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Abstract Dry hobbing has received extensive attention for

its environmentally friendly processing pattern. Due to the

absence of lubricants, hobbing process is highly dependent

on process parameters combination since using unreason-

able parameters tends to affect the machining performance.

Besides, the consideration of tool life is frequently ignored

in gear hobbing. Thus, to settle the above issues, a multi-

objective parameters decision approach considering tool

life is developed. Firstly, detailed quantitative analysis

between process parameters and hobbing performance, i.e.,

machining time, production cost and tool life is introduced.

Secondly, a multi-objective parameters decision-making

model is constructed in search for optimum cutting

parameters (cutting velocity v, axial feed rate fa) and hob

parameters (hob diameter d0, threads z0). Thirdly, a novel

algorithm named multi-objective multi-verse optimizer

(MOMVO) is utilized to solve the presented model. A case

study is exhibited to show the feasibility and reliability of

the proposed approach. The results reveal that (i) a balance

can be achieved among machining time, production cost

and tool life via appropriate process parameters determi-

nation; (ii) optimizing cutting parameters and hob param-

eters simultaneously contributes to optimal objectives; (iii)

considering tool life provides usage precautions support

and process parameters guidance for practical machining.

Keywords Process parameters � Decision-making � Tool
life � Dry hobbing � Multi-objective multi-verse optimizer

(MOMVO)

List of symbols

v (m/min) Cutting velocity

fa (mm/r) Axial feed rate

d0 (mm) Hob diameter

z0 Threads

TM (s) Machining time

CP (CNY) Production cost

LT (m) Tool life

ts (s) Stand-by time

ta (s) Air-cutting time

tc (s) Cutting time

tct (s) Change tool time

tau (s) Auxiliary time

tap (s) Apportionment of cutting time

tuse (s) Total use time of hob

C;K; k1; k2; k3 Coefficients related to use time of

hob

Lc (mm) Total length of single cut

E (mm) Cut-in length

A (mm) Cut-out length

U (mm) Safe allowance

s Pass times

La�axial (mm) Axial air-cutting length

La�radial (mm) Radial axial air-cutting length

Fa (mm/min) Axial feed speed

Fr (mm/min) Radial feed speed

Cgear (CNY) Gear blank cost

Cmachine (CNY) Machine tool cost

Ctool (CNY) Tool cost

Clabor (CNY) Labor cost
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Celec (CNY) Electricity consumption cost

Tmac (year) Service life of machine tool

sm (CNY/min) Unit cost of machine tool

st (CNY/min) Unit cost of tool

sl (CNY/min) Unit cost of labor

Ptotal (W) Power consumption

se (CNY/J) Unit cost of electricity

r;x; 1 Life coefficients

vmax (m/min) Maximum cutting velocity

vmin (m/min) Minimum cutting velocity

fa;max (mm/r) Maximum axial feed rate

fa;min (mm/r) Minimum axial feed rate

d0max (mm) Maximum hob diameter

d0min (mm) Minimum hob diameter

Thob;min (min) Minimum tool life

Pa (W) Rated power

P (W) Cutting power

k Efficiency of motor

Fc;max (N) Maximum cutting force

Fc (N) Cutting force

r (mm) Tip radius of hob

Ra (mm) Surface roughness

Dmax (mm) Maximum machining diameter

Mmax (mm) Maximum machining modulus

Fa;max � Fa;min

(mm/min)

Minimum-maximum axial feed

speed of machine

Fr;max � Fr;min

(mm/min)

Minimum-maximum radial feed

speed of machine

Lt;max (mm) Maximum tool length

dt;max (mm) Maximum tool diameter

Ps (W) Spindle motor power

mn (mm) Modulus

z1 Teeth of gear workpiece

b (�) Helix angle

B (mm) Gear width

h (mm) Cutting depth

rb (MPa) Tensile strength

an (�) Profile angle

L0 (mm) Hob length

1 Introduction

With the development of manufacturing facilities and

process technologies, dry gear hobbing offers tremendous

economic and ecological potential owing to its contribution

on high productivity and benign machining condition

without cutting fluid [1]. A critical step for dry gear hob-

bing is to make decisions on process parameters as the

hobbing performance relies heavily on the parameters

configuration. Generally, the energy consumption [2],

carbon emission [3], machining time [4], production cost

[5], tool life [6] and other indexes are sensitive to the

selection of cutting parameters and tool parameters. In fact,

optimization of hobbing process parameters can not only

improve the machining efficiency and reduce the produc-

tion cost, but also prolong the tool life. Thus, in order to

maximize the machining performance of hobbing process,

parameter decision is the key point. In the actual produc-

tion process, the most concerned issues of enterprises are

efficiency and cost. It is necessary to investigate the rela-

tions of process parameters and machining time, produc-

tion cost, tool life in dry hobbing process, and process

parameters optimization is one of hot issues that need to be

solved in the extensive application of hobbing technology.

