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Abstract In this paper, a bioinspired path planning

approach for mobile robots is proposed. The approach is

based on the sparrow search algorithm, which is an intel-

ligent optimization algorithm inspired by the group wis-

dom, foraging, and anti-predation behaviors of sparrows.

To obtain high-quality paths and fast convergence, an

improved sparrow search algorithm is proposed with three

new strategies. First, a linear path strategy is proposed,

which can transform the polyline in the corner of the path

into a smooth line, to enable the robot to reach the goal

faster. Then, a new neighborhood search strategy is used to

improve the fitness value of the global optimal individual,

and a new position update function is used to speed up the

convergence. Finally, a new multi-index comprehensive

evaluation method is designed to evaluate these algorithms.

Experimental results show that the proposed algorithm has

a shorter path and faster convergence than other state-of-

the-art studies.

Keywords Path planning � Linear path strategy � Sparrow
search algorithm � Multi-index comprehensive evaluation

algorithm

1 Introduction

Mobile robots are widely used in aerospace, entertainment,

agriculture, military, mining, and rescue operations [1].

The path planning method plays a key role in the appli-

cation of mobile robots. Its main purpose is to find a safe

and collision-free optimal or suboptimal path from the

starting position to the target position in a workspace with

obstacles, according to certain performance indicators

(walking path, planning time, path smoothness).

There are many classical path planning methods, such as

the cell decomposition method [2–4], artificial potential

field (APF) algorithm [5], Astar algorithm (A*) [6, 7],

probabilistic road map (PRM) algorithm [8], and rapidly

exploring random tree (RRT) algorithm [9, 10]. Montiel

et al. [11] proposed a new bacterial potential field algo-

rithm based on APF, which had good performance in

determining the optimal path time. Jose and Pratihar [12]

used Astar for path planning and a genetic algorithm (GA)

for task allocation, and completed task allocation and

collision-free path planning tasks for three robots at 90

points in a factory. Yan et al. [13] proposed an improved

probabilistic road map algorithm that performed well for

path planning in narrow passages in the map. Classical

algorithms have the advantages of simple principles, but

they have certain problems. It is worth noting that some

classical methods are deterministic algorithms that are

easily trapped in local optimal solutions in complex situ-

ations. In addition, the algorithm may not reach the end

point in a complex environment. The path generated may

be too rough, which would cause collisions between robots

and obstacles. The algorithm may converge slowly in a

complex environment.

Unlike traditional methods, the biological mechanisms

of animals have been optimized through millions of years
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of natural evolution, and hence their behaviors can perform

many intelligent tasks accurately and robustly. Therefore,

we have a good reason to learn from nature to improve

path-planning technologies. In recent years, researchers

have proposed bioinspired algorithms, such as the gray

wolf optimization (GWO) algorithm [14], ant lion opti-

mization (ALO) algorithm [15], whale optimization algo-

rithm (WOA) [16], and sparrow search algorithm (SSA)

[17]. The GWO originated from the predation behavior and

social hierarchy of gray wolf populations. Gray wolves

follow a strict social hierarchy. Xu et al. [18] proposed an
Fig. 1 Mobile robot size and corresponding obstacle extended size

Table 1 Advantages and disadvantages of each algorithm

Algorithm Insufficiency Advantages Improvement direction

APF [5] Long-running time

Easy to fall into local optimum

There is a problem that the target point cannot

be reached

Simple structure

The planned path is

smooth

Improve the calculation formula of

gravitation and repulsion

A* [6, 7] A large amount of calculation

Many turning points

The principle is

simple

Robust

Delete redundant points and inflection

points

PRM [8] Low efficiency and long running time

The planned path is longer

Strong adaptability to

the environment

Increase the effective sampling point

density

RRT [9, 10] Long-running time

The path is not smooth

Low search efficiency in complex

environments

Few parameters

Strong adaptability to

the environment

Make node expansion directional

Ant colony optimization

(ACO) [21]

Long-running time

Easy to fall into local optimum

Long path

Fewer adjustment

parameters

Robust

Dynamically adjust its own parameters

Combine with other algorithms

GA [22] Slow convergence

Easy to fall into local optimum

The coding method of chromosome has a great

influence on the optimization ability

Easy to combine with

other algorithms

Combine with other algorithms

Improve or increase its own operation

operator

GWO [14] Easy to fall into local optimum

The convergence speed becomes slower in the

later stage.

