figs. 4 (b) and 4 (d).

As shown, the coefficient of determination (R2) values

were sufficiently close to 1, indicating the high accuracy of

the calibrated power models. It is noteworthy that the

model was calibrated using Al-7050-T7451, which serves

as a reference to calculate the cutting force coefficients of

the new Ti6Al4V workpiece subsequently.

4.2 Prediction of cutting force coefficients for new

materials (Ti6A14V)

Upon the completion of model calibration, the objective

function described in Eq. (8) can be obtained. Ke;t and Kc;t

can be solved from the power data using the proposed

approach. Subsequently, Experiments III and IV (see

Table 3) were performed for further evaluation, in which

titanium alloys were machined. The cutting parameters and

measured power data of both machine tools are shown in

Table 4, where PIII and PIV denote the measured power in

Experiments III and IV, respectively.

To apply the developed SA algorithm, the solution space

should first be specified. An appropriate size of the solution

space will facilitate search efficiency and improve the

solution quality. As Kc;t is typically much larger than Ke;t,

the solution spaces were defined as Kc;t [ [0, 4 000] and Ke;t

[ [0,100]. Subsequently, the solution space was discretized

at a resolution of 0.01. The initial and final temperatures

were set as Tinitial ¼ 100 �C and Tfinal ¼ 0:2 �C to ensure

adequate annealing. The maximum reject count for a

specified temperature was set as Nmax ¼ 5 to allow

Fig. 4 Power consumption model calibration a–b Idle power model calibration and additional power model calibration of LEADWELL MCV-

1500i?, c–d Idle power model calibration and additional power model calibration of VMC-850
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sufficient exploitation. Subsequently, PIII and PIV in

Table 4 were input to the SA algorithm for the solution

search.

To evaluate the performance of the cutting force coef-

ficient calculation, 20 numerical experiments were per-

formed in Experiments III and IV. In each numerical

Table 4 Cutting parameters and measured power in Experiment III

and Experiment IV

No. ap /mm n/(r �min�1) f/(mm �min�1) PIII /W PIV /W

1 0.3 1 000 100 525.5 159.2

2 0.3 1 000 200 540.4 170.0

3 0.3 1 000 300 566.8 183.0

4 0.3 1 500 100 546.7 195.2

5 0.3 1 500 200 570.9 208.8

6 0.3 1 500 300 599.7 221.1

7 0.3 2 000 100 646.3 214.2

8 0.3 2 000 200 677.0 220.8

9 0.3 2 000 300 701.1 235.4

10 0.6 1 000 100 546.0 171.6

11 0.6 1 000 200 593.3 197.0

12 0.6 1 000 300 644.4 219.2

13 0.6 1 500 100 606.0 214.2

14 0.6 1 500 200 653.8 236.9

15 0.6 1 500 300 700.4 257.5

16 0.6 2 000 100 677.0 237.4

17 0.6 2 000 200 738.0 260.5

18 0.6 2 000 300 789.5 283.4

19 0.9 1 000 100 584.7 184.9

20 0.9 1 000 200 643.0 215.9

21 0.9 1 000 300 696.1 260.3

22 0.9 1 500 100 639.1 248.8

23 0.9 1 500 200 712.0 282.2

24 0.9 1 500 300 762.3 314.0

25 0.9 2 000 100 724.0 274.4

26 0.9 2 000 200 796.6 312.4

27 0.9 2 000 300 872.9 348.3

Fig. 5 Power prediction error in validation set

Fig. 6 Error histories during SA searching process a error history in

Experiment III, b error history in Experiment IV
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experiment, 27 sets of power data points were randomly

categorized into two subgroups: a training set comprising

14 data points and a validation set comprising 13 data

points. The training data set was input to the SA algorithm

to calculate the cutting force coefficients, following which

the obtained cutting force coefficients were used to calcu-

late the prediction error for the validation set.