A reasonable process parameters decision approach is

requisite for hobbing process, particularly, the cutting

parameters and hob parameters need to be considered

simultaneously for the reason that the two jointly assist in

decreasing machining time, production cost and prolonging

tool life.

For gear hobbing, firstly, less machining time is the best

option due to the absence of cutting fluid. Continuous

processing inevitably leads to excessive tool wear and

friction if machining time has not been controlled. In

addition, less machining time means higher production

efficiency which is expected by enterprises. Secondly, cost

expenditure cannot be ignored in the manufacturing pro-

cess. Reducing production cost as much as possible con-

tributes to the sustainable development of manufacturing.

Thirdly, noting that hobs are always involved in the

machining process, this study takes hob parameters and

tool life into account to excavate the relations between

process parameters and tool life. Extending the service life

of hob from the perspective of parameters decision-making

can not only avoid costly tool coating and tool structure

redesign, but also help enterprises take effective measures

to maximize the use of hob. A few papers have concen-

trated on process parameter decision related to tool life in

gear hobbing. Some findings based on empirical models

and finite element (FE) simulation [7] provided ideas for

parameters decision-making on tool life. On balance,

striking a medium among machining time, production cost

and tool life resorting to process parameters decision-

making is quite effective to improve hobbing performance.

To settle the above-mentioned problem, this paper

devotes to proposing a multi-objective hobbing process

parameters decision approach, where the machining time,

production cost and tool life are considered as optimization

objectives. Firstly, detailed quantitative analysis between

process parameters and hobbing performance is introduced.

Secondly, a multi-objective hobbing process parameters

decision-making model is constructed in search for opti-

mum cutting parameters and hob parameters. Thirdly, a

novel algorithm named multi-objective multi-verse
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optimizer (MOMVO) is utilized to solve the presented

model. To prove the superiority of the proposed approach,

a case study is exhibited to show the feasibility and relia-

bility. The overview of proposed approach is illustrated in

Fig. 1.

The remaining part of the paper is organized as follows.

Relative literatures review is introduced in Sect. 2. The

modelling process of multi-objectives covering machining

time, production cost and tool life is presented in Sect. 3.

The decision approach via modified MOMVO is clearly

given in Sect. 4. The case study for verifying the performed

approach is illustrated in Sect. 5, with comparison of same

decision problem in MOPSO. Conclusions and perspective

are summarized in Sect. 6.

2 Literature review

In this section, a detailed elaboration of the state-of-art

process optimization is summarized to acquire an overall

view of previous achievements. The former researches can

be decomposed into the following two parts: the tool

optimization models in Sect. 2.1 and process optimization

strategies in Sect. 2.2.

2.1 Tool optimization models

Taking on the task of cutting raw materials in mechanical

manufacturing, cutting tools occupy an important position

in machining. Currently, with the improvement of tool

material and tool manufacturing technology, more scholars

focus on tool optimization and tool promotion. Tool wear,

tool breakage and tool life have been widely concerned and

researchers have conducted a series of related cutting

experiments.

An investigation finding delivered by tool manufacturers

presents that tools used with correct cutting velocity take

up only 58% and only 38% of tools worked to the life limit

[8], which directly indicates a huge improvement potential

on tool wear and tool use. The researches on tool opti-

mization for different machining conditions have achieved

rapid increase in recent years. Ma et al. [9] designed an

Fig. 1 Overview of developed approach
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automatic optimization system based on virtual machining