Faster convergence

Strong global search

ability

Balance the relationship between

exploration and utilization

ALO [15] Slow convergence

Easy to fall into local optimum

High-dimensional solution accuracy is low

Fewer adjustment

parameters

Robust

Increase the diversity of ant populations

WOA [16] Easy to fall into local optimum

Reduced population diversity in the later stage

of the algorithm

Fewer adjustment

parameters

Robust

Increase population diversity

Balance the relationship between

exploration and utilization

SSA [17, 23, 24] The algorithm is easy to fall into the local

optimum.

Short running time

Strong global

optimization ability

Improve the quality of the initial solution

Optimize algorithm parameters

Improved sparrow

search algorithm

(ISSA)

Less population diversity Short running time

Stronger global

search ability

Low population

requirements

Increase population diversity

Increase the survival of the fittest

mechanism to improve population

quality
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improved GWO that used a 2-opt dynamic elite mecha-

nism. Through the optimal route selection of tourist

attractions, the effectiveness of the proposed method is

verified, and the deficiencies of the basic gray GWO are

solved. The ALO simulates the hunting mechanism of

antlion hunting ants to achieve global optimization. Tian

et al. [19] proposed an improved ALO, which integrated a

chaotic mutation mechanism and improved the iterative

search process, and applied the algorithm to the parameter

identification of a hydraulic turbine governing system. The

WOA simulates the social behavior of humpback whales

and introduces bubble-net hunting strategies. Yildiz [20]

proposed a hybrid optimization algorithm based on the

Nelder–Mead local search algorithm and the WOA, and

applied the proposed algorithm to solve production opti-

mization problems. The SSA is inspired by the foraging

behavior and anti-predation behavior of sparrows. Xue and

Shen [17] proposed a basic SSA and verified the superiority

of this algorithm compared with other algorithms through

test results on 19 benchmark functions, and finally applied

the algorithm to two engineering examples. To understand

the advantages and disadvantages of each algorithm more

clearly, this article summarizes the advantages and disad-

vantages of some methods and the direction of improve-

ment, as listed in Table 1 [5–10, 14–17, 21–24]. In

summary, this article proposes an algorithm for obtaining

high-quality paths with rapid convergence.

To obtain high-quality paths and fast convergence, a

new bioinspired path planning method is proposed in this

work, the main aspect of which is an ISSA. First, to solve

the problem of many corners in the path planned by the

traditional algorithm, a linear path strategy (LPS) is pro-

posed, which uses the method of turning the polyline in the

Fig. 2 Grid map Environment 1 and Environment 2

Fig. 3 SSA execution flow chart
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corner section of the path into a straight line to smooth the

generated path. Then, a new position update function of the

SSA is improved to speed up the convergence of the search

algorithm. The neighborhood search strategy is used to

improve the fitness value of the global optimal individual.

Finally, a multi-index comprehensive evaluation method is

presented to evaluate the performance of our ISSA and

other search algorithms.

The remainder of this paper is organized as follows.

Section 2 describes the modeling of a mobile robot work-

ing environment. Section 3 proposes the ISSA and a multi-

index comprehensive evaluation algorithm. Section 4

shows the results of the experiments with the ISSA and

other algorithms. Section 5 uses the proposed path evalu-

ation algorithm to comprehensively evaluate the experi-

mental path of each algorithm. Section 6 concludes the

paper with a summary of the main results of this study and

a discussion of future works.

2 Environment modeling

In this study, the grid method was used to model the map

environment. On a two-dimensional map, a mobile robot is

regarded as a circle with radius Rr, as shown in Fig. 1. To

simplify the problem, the mobile robot is regarded as a

mass point, and the obstacle is expanded by Rs. Rs is

obtained by

Rs ¼ Rr þ r; ð1Þ

where r represents the safety distance, which is artificially

chosen to prevent the mobile robot from contacting

obstacles.

As shown in Fig. 2, two mobile robot working envi-

ronments, Environments 1 and 2, were established, with a

map size of 20920. Compared with Environment 1,

Environment 2 has more obstacles and more complex ter-

rain, which is a challenge for mobile robot path planning

methods. The starting point of the planned path is grid (0,

0), represented by a red circle, and the end point is grid (20,

20), represented by a green square.