4.3 Evalution of cutting force coeffients obtained

To further demonstrate the advantage of the SA algorithm,

an EX was performed using the same training and valida-

tion datasets for comparison. The EX evaluates every

solution within the discretized solution space and selects

the solution with the best quality as the final solution.

Instead of 0.01, the discretization resolution was set to 5 to

limit the total search time to a reasonable value. The

average search time required by the EX was 257.4 s, cor-

responding to 0.016 1 s per error calculation. Hence, the

EX time with a resolution of 0.01, similar to that of the SA

algorithm, will exceed 2 years, which is not a reasonable

duration. By contrast, the SA algorithm requires less than

45 s, indicating a much higher searching efficiency.

A comparison of the solution quality is presented in

Fig.5, in which the power prediction errors are visualized.

As shown, the prediction errors changed based on the

different training and validation sets. This is to be expected

because different cutting conditions incur different cutting

powers. For example, if n and ap remain the same, a higher

f will result in a larger st, which will increase the cutting

power, based on Eq.(5). Therefore, the portion of cutting

power in the additional power will differ and may not be

fully characterized by the established model shown in

Figs. 3b, d. As such, the prediction error fluctuates owing

to the different training and validation sets. Nonetheless, as

shown, the proposed SA algorithm outperformed the EX in

most cases. This may be because the EX can easily cause

overfitting during the training with 14 data points, thereby

resulting in a lower generality performance in the valida-

tion set. By contrast, by controlling the final temperature

(stopping criterion), the SA algorithm can effectively avoid

overfitting. As shown in Fig.5, the prediction errors of the

SA algorithm were sufficiently small, with average errors

of 2.3% and 3.2% for Experiments III and IV, respectively.

It is noteworthy that no measured cutting force profile was

used for the power prediction of the new workpiece

material (Ti6Al4V), and that the prediction accuracy was

comparable to the power prediction error (1.71%–2.81%)

with the measured cutting force. This capability was

achieved by calculating the cutting power, which considers

the tool-workpiece property [15]. The results clearly show

the reliable performance of the proposed approach in

extending the application of cutting-power-based energy

consumption models.

To gain a better insight into the SA performance, the

search histories of a randomly selected training set for

Experiments III and IV are presented in Fig.6. As shown,

the search started from relatively large errors (12.37% and

8.15%) at T = 100 �C. By effectively traversing the solution
space, the errors finally converged at much smaller errors

(2.31% and 2.17%), thereby revealing effectiveness of the

developed SA algorithm in solution searching.

Subsequently, the cutting force coefficients obtained

from the same training set (shown in Fig.6) were compared

with the coefficients measured using the standard linear

least-squares method [34]. The results are listed in Table 5,

where Ke;t�m and Kc;t�m represent the cutting force coef-

ficients calculated from the measured cutting force,

whereas Ke;t�SA and Kc;t� SA denote those obtained from

the proposed SA algorithm. As the numerical value in

Table 5 may not reflect the accuracy of the cutting force

coefficients directly, a comparative study for the cutting

force was performed. Specifically, the instantaneous cut-

ting force (Fm, N) calculated using Ke;t�m and Kc;t�m was

used as the ground truth. Subsequently, the cutting force

calculated using Ke;t� SA and Kc;t� SA, denoted as FSA, was

compared with Fm. Owing to the characteristics of the L27

orthogonal array, a comparison at a specified depth of cut is

sufficient for force error evaluation. In this study, the

greatest depth of cut (0.9 mm), corresponding to parameter

settings 19–27 in Table 4, was selected for the comparative

study. To provide a quantitative comparison, the average

error (Eavg) is defined as

Eavg ¼
XN

i¼1
FSA�i � Fm�ij j

.XN

i¼1
Fm�i; ð9Þ

where N is the number of sampled data points in one cutter

rotation; Fm�i and FSA�i are the i-th sampled data points.