for end milling, in which optimal decision variables such as

feed rate, cutting velocity, axial cutting depth and radial

cutting depth were determined, with production time and

tool wear minimized. Tian et al. [10] attached importance

to tool wear conditions in cutting process and established a

multi-objective optimization model committing to search

for reasonable cutting parameters and tools. The minimum

carbon emission, production cost and machining time were

acquired by modified non-dominated sorting genetic algo-

rithm (NSGA-II). Chen et al. [11] comprehensively con-

sidered the cutting tool and machining parameters in face

milling, in which the energy footprint and production time

were optimized using MOCSA, the results revealed an

interaction effect between cutting tool and machining

parameters. Kuntoğlu and Sağlam [12] investigated the

influence of progressive tool wear and input parameters

including cutting velocity, feed rate and tool tip on product

quality during turning AISI 1050 material, utilizing

Taguchi method and ANOVA. The optimal cutting

parameters were determined as v = 135 m/min, f = 0.214

mm/r and tool type T = P25, which gained the minimum

tool wear value. Mia et al. [13] conducted experiments in

hard turning with minimum quantity of lubrication aiming

at optimizing roughness parameters (Ra;Rq;Rz), tool wear

parameters (VB, Vs) and material removal rate (MRR). The

cutting velocity, feed rate and cutting depth were discussed

by quantitative analysis that tool wear was mostly affected

by cutting depth. Petrović et al. [14] designed flexible

process plans for minimizing production time and pro-

duction cost. The consideration on machine, tool, tool

access direction, process and sequence were greatly

weighed. The above researches mainly studied the effect of

tool wear and tool use design on the process, based on

which the corresponding strategies were put forward.

While in gear hobbing, the related papers about hob

design and hob optimization are discussed as follows.

Karpuschewski et al. [15] took carbide hob as research

object. A dependency relationship of processing parame-

ters on hob tool wear and tool life was observed through

experimental processing. The maximum cutting speed with

vc = 800 m/min and chip thicknesses up to hcu,max = 0.26

mm were obtained for reliable processing. Brecher et al.

[16] maximized the utilization of empirical hobbing data

for simulation process, the proper process parameters, tool

parameters as well as axial movements were selected for

productive gear hobbing. Klocke et al. [17] discussed a

monitoring system based on blade in hobbing process and

built a connection between tool wear and effective power.

The changes of tool wear position deduced power variance

were highly observed. Sari et al. [18] developed investi-

gations on dry finish hobbing, with tool wear analyzed and

tool life evaluation formula derived. The verification

experiment concluded suitable material coefficients for

corresponding substrates which served as a support for

manufacturing engineers.

Actually, the cutting tools will unavoidably wear out in

the machining process thus using tools properly is of vital

importance. The reasonable parameters selection for tools

is right an excellent choice without occupying expensive

coating costs and manufacturing costs. It is requisite to

make a correlation between process parameters and hob

condition. Thus this paper takes the hob life as one con-

siderable objective to determine the appropriate hobbing

process parameters.

2.2 Process parameters optimization strategies

The process optimization strategies have been developed in

an extensive expansion both in optimization field and

optimization method. A large number of researches devo-

ted to reducing environment impact and improving eco-

nomic profits by various process optimization.

Performance indexes such as energy consumption,

machining time, production cost, product quality and tool

wear are generally taken as optimization objectives.

According to the actual processing requirements and pro-

cessing conditions, scholars usually choose one or more

suitable performance indicators as the optimization objec-

tives, since considering all indicators is not practical and

time-consuming. Quite a lot of references have been pub-

lished for optimizing different machining process, such as

turning process [19, 20], drilling process [21], milling

process [9, 22], grinding process [23, 24], etc. In most of

these papers, a multi-objective optimization model is first

built based on machining scenes so as to reveal the rela-

tionship between variables to be optimized and objectives.

A few papers build fitness objective function based on pre-

built prediction models [25]. It seems that there is not much

involved in choosing which process parameters and

establishing rules between variables and responses. Gen-

erally, multiple optimization objectives usually have

mutual constraints and restrictions, so an effective opti-

mization strategy determines the best solutions of the

multi-objective model.

For optimization strategies, common process optimiza-

tion methods concentrate on intelligent algorithms for their

powerful ability in searching optimum solutions while

some experimental design methods are applied to assist

decision process. Few process optimization focuses on one

objective, while the most are based on multi-objective

optimization at the moment. To strike a balance among

multi-objectives, multi-objective simulated annealing

(MOSA) [26], multi-objective genetic algorithm (MOGA)

[27], multi-objective particle swarm optimization
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(MOPSO) [28], NSGA-II [29], back propagation neural

network (BPNN) [30], multi-objective grey wolf optimizer

(MOGWO) [31], multi-objective cuckoo search (MOCS)

[11] and their combined versions have been exploited in

various process optimization. Table 1 summarizes the

related process optimization researches.

Covering above references, little attention has been paid

to hob in hobbing process optimization. In fact, machining

parameters not only affect the machining performance of

gears, but also affect the use of hobs. The selection of hob

parameters also affects the selection range of machining

parameters, machining time and production cost.

Table 1 Related process optimization models

References Process

scenario

Optimization

strategy

Process variables Objectives

Production

time/efficiency

Product

quality

Production

cost

Resource

consumption

Ma et al.