Table 2 Similarities and differences between SSA and ISSA

Algorithm Similar Different

SSA and

ISSA

The algorithm principle is the same

The basic framework of the algorithm

is similar

The ISSA increases the LPS strategy, thereby shortening the path length

The ISSA uses an improved location update formula to update the location of discoverers,

joiners, and scouts

The ISSA increases the neighborhood search strategy, thereby reducing the fitness value

of the global optimal individual.

Fig. 4 ISSA execution flow chart
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3 Method

3.1 Basic SSA

The SSA simulates the foraging process of sparrow flocks

[17]. The foraging process of sparrow flocks is a discov-

erer-joiner model, with a superimposed reconnaissance and

early warning mechanism. There are three distinct sparrow

populations: discoverers, joiners, and scouts. Among the

sparrows, individuals who can easily find food serve as

discoverers, and other individuals serve as joiners. The

discoverer has a high fitness value, a wide search range,

and guides the population to search and forage. To obtain

better fitness, the joiner follows the discoverer to forage. At

the same time, a certain proportion of individuals in the

population are selected as scouts to observe surrounding

companions and dangerous predators, thereby improving

their predation and risk prevention abilities.

In the model, the location update formula of the dis-

coverer is given by

Xtþ1
i ¼ Xt

iexp � i

a tmax

� �
; if R\S;

Xt
i;j þ QL; if R > S;

8<
: ð2Þ

where t represents the current iteration number, and Xi

represents the position information of the ith sparrow. a is a

random number in the range of 0; 1ð �. R R 2 0; 1½ �ð Þ and

S S 2 0:5; 1½ �ð Þ represent warning and safety parameters,

respectively, where R is a random number and S is a given

constant. When R\S, no danger is found in the population;

the search environment is safe; and the discoverer can

conduct a wide range of searches. When R > S, the scouts

find danger, adjust the search strategy, and quickly move

closer to the safe area. Q is a random number that follows

the normal distribution. L represents an all-one matrix of

dimensions 1� d.

The location update formula of the joiner is given by

Xtþ1
i ¼ Qexp

Xr � Xt
i

i2

� �
; if i[

n

2
;

Xtþ1
b þ Xt

i � Xtþ1
b

�� ��AþL; otherwise;

8<
: ð3Þ

where Xb is the current best position of the discoverer and

Xr represents the current worst position in the world. A

represents a matrix of dimensions 1� d, where each ele-

ment has a value of 1 or -1 and Aþ ¼ AT AAT
� ��1

.

The location update formula of the scout is shown as

Xtþ1
i ¼

Xt
B þ b Xt

i � Xt
B

�� ��; if fi 6¼ fB;

Xt
i þ K

Xt
i � Xt

r

�� ��
fi � fRð Þ þ e

; if fi ¼ fB;

8<
: ð4Þ

where XB is the current global optimal position. b is a step-

length control parameter, a random number drawn on a

normal distribution with a mean value of 0 and a variance

of 1. K is a random number in the range of �1; 1½ �. fi
represents the current individual fitness value of the spar-

row. fB and fR represent the current global optimal and

worst fitness values, respectively. e is a very small constant.

When the iteration ends, the optimization result is out-

put. The overall SSA execution flowchart is shown in

Fig. 3.

3.2 ISSA

Based on the SSA, we propose a new algorithm, the ISSA.

There are three improvements in the ISSA: LPS strategies,

neighborhood search strategy, and an improved location

Fig. 5 LPS execution process

Table 3 Pseudo code of LPS

if There is no obstacle grid point between the coordinate points x and y
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update formula. The LPS strategy was used to calculate the

fitness function to linearize the path. The population is

updated using the improved position-update formula. The

neighborhood search strategy is used after the location

update formula to reduce the fitness value of the global

optimal individual. Table 2 shows the similarities and

differences between the SSA and ISSA. Figure 4 shows the

execution flowchart of the ISSA.

3.2.1 LPS

In Ref. [25], a sequential LPS is proposed. However, the

strategy checks whether the path and obstacles intersect,

and uses the method of whether each obstacle index is the

same as the path index. With many obstacles, the strategy

cannot be easily implemented. This study proposes a high-

efficiency LPS used within the SSA to improve the path

quality and reduce the path acquisition time.