The results of Fm and FSA are presented in Fig.7 in red

and blue, respectively. As shown, the overall error

remained low. The average errors of Experiments III and

IV were 8.20% and 6.76%, respectively. Hence, it can be

Table 5 Obtained cutting force coefficients

Experiment Ke;t�m/(N �mm�1) Kc;t�m/(N �mm�2) Ke;t�SA/(N �mm�1) Kc;t� SA/(N �mm�2)

Experiment III 28.82 2 131.03 14.86 2 472.25

Experiment IV 25.53 1 848.02 20.80 1 825.86
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Fig. 7 Force comparison in one cutter rotation a Experiment III, b Experiment IV
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concluded that a good agreement between FSA and Fm was

achieved. Using only power data as input, the proposed

method successfully provided an accurate cutting force

evaluation when machining new workpiece materials.

Hence, the effectiveness of the proposed approach was

demonstrated.

5 Conclusions

Cutting power-based energy consumption models have

garnered extensive attention. However, the required cutting

force coefficients may severely restrict their applications.

Hence, a novel approach for the indirect evaluation of cut-

ting force coefficients was proposed herein. Using a pre-

calibrated power model, the proposed approach can deter-

mine the cutting force coefficients of the new workpiece

material based on measured power data. Specifically, the

problem of calculating the cutting force coefficients was first

converted into an optimization problem. Subsequently, an

SA algorithm was developed to search for the cutting force

coefficients. The experimental results demonstrated the

decent performance of the method. The obtained cutting

force coefficients achieved high accuracy in terms of power

prediction and instantaneous cutting force evaluation.

Using a cost-effective power meter at the mains, the

proposed approach can provide an accurate estimation of

cutting force coefficients for new workpiece materials,

thereby facilitating the implementation of cutting-power-

based energy consumption models. Meanwhile, problems

incurred by traditional force monitoring methods involving

dynamometers, such as complicated implementation,

expensive equipment, and dynamic effects on the machine

tool, can be effectively avoided. As such, the proposed

approach may serve as a promising platform for cleaner

production and can be extended to applications for intel-

ligent manufacturing.

In the next phase of the study, the existing approach will

be extended to estimate more cutting force coefficients and

address continuous cutting force estimation with tool wear

propagation.
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24. Aggarwal S, Nešić N, Xirouchakis P (2013) Cutting torque and

tangential cutting force coefficient identification from spindle

motor current. Int J Adv Manuf Technol 65:81–95. https://doi.

org/10.1007/s00170-012-4152-x

25. Aslan D, Altintas Y (2018) Prediction of cutting forces in five-

axis milling using feed drive current measurements. IEEE/ASME

Trans Mechatronics 23:833–844. https://doi.org/10.1109/

TMECH.2018.2804859

26. Qiu J (2018) Modeling of cutting force coefficients in cylindrical

turning process based on power measurement. Int J Adv Manuf

Technol 99:2283–2293. https://doi.org/10.1007/s00170-018-

2610-9

27. Lu X, Wang F, Yang K et al (2019) An indirect method for the

measurement of micro-milling forces. In: ASME 2019 14th

international manufacturing science and engineering conference,

West Lafayette, Indiana, USA, 4–7 October. https://doi.org/10.

1115/MSEC2019-2769

28. Luo H, Du B, Huang GQ et al (2013) Hybrid flow shop

scheduling considering machine electricity consumption cost. Int

J Prod Econ 146:423–439. https://doi.org/10.1016/j.ijpe.2013.01.

028

29. Ma F, Zhang H, Cao H et al (2017) An energy consumption

optimization strategy for CNC milling. Int J Adv Manuf Technol

90:1715–1726. https://doi.org/10.1007/s00170-016-9497-0

30. Tian C, Zhou G, Zhang J et al (2019) Optimization of cutting

parameters considering tool wear conditions in low-carbon

manufacturing environment. J Clean Prod 226:706–719. https://

doi.org/10.1016/j.jclepro.2019.04.113

31. Lee P, Altintas Y (1996) Prediction of ball-end milling forces

from orthogonal cutting data. Int J Mach Tools Manuf

36:1059–1072. https://doi.org/10.1016/0890-6955(95)00081-X
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