[9]

End milling CAD/CAE, global

optimization

method

Feed per tooth, cutting speed,

axial depth of cut, radial depth

of cut

4 8 4 8

Yi et al.

[29]

Face milling Multi-objective

cuckoo search

algorithm

Tool material, tool diameter,

number of inserts, cutting

velocity, feed rate per tooth,

cutting depth, cutting width,

cutting layers, cutting passes

4 8 8 4

Kumar

et al.

[21]

Thermal

drilling

Taguchi based grey-

fuzzy logic

method

Rotational speed, tool angle,

workpiece thickness

8 4 8 8

Zhou et al.

[19]

Cylindrical

turning

Non-cooperative

game theory

integrated NSGA-

II

Cutting speed, feed rate, cutting

depth

4 8 4 4

Mia et al.

[13]

Minimum

quantity

lubrication-

assisted

turning

Grey- Taguchi

method

Cutting speed, feed rate, depth of

cut, cutting conditions

8 4 8 8

Deng et al.

[22]

Milling Quantum genetic

algorithm

Spindle speed, feed speed,

milling depth, milling width

4 8 8 4

Rana and

Lalwani

[23]

Surface

grinding

Modified e
constrained

differential

evolution

Wheel speed, workpiece speed,

depth of dressing, depth of cut

doc, lead of dressing

4 4 4 8

Deng et al.

[24]

Grinding Genetic algorithm Feed speed, wheel speed,

grinding depth

4 8 8 4

Umer

et al.

[27]

Laser micro

milling

Multi-objective

genetic algorithm

Pulse intensity, pulse frequency,

pulse overlap, pulse durations

4 4 8 8

Cao et al.

[30]

High-speed

gear

hobbing

Improved back

propagation neural

network,

differential

evaluation

Hob rotation speed, depth of cut,

cutting feed

4 4 4 4

Ni et al.

[31]

Gear

hobbing

Multi-objective grey

wolf optimizer

Spindle speed of hob, axial feed

speed, diameter of hob

4 8 8 4

Li et al.

[28]

End milling Taguchi method,

response surface

method, multi-

objective particle

swarm

optimization

Spindle speed, feed per tooth,

depth of cut, width of cut

4 8 8 4

Yi et al.

[29]

Turning Non-dominated

sorting GA

Cutting speed, feed rate 4 8 8 4
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Considering hob wear and hob life can provide more

design support for process parameter decision-making. For

this aspect, this paper tends to fill this gap and proposes a

modified process decision approach with consideration of

tool life for benign dry hobbing process. Moreover, to track

the optimal process decision scheme, a physical-based

MOMVO is used to maximize the utilization as MOMVO

has a superior search mechanism and convergence rate,

which provides a strong support for multi-objective

optimization.

3 Multi-objective hobbing process decision-
making model

In order to optimize machining time, production cost and

too life at the same time, it is essential to formulate a multi-

objective hobbing process decision-making model. Hence,

decision variables are initially defined in Sect. 3.1, fol-

lowed by a detailed establishment of objective function

models in Sect. 3.2. Then the constraint condition of

models is introduced in Sect. 3.3.

3.1 Decision variables

Considering the fact that cutting velocity, axial feed rate,

outside diameter of hob and number of hob heads collec-

tively have an effect on gear hobbing, which determine the

final machining time, production cost and tool life.

Therefore, this paper regards the cutting velocity v, axial

feed rate fa, outside diameter of hob d0 and number of hob

heads z0 as controllable decision variables for improving

hobbing performance. The aim of this paper is to find

optimum {v, fa, d0, z0} so as to achieve fantastic objectives.

3.2 Objective function model

The objective model is to determine the best {v, fa, d0, z0}

for minimum machining time TM, minimum production

cost CP and maximum tool life LT. The following sections

elaborate the models of three objectives in detail.

3.2.1 Machining time model

To clearly describe the machining time model of gear

hobbing, a schematic view of hobbing process is illustrated

in Fig. 2. It can be seen that the cutting path mainly

comprises the remove process of surplus material and air-

cutting process.

Generally speaking, the cutting operation starts from a

short initiating stage in which the time consumed can be

ignored, and stays in standby mode for a moment which

consumes stand-by time ts, this time is mainly for guar-

anteeing the subsequent operation of dynamical system,

hob spindle system and other auxiliary function devices.

When everything has been prepared, the hob begins its

generating motion with gear workpiece; the time consumed

in air-cutting process can be taken as ta and the cutting time

is denoted as tc. Particularly, an additional tool change time

tct is requisite for normal operation of hob. Auxiliary time

tau includes the simple debugging and manual operation,

which is usually depended on the practical experience of

machine operator.