The LPS is divided into two stages: obstacle detection

and path connection. Due to the fact that the LPS is used

inside the algorithm, a judgment method with a large

number of calculations cannot be used. It can be explained

that iterations will increase the execution time of the LPS.

The LPS is outlined as follows.

Step 1 Start from the starting point, extract three points

in order.

Step 2 Find the coordinate range between the first and

third points.

Step 3 Determine whether there are obstacles in this

range.

Step 4 If there is no obstacle, remove the second point

from the path; if there is an obstacle, terminate the cycle

and continue to linearize the path.

The execution process of the strategy is illustrated in

Fig. 5. Table 3 lists the pseudo-code of the LPS. In the

schematic diagram, we separated the grids in the grid map

by a certain distance for the sake of clarity. The following

diagrams follow this rule. Note that there are no gaps

among the grids in the actual grid map.

3.2.2 Neighborhood search strategy

In the SSA, the global optimal individual in the population

plays a role in leading the direction of the population

exploration, such that the global optimal individual has a

great influence on the entire group. Thus, a neighborhood

search is performed on individuals with optimal fitness to

reduce their fitness value. The neighborhood search strat-

egy can be divided into the following three steps.

Step 1 Get the dimensionality of the path.

Step 2 Randomly search each dimension of the path and

calculate the fitness value of the path after searching.

Fig. 6 Neighborhood search strategy execution process

Table 4 Pseudo code of neighborhood search strategy

Fig. 7 Schematic diagram of path corner
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Step 3 Judgment. If the path fitness value is lower after

the search, replace the previous path with the searched

path. If the path fitness is higher after the search, the

search result is discarded and the original path is

retained.

The implementation process of the neighborhood search

strategy is shown in Fig. 6. This strategy searches for the

dimension of 1 point and finds a 1* point. By calculating

the fitness value, the 1* point constitutes a path with a

lower fitness value, thereby replacing 1 point in the pre-

vious path with a 1* point. Table 4 presents pseudo code of

the neighborhood search strategy process.

3.2.3 Improve location update formula

In the position update formula of the basic SSA, the iter-

ation process is Xt
i ! Xtþ1

i ; that is, the position of the

sparrow at the next moment depends on the position of the

sparrow at the previous moment. But this presents a

problem. If the fitness value of the individual Xi at time t is

not the optimal fitness of the individual, that is, the position

of the individual at time t is not the best at time 1� t, then

the updated position of the individual at time t is poor,

compared with the position updated by the individual with

the best fitness at time 1� t. Therefore, the basic SSA is

improved in this work to address this problem, by updating

the individual with the optimal fitness of 1� t. The posi-

tion update formula of the SSA is modified to Eqs. (5)–(7).

The improved position update formula for the discoverer

is given by

Xtþ1
i ¼ Xt

eexp � i

atmax

� �
; if R\S;

Xt
e þ QL; if R > S;

8<
: ð5Þ

where Xt
e represents the position of individual i with the

optimal fitness value at time 1� t.

The improved position update formula of the joiner is

given by

Xtþ1
i ¼ Qexp

Xr � Xt
e

i2

� �
; if i[

n

2
;

Xtþ1
b þ Xt

e � Xtþ1
b

�� ��AþL; otherwise:

8<
: ð6Þ

The improved position update formula for the scout is

given by

Xtþ1
i ¼

Xt
B þ b Xt

e � Xt
B

�� ��; if fi 6¼ fB;

Xt
e þ K

Xt
e � Xt

r

�� ��
fi � fRð Þ þ e

; if fi ¼ fB:

8<
: ð7Þ

Fig. 8 Schematic diagram of risk degree calculation

Fig. 9 Evaluation algorithm execution flow chart

Fig.10 Hierarchy diagram for determining weights
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3.3 Comprehensive path evaluation method

3.3.1 Path evaluation index

Adopting a mobile robot to plan and execute the path with

the best time as the goal, it is proposed to use multiple

indicators to comprehensively evaluate the path. We select

four indicators as the basis for path evaluation: the shortest

distance value, the total rotation angle value, the risk

degree, and the shortest path acquisition time.

The shortest distance value is the length of the optimal

path obtained by the algorithm. The total rotation angle

value is the sum of the angles of the path planned by the

algorithm. An angle diagram is shown in Fig. 7.

The risk degree is the number of intersections between

the planned path and obstacles in the grid map. As shown

in Fig. 8, if the intersection of the mobile robot’s trajectory

and the obstacle is 1, the risk degree is 1, and if the

intersection of the mobile robot’s trajectory and the

obstacle is 2, the risk degree is 2.

The shortest path acquisition time is the program exe-

cution time to generate the shortest path. Some studies

[26, 27] used the execution time of the algorithm program

as the path acquisition time, which is unrealistic. In gen-

eral, the number of iterations required to obtain the shortest

path is less than the number of iterations set by the algo-

rithm; therefore, some portion of the number of iterations

does not affect the generation of the shortest path. To

describe the shortest path acquisition time more accurately,

we introduce the concept of the number of shortest path

iterations (N), which refers to the number of iterations for

the algorithm to obtain the shortest path. Therefore, the

shortest path acquisition time (T) is calculated using

T ¼ N

tmax

� Tc; ð8Þ

where Tc indicates the execution time of the algorithm and

tmax represents the maximum number of iterations set by

the algorithm.

3.3.2 Comprehensive path evaluation algorithm

Because the improved algorithm achieves good perfor-

mance on one index while it may be worse on other

indexes, it is necessary to weight each index of the path to

comprehensively evaluate the path quality. However, many

studies ignore the comprehensive evaluation and conduct a

single-index evaluation [28–33]. In this paper, by

improving the technique for order preference by similarity

to an ideal solution, a comprehensive path evaluation

algorithm applied is proposed. The comprehensive path

evaluation process is divided into four parts: index nor-

malization, index standardization, determination of index

weight, and finally calculation of scores and normalization.

The execution process of the algorithm is illustrated in

Fig. 9.

(i) Positive indicators

To increase the path score, the better the quality, the

more positive is the index. Because the four indicators are

all extremely small, they can be transformed and shown as

xpi;j ¼ maxj � xi;j; ð9Þ

where xi;j represents the original data; the row (a total of n

rows) in the original data represents the algorithm, that is,

the evaluation object; the column (a total of m columns)

represents the evaluation index; xpi;j represents the nor-

malized data; and maxj represents the maximum value of

index j.

(ii) Standardization of indicators

Owing to the different dimensions of the four indicators

in this study, the influence of the dimensions was elimi-

nated by

Table 5 Judgment matrix

O C1 C2 C3 C4

C1 1 3 5 2

C2 1/3 1 3 1/2

C3 1/5 1/3 1 1/3

C4 1/2 2 3 1

Table 6 Weighted result

Arithmetic mean method Geometric mean method Eigenvalue method Mean

Shortest distance 0.476 0 0.479 2 0.476 8 0.477 4

Total angle of rotation 0.175 6 0.172 2 0.174 0 0.173 9

Risk degree 0.080 3 0.079 1 0.079 5 0.079 6

Shortest path acquisition time 0.268 1 0.269 5 0.269 6 0.269 1
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Xi;j ¼
xpi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1

xpk;j

� 	2
s ; ð10Þ

where Xi;j represents the standardized data.

(iii) Determination of index weight

The analytic hierarchy process is used to determine the

weights between the path evaluation indicators. The weight

determination process is shown as follows.

Step 1 Establish a hierarchical structure diagram

The weight determination problem is decomposed into

two layers: the first layer is the target layer O, which is the

weight of the four indicators; the second layer is the cri-

terion layer, including the shortest distance C1, the total

turning angle C2, the risk degree C3, and the shortest path

acquisition time C4. A hierarchical structure diagram is

constructed, as shown in Fig. 10.