Therefore, the total machining time of gear hobbing can

be defined as

Fig. 2 Schematic view of hobbing process
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TM ¼ ts þ tc þ ta þ tct þ tau; ð1Þ

where ts and tau are normally considered as time constant

corresponding to the level of machine tool and actual

manufacturing requirements.

The cutting time tc can be expressed as

tc ¼
Xs

i¼1

tc;i: ð2Þ

For large modulus gear workpiece, single pass is usually

undesirable and the hob needs to pass in multiple times for

completing the cutting process. The s signifies the times of

pass for processing the gear workpiece. The cutting time

spent in a single running (tc;i) is presented as

tc;i ¼
z1d0Lcp
1000z0fav

; ð3Þ

where z1 denotes the number of teeth with gear workpiece,

and d0 represents outer diameter of hob. Lc defines the total

length of single cutting and is shown as

Lc ¼ E þ Bþ Aþ U: ð4Þ

Equation (4) describes the cutting stroke detail, where

E and A indicate the pre-defined cut-in length and cut-out

length, respectively. U is the safe allowance determined on

technical manuals and experience of technologists.

For the air-cutting time ta, it can be obtained as

ta ¼
Xs

i¼1

ta�axial;i þ
Xs

i¼1

ta�radial;i; ð5Þ

ta�axial;i ¼
La�axial

Fa

; ð6Þ

ta�radial;i ¼
La�radial

Fr

; ð7Þ

where La�axial and La�radial are the axial air-cutting length

and radial axial air-cutting length, respectively. Fr is usu-

ally regarded as a constant speed as its less impact on

cutting process. Fa can be represented as

Fa ¼
1000faz0v

pd0z1
: ð8Þ

Tool change process is to ensure the normal operation of

gear cutting where tct can be calculated as

tct ¼
tap
tuse

tc; ð9Þ

where tap denotes the apportionment of cutting time tc. tuse
is the total use time of hob that can be calculated as

tuse ¼
C

vf k1a mk2
n

K

� � 1
k3

; ð10Þ

where mn represents the normal module of the gear

workpiece, and C, K, k1, k2, k3 coefficients are attached to

the use time of hob.

Therefore, the model of machining time can be struc-

tured as

TM ¼ ts þ s 1þ tap

,
CK

vf k1a mk2
n

� � 1
k3

 !
pz1d0ðE þ Bþ Aþ UÞ

1000z0fav

þ s
pLa�axiald0z1
1000faz0v

þ s
La�radial

Fr

þ tau:

ð11Þ

3.2.2 Production cost model

For modern manufacturers, the pursuit of minimum cost

consumption is the thing they expect to see. In view of this,

the production cost is taken into consideration in parame-

ters optimization. During hobbing process, the production

cost CP is comprised of gear blank cost Cgear, machine tool

cost Cmachine, tool cost Ctool, labor cost Clabor, and elec-

tricity consumption cost Celec. Therefore, the CP can be

represented as

CP ¼ Cgear þ Cmachine þ Ctool þ ClaborþCelec: ð12Þ

The cost of gear blank Cgear can be easily obtained from

the purchase list.

The machine tool cost has an association with machin-

ing time and the maximum service life of machine tool

Tmac. sm is the unit cost of using machine tool. The formula

is expressed as

Cmachine ¼ sm
TM
Tmac

: ð13Þ

The tool cost is modeled as

Ctool ¼ st
tc

Thob;min

; ð14Þ

where Thob;min is the minimum tool life, and st indicates the

unit cost of tool.

Human participation is necessary in the gear prepro-

duction. The labor cost Clabor rightly refers to the cost of

management and manipulation in production per unit time.

It is related to the unit cost sl and machining time TM.

Clabor ¼ slTM: ð15Þ

The cost of electricity is part of the total cost. The

electricity consumption cost Celec is denoted as

Celec ¼ sePtotalTM; ð16Þ

where se is the unit cost of electricity energy, and Ptotal is

the total power consumption which can be acquired by

power analyzer.
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The production cost CP can be expressed as

CP ¼ Cgear þ TM
sm
Tmac

þslþsePtotal

� �

þ st
Thob;min

Xs

i¼1

pz1d0ðE þ Bþ Aþ UÞ
1000z0fav

: ð17Þ

3.2.3 Tool life model

The existing researches in correlation with hob life mainly

focus on the wear mechanism of hob, the failure process of

hob and the surface morphology characteristics during hob

cutting. While defining the hob life, the four methods

commonly provide different criterion: (i) the number of

workpieces that can be processed in each grinding; (ii) the

total processing time of each grinding of hob; (iii) the total

number of workpieces that can be processed by the hob

from the beginning of use to the time when the hob can no

longer be reground or recoated; (iv) the hobbing length of

single tooth of single grinding hob.