Table 7 Parameter settings of each algorithm

Algorithm Parameters Value

ACO Number of ants: m 50

The maximum number of iterations: NC_max 200

Pheromone factor: Alpha 2

Heuristic factor: Beta 6

Pheromone Evaporation Factor: Rho 0.1

ACO?GA Number of ants: m 50

The maximum number of iterations: NC_max 200

Maximum evolutionary algebra: max_generation 200

Probability of crossing: p_crossover 0.2

Probability of mutation: p_mutation 0.05

SSA Number of population: NP 50

The maximum number of iterations: maxgen 200

Proportion of discoverers: rPercent 0.3

Proportion of scouts: sPercent 0.2

Safety value: ST 0.8

ISSA Same as SSA parameters setting

Fig. 11 Experiment with ACO, ACO?GA, SSA, ISSA in Environment 1 a the shortest path diagram, b the shortest path convergence
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Step 2 Determining judgment matrix

The mobile robot scene in this study is as follows: the

mobile robot can turn four wheels with differential speed

and medium load. To determine the judgment matrix, the

judgment matrix is assigned a value according to the

degree of influence of each index on the path quality, as

shown in Table 5. The order of importance of the indicators

in this study is as follows: the shortest path distance is the

most important, followed by the shortest path acquisition

time, the total rotation angle of the path, and the path risk

degree. After the obstacles are enlarged, although the path

of the mobile robot and the obstacles on the map have

intersections, there is still a safe distance r between the

obstacles and the mobile robot, and thus we believe that the

importance of the path risk degree ranks last.

Step 3 Consistency test

The above judgment matrix cannot be used directly, and

a consistency test is required. Set RC as the consistency test

parameter, the test formula is given by

RC ¼ IC
IR

; ð11Þ

where IR is the random consistency index, which can be

obtained from a lookup table, and IC is the consistency

index, which is calculated by

IC ¼ kmax � d

d � 1
; ð12Þ

where kmax is the maximum eigenvalue of the judgment

matrix and d is the dimension of the judgment matrix.

It is generally considered that if RC\0:1, the consis-

tency of the judgment matrix is acceptable. RC ¼
0:022 2ð\0:1Þ is calculated to judge that the matrix passes

the consistency test.

Step 4 Get the index weight

Index weights were calculated using the arithmetic

mean, geometric mean, and eigenvalue methods. To

eliminate the error caused by the calculation method, the

calculation results of the three methods were averaged by

taking their arithmetic mean. The index weights are pre-

sented in Table 6.

The formula for calculating the weight using the arith-

metic mean method is shown as

wi ¼
1

n

Xn
j¼1

ai;jPn
k¼1

ak;j

; ð13Þ

where wi represents the weight of the ith indicator; n rep-

resents the number of indicators; and ai;j represents the

importance of the ith indicator relative to the jth indicator

in the judgment matrix.

The calculation formula for the geometric mean method

for calculating the weight is shown as

wi ¼
Qn

j¼1 ai;j

� 	1
n

Pn
k¼1

Qn
j¼1 ak;j

� 	1
n

: ð14Þ

Fig. 12 Experiment with ACO, ACO?GA, SSA, ISSA in Environ-

ment 2 a the shortest path diagram, b the shortest path convergence
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(iv) Score calculation and normalization

The evaluation algorithm proposed in this paper inte-

grates classic evaluation methods and is innovatively

applied to the path evaluation of mobile robots.

The formula for calculating the maximum value of each

evaluation index is given by

Xmax
i ¼ max X1;i;X2;i; � � � ;Xn;i

� �
; ð15Þ

where i ¼ 1; 2; � � � ;m.

The formula for calculating the minimum value of each

evaluation index is given by

Xmin
i ¼ min X1;i;X2;i; � � � ;Xn;i

� �
: ð16Þ

The calculation formula for the distance between the ith

evaluation object and the maximum value is shown as

Dmax
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

xj Xmax
j � Xi;j

� 	2

vuut : ð17Þ

Fig. 13 Comparison of the shortest path value of Environment 1

Fig. 14 Comparison of total rotation angle value of Environment 1
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The calculation formula for the distance between the ith

evaluation object and the minimum value is shown as

Dmin
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

xj Xmin
j � Xi;j

� 	2

:

vuut ð18Þ

Using Eqs. (15)–(18), we can calculate the score of the i-

th (i=1,2,���,n) evaluation object without normalization,

shown as

Si ¼
Dmin

i

Dmin
i þ Dmax

i

: ð19Þ

It can be seen from Eq. (19) that 0 6 Si 6 1, and the

larger Si, the closer it is to the maximum value. The score

Si was normalized using

Si ¼
SiPn

i¼1

Si

: ð20Þ

Fig. 15 Comparison of the risk degree value of Environment 1

Fig. 16 Comparison of the shortest path acquisition time of Environment 1
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4 Experiment

To demonstrate the superiority of the proposed algorithm,

ISSA, compared with other popular algorithms, experi-

ments were carried out under the same environment and

parameters. We compare the ISSA with the basic SSA,

ACO, and ACO fused with a GA to evaluate the perfor-

mance of the algorithm.

In this study, ISSA, SSA, ACO, and ACO?GA were all

simulated using the same software and hardware platform,

and the programming environment was MATLAB R2019b

(MathWorks Co., USA). To establish a fair comparison of

the algorithms, the basic parameters of each algorithm

were set to the same value, as shown in Table 7.

To verify the effectiveness of the proposed ISSA, two

maps with different difficulty levels, Environment 1 and

Environment 2, were used. The experimental results for

Environments 1 and 2 are shown in Figs. 11 and 12,

respectively. The results of the path planning of the four

algorithms in this article in Environments 1 and 2 can also

be observed through a video, which is included in the

supplementary information.

The code for the experiment and discussion in this

article is published on the GitHub platform. The code can

be accessed via the following link: https://github.com/her

ryCccc/Mobile-robot-path-planning.

Figure 11 shows the shortest path diagram and the

shortest path convergence process planned by ACO, ACO

? GA, SSA, and ISSA in Environment 1. Obviously, ISSA

has better results than the other algorithms in terms of path

length, path smoothness, and the number of shortest path

convergences. This shows that ISSA performs well in

Fig. 17 Comparison of the shortest path value of Environment 2

Fig. 18 Comparison of total rotation angle value of Environment 2
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Environment 1. Figure 12 shows the shortest path diagram

and the convergence process of the shortest path planned

by ACO, ACO ? GA, SSA, and ISSA in Environment 2.

For more complex map conditions, ISSA still performs

better than ACO, ACO?GA, and SSA.

5 Discussion

To evaluate the robustness of ISSA, we repeated the four

algorithms of ACO, ACO?GA, SSA, and ISSA 100 times

on Environments 1 and 2. The four indicators of the

shortest distance, total rotation angle, risk degree, and the

shortest path acquisition time of the four algorithms were

collected.

Fig. 19 Comparison of the risk degree value of Environment 2

Fig. 20 Comparison of the shortest path acquisition time of Environment 2

A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm 127

123



The repetitive experimental results of the four indicators

of the four algorithms in Environment 1 are shown in

Figs. 13–16. It can be seen from Figs. 13 and 14 that the

shortest distance and the total rotation angle of the path

planned by ISSA are significantly better than those of the

other algorithms. However, from Figs. 15 and 16, the path

risk and shortest path acquisition time are not optimal for

ISSA. We surmise that this is because a shorter path will

cause the path to get closer to the obstacle. As the LPS and

neighborhood search strategies are added to the basic SSA,

the shortest path acquisition time is slightly increased

compared with SSA. As ISSA shows different perfor-

mances with respect to different indicators, it also reflects

the importance of comprehensive path evaluation.

The repetitive experimental results of the four indicators

of the four algorithms of Environment 2 are shown in

Figs. 17–20. The results show that ISSA surpasses the other

algorithms regarding three indicators: the shortest distance,

total rotation angle, and shortest path acquisition time. It is

worth noting that ISSA surpasses SSA in the shortest path

Table 9 Average of the results of 100 times of ACO, ACO ? GA, SSA, ISSA in Environments 1 and 2

ACO ACO?GA SSA ISSA

Environment 1 Average shortest distance 31.817 2 30.706 5 32.601 0 27.893 4

Average total angle of rotation 627.75 588.60 385.45 70.20

Average risk degree 3.96 4.07 2.63 4.38

Average shortest path acquisition time 1.617 8 8.521 7 0.463 5 0.653 0

Environment 2 Average shortest distance 45.453 3 40.783 1 42.313 7 37.264 7

Average total angle of rotation 1300.85 964.35 762.75 270.45

Average risk degree 4.08 4.55 5.32 5.08

Average shortest path acquisition time 4.342 0 18.387 6 0.933 5 0.436 4

Table 8 Maximum, minimum, and average values of four indexes of ACO, ACO?GA, SSA, and ISSA in Environments 1 and 2