Each criterion evaluates the hob life by different mea-

surement methods. In order to better measure the hob life

and optimize its service life, the fourth calculation criterion

that hobbing length of single tooth in single edge grinding

hob is signified as hob life calculation, which effectively

avoids the disturbance of hob length.

In the general cutting process, the Generalized Taylor

life which was first designed in 1906 [32] is often used for

formulation. Considering the fact that single feed mode in

radial direction is adopted in high-speed dry hobbing pro-

cess, the radial cutting depth is not taken as a variable, the

cutting velocity v and axial feed rate fa are performed as

decision variables. The empirical formula is established as

LT ¼ rvxf 1a ; ð18Þ

where r;x; 1 indicate the corresponding life coefficients.

The determination of life coefficients can be obtained by

hob life experiments and multiple linear regressions. It can

be observed that cutting parameters have an effect on life

prediction to some extent. Reasonable choice of cutting

parameters assists in extending tool life.

3.3 Multi-objective decision model and constraint

condition

The multi-objective decision model is formulated as

Minimize : F v; fa; d0; z0f g
¼ min TM;minCP;min �LTð Þf g; ð19Þ

where TM and CP are both seeking for minimum values

while LT is tending to the maximum value. In order to

maintain the practicability of subsequent programming, the

LT is converted to a minimum value with negative sign.

Hence the decision model is fitted as minimum optimiza-

tion model. The TM model, CP model and LT model are in

detailed elaboration in Eqs. (11), (17) and (18), respec-

tively, with correlations to related process parameters. To

sum up, the multi-objective decision model of Eq. (19)

devotes to finding optimal process parameters v; fa; d0; z0f g
for minimizing TM, CP and LT.

In a multi-objective decision-making model, it is usually

restricted by various requirements of variables. As the main

components relating to hobbing process decision-making

model, the machine tool, hob and gear workpiece have

their acceptable ranges for specific parameters. The fol-

lowing equations demonstrate the relative constraints.

vmin � v� vmax; ð20Þ
fa;min � fa � fa;max; ð21Þ

d0;min � d0 � d0;max; ð22Þ

z0 [ 0; z0 ¼ 1; 2; 3; � � � ; ð23Þ
Thob;i � Thob;min; ð24Þ

P� kPa; ð25Þ
Fc �Fc;max; ð26Þ

0:0312f 2a
r

� ½Ra�: ð27Þ

Equations (20) and (21) denote the lower bound and

upper bound of cutting parameters. Equations (22) and (23)

indicate the range of hob parameters, particularly. z0 is an

integer which describes the threads of hob. Equation (24)

shows that hob should be used in the limit of minimum tool

life Thob;min. Equations (25) and (26) represent the

requirements of machine tool. The cutting power should be

less than the rated power Pa of machine. k is the efficiency

and maximum cutting force Fc;max and ensures the actual

bearing pressure. To ensure the quality criterion of gear

workpiece, the surface roughness should be limited below

the required value ½Ra�, as shown in Eq. (27). All above

constraints guarantee the process of searching for optimal

solution sets.

4 MOMVO-based parameters decision approach
for parametric optimization

For a simultaneous optimization of machining time, pro-

duction cost and tool life in gear hobbing, the theory

inspiration of the algorithm is demonstrated in Sect. 4.1,

the generation mechanism and mathematical models of

MOMVO are discussed in Sect. 4.2. Figure 3 depicts the

overall structure of the proposed approach and the details

are as follows.
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4.1 Inspiration

MVO is one of population-based algorithms inspired by

multi-verse theory in physics, which is proposed by Mir-

jalili et al. [33]. In multi-verse theory [34], there exists

more than one earth where we live in, the physicists hold

on the idea that there is more than one big bang which

generated the birth of universe. That is, multiple universes

are parallel to each other. To build up the MVO, the black

hole, white hole and wormhole are efficient components.

In addition to the universe we live in, the other universes

also keep conformity with the multi-verse theory. And the

contacts among universes are established by the different

actions of black hole, white hole and wormhole. Each

component owns its responsibility for evolution process.

The white hole refers to the big bang which indicates a new

birth of universe. Conversely, the black hole acts differ-

ently for its excellent ability to absorb everything around it

even the light beams. While for wormhole, it plays a role of

constantly expanding search area. The inflation rate is a

significant index to evaluate the expansion of every

universe.

In the optimization of process, the white hole and black

hole are in charge of exploring search space and each

universe represents a solution, each object corresponds to a

series of decision parameters with its solution. The

wormhole is devoted to exploiting search space for

updating.

4.2 Mathematical models in MOMVO

As the main motivations of MVO, the black hole, the white

hole and wormhole comprehensively ensure the optimiza-

tion process. In the evolution progress of MVO, the black

hole and the white hole absorb in exploiting more search

space. As is the same as other evolutionary algorithms, an

Fig. 3 Overall structure of modified MOMVO
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initial universe population is originated randomly and the

population keeps updating in the defined iteration times. At

each iteration, the population can be improved on the basis

of following regulations on the existent universes. Each

universe represents a required solution and each object of

certain universe represents a decision variable to be opti-

mized. For ensuring the feasibility of MVO, the regulations

are defined as follows.

Regulation 1 A higher existence probability of white

hole is corresponding to higher inflation rate.

Regulation 2 A lower existence probability of black

hole is corresponding to higher inflation rate.

Regulation 3 The objects with higher inflation rate are

transmitted to black hole from white hole among

universes.

Regulation 4 The objects with lower inflation rate tend

to accept other objects based on black hole among

universes.

Regulation 5 All movements of objects among uni-

verses tend to the fittest universe.

The conceptual description of planetary transmission is

depicted in Fig. 4. I Uið Þ indicates the inflation rate of ith

universe. It can be seen that the universe with high inflation

rate always move to universe with low inflation rate, so as

to keep all universes at a balanced level of inflation rate.

As mentioned above, the algorithm mainly relies on the

transfer movement among universe, the universe with high

inflation rate always tend to the universe with low inflation

rate. Thus the objects are always transferred from white

holes of universe to black holes of universe. This kind of

gravity makes the object transfer. With the help of relevant

cosmological rules, it ensures that the inflation rates of all

universes are at a stable value and finds the optimal uni-

verse in the search space.

The traversal process is mainly divided into exploration

and exploitation. Wormholes can be used as a medium to

transfer objects, and the interaction between white holes

and black holes can be used for space exploration.

The initialization of universe is described as

U ¼

p1;1 p1;2 � � � p1;d
p2;1 p2;2 � � � p2;d

..

. ..
. . .

. ..
.

pn;1 pn;2 � � � pn;d

2
6664

3
7775; ð28Þ

where U denotes the population solution containing n uni-

verses, d the decision variables in each universe, p the

specific variable of each decision set.

Fig. 4 Conceptual description of planetary transmission
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Concretely, each variable j in decision set i is denoted as

pi;j ¼ b
l;j þ ðbu; j � b

l; jÞrand �ð Þ
8i 2 ð1; 2; � � � ; nÞ&8j 2 ð1; 2; � � � ; dÞ;

ð29Þ

where bu;j , bl;j represent the maximum and minimum value

of the variable j, respectively, and rand �ð Þ means a function

that provides a stochastic distribution number in the range

of [0, 1]. Equation (29) ensures the reasonable range for

every decision variable, which works in the following

evolution process. In optimization process, pi;j denotes the

one decision variable to be determined, and Ui denotes a

parameters decision set for multi-objective optimization

problem.

During an iteration, each variable j in solution i is

regenerated based on the two options. The one is that its

value is determined in all generated solutions resorting to

roulette wheel mechanism initially such as

pi;j 2 ðp1;j; p2;j; � � � ; pi;jÞ, and the other one is the intrinsic

value without changing. The formulation is presented as

pi;j ¼
pk;j; randð�Þ\NormðUiÞ;
pi;j; randð�Þ �NormðUiÞ;

(
ð30Þ

where pi;j indicates the jth decision variable in the ith

universe; and Ui represents the ith universe, that is, the ith

decision set. Norm Uið Þ normally means the normalized

inflation rate of the ith universe, and rand �ð Þ generates a

random variable from [0, 1]. pk;j denotes the jth decision

variable in the kth universe determined by roulette wheel.

As is shown in Eq. (30), the white hole will search in

spiral form with reference to normalized inflation rate, and

the objects with low inflation rate are easier to transport

through the white hole or black hole. In the same case, the

objects with higher inflation rate are more likely to have a

white hole, and the objects with lower inflation rate are

more likely to have a black hole.