ACO ACO?GA SSA ISSA

Environment 1

Shortest distance Maximum 37.213 2 35.7990 33.899 5 31.003 7

Minimum 29.213 2 28.627 4 29.213 2 27.560 2

Average 31.817 26 30.706 5 32.601 0 27.893 4

Total angle of rotation Maximum 1 125 1 125 675 180

Minimum 315 225 180 45

Average 627.75 588.60 385.45 70.20

Risk degree Maximum 7 6 5 5

Minimum 1 1 1 2

Average 3.96 4.07 2.63 4.38

Shortest path acquisition time Maximum 5.542 6 35.331 3 1.549 1 2.383 9

Minimum 0.084 1 0.230 9 0.045 1 0.061 5

Average 1.617 8 8.521 7 0.463 5 0.653 0

Environment 2

Shortest distance Maximum 55.941 1 43.455 8 53.799 0 37.782 7

Minimum 39.799 0 38.970 6 38.970 6 37.132 7

Average 45.453 3 40.783 1 42.313 667 37.264 7

Total angle of rotation Maximum 2 115 1 395 1 080 315

Minimum 675 495 450 270

Average 1 300.85 964.35 762.75 270.45

Risk degree Maximum 7 7 8 6

Minimum 0 2 2 4

Average 4.08 4.55 5.32 5.08

Shortest path acquisition time Maximum 7.996 4 45.799 3 2.678 9 3.537 7

Minimum 0.893 3 2.422 8 0.170 1 0.051 4

Average 4.342 0 18.387 6 0.933 5 0.436 4
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acquisition time. This is because, for more difficult maps,

the performance of ACO, ACO?GA, and SSA to obtain

the optimal path decreases, whereas the performance of

ISSA remains unchanged, which also indicates that ISSA is

robust to environmental changes. However, it can be seen

from Fig. 19 that the risk degree of the path planned by

ISSA is still high. This is because the process of shortening

the path also increases the risk.

Because ISSA shows different performances (better or

worse) with respect to different indicators, it is necessary to

comprehensively evaluate the path planned by ISSA.

Through the test results of ACO, ACO?GA, SSA, and

ISSA for the mobile robot in Environments 1 and 2, we

count the maximum, minimum, and average values of each

indicator, and plot the data in Tables 8 and 9. In Envi-

ronment 1, ISSA has the best performance for the shortest

distance and total rotation angle. However, SSA has better

scores in the shortest path acquisition time and risk degree.

In Environment 2, ISSA also has the best performance for

the shortest distance and total rotation angle. Additionally,

it surpasses SSA in the minimum and average values of the

shortest path acquisition time. However, it is inferior to the

other algorithms in terms of path risk, as explained earlier.

The proposed evaluation algorithm is used to process the

data and obtain comprehensive scores of the paths planned

by ACO, ACO?GA, SSA, and ISSA for Environments 1

and 2, as shown in Table 10. It can be concluded from

Table 10 that ISSA has the highest comprehensive score in

Environments 1 and 2. In Environment 1, the ISSA score is

increased by 190% relative to the SSA score, whereas in

environment 2, the ISSA score is improved with respect to

the SSA score by 102%. Therefore, it can be concluded that

the comprehensive performance of the proposed algorithm

surpasses that of the other algorithms. Moreover, the pro-

posed algorithm surpasses the other algorithms in terms of

the shortest path and convergence speed.

6 Conclusions

In mobile robot path planning, traditional algorithms easily

fall into local optima and exhibit slow convergence. ISSA,

an improved algorithm based on the LPS, neighborhood

search strategy, and improved location update formula, is

proposed in this study to address the aforementioned

challenges. This algorithm has the characteristics of fast

convergence and strong optimization ability. Experiments

were conducted in two different environments to verify the

performance of the algorithm. Because of the different

performance of the path planned by each algorithm with

respect to each index, this work proposes a comprehensive

evaluation algorithm to evaluate the quality of the path

planned by each algorithm. The experimental results show

that the proposed algorithm represents significant progress

compared with the current algorithm. In the future work, it

will be very meaningful to apply ISSA to actual robot path

planning. In addition, we will also use ISSA for dynamic

obstacles and multirobot path planning.
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