To generalize the variations of each universe and

increase the chances of inflation rate, the channels estab-

lished by wormhole keep consistency in the universe. It is

assumed that wormhole tunnels are always built between

the universe and the optimal universe. The evolution

mechanism is presented as

pi;j ¼
pi;j þ rTDRððbu;j � bl;jÞrand4þ bl;jÞ; rand3\0:5; rand2\pWEP;

pi;j � rTDRððbu;j � bl;jÞrand4þ bl; jÞ; rand3� 0:5; rand2\pWEP;

pi;j; rand2� pWEP;

8
><

>:

ð31Þ

where pi;j denotes the jth optimum decision parameter in

the ith universe that is selected among all variables. The

rand2; rand3; rand4 define three stochastic numbers in [0,

1], respectively. rTDR is the traveling distance rate of

wormhole representing the distance that an object trans-

forms through a wormhole near the optimal universe; pWEP

signifies the wormhole existence probability. Both rTDR
and pWEP are the significant coefficients in searching for

optimum solutions. Based on the Eq.(31), the better solu-

tion can be acquired by iterative generation. Equations (32)

and (33) give the formulation of pWEP and rTDR,

respectively.

pWEP ¼ pWEP;min þ Icu
pWEP;max � pWEP;min

Imax

� �
; ð32Þ

rTDR ¼ 1� Icu
1=Pe

Imax
1=Pe

; ð33Þ

where pWEP;min and pWEP;max denote the previously deter-

mined minimum and maximum values of pWEP, respec-

tively. Icu signifies the current iteration, and Imax defines the

total iteration times. Obviously, the values of rTDR and

pWEP change with iterations, and the dynamic value is

beneficial to the evolutionary process of the algorithm. Pe

is actually exploitation precision while the algorithm is

running. The bigger Pe, the faster exploitation and the more

precise iteration.

To determine the final Pareto solutions, an archive Ar is

introduced to select optimal one among all solutions. The

roulette wheel is designed in the less populated regions of

Ar for assuring the diversity of solutions, thus the coverage

of solutions (Par) can be improved by

Par ¼ h=Ni
; ð34Þ

where h denotes a constant and it is greater than 1. Ni

signifies the total solutions in the ith solution. This equa-

tion attracts the solutions and includes them to the less

populated regions, which eventually promote the quality of

Pareto font. When the Ar reaches saturation state, undesired

solutions should be removed from it. P0
ar is used to discard

the unnecessary solutions.

P0
ar ¼ Ni=h: ð35Þ

For a specific optimization problem, an initial parame-

ters decision set with corresponding objectives is generated

in the first iteration, then the optimization process contin-

ues to relocate the positions of decision variables using

Eq. (31), which enhances the exploration range of search

area. The obtained Ar is repeatedly updated by Eqs. (34)

and (35), and it improves the exploitation of optimal Pareto

solutions. Ultimately, the optimum parameters decision set

and its objectives can be obtained through above opti-

mization process.
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5 Case study

To verify the above models and proposed approach, this

section demonstrates the basic elements preparation in

Sect. 5.1, and the result discussion and comparative veri-

fication are given in Sect. 5.2.

5.1 Basic elements preparation

The case study is conducted for verifying the proposed

optimization model and decision approach based on

collected data from a gear manufacturing enterprise. The

dry hobbing machine is adopted for environmental friendly

machining. Essential elements covering the machine tool,

hob and gear workpiece are gathered as to support the

validation process. To better elaborate the decision-making

process, the supported information is collected and pro-

vided. Figure 5 shows the procedures of data collection.

Specifically, the details include the gear workpiece to be

processed, the performance parameters of used machine

tool and some geometric parameters of hob. Table 2 lists

the requisite information of above-mentioned

Fig. 5 Procedures of data collection

Table 2 Specifications of related manufacturing information

Gear workpiece Machine tool Hob Process

Parameter Value Parameter Value Parameter Value Parameter Value

Material 20CrMnTi Module YE3120CNC7 Base material S390 Machining

condition

Dry hobbing

mn/mm 2.5 dmax/mm 210 Coating

material

AP

composite

Machining

method

Reverse

rolling

z1 37 mmax/mm 5 mn/mm 2.5 Feed mode Single pass

b/(�) 28 Fa;max � Fa;min/

mm �min�1
� � 0–4 000 an/(�) 20

B/mm 25 Fr;max � Fr;min/

mm �min�1
� � 0–8 000 d0/mm 80

h/mm 5.625 Lt;max/mm 130 L0/mm 180

Helix

direction

Left dt;max/mm 230 z0 3

rb/MPa 1 079 Pa/W 15 000 j 17

Helix direction Left
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specifications. The involved available tool life measure-

ment with experiment in Table 3 is referred to the previous

study by Zhang et al. [35].

As is revealed in Table 3, the cutting parameters v and fa
are defined before experiment. LT varies under the different

combination of v and fa. It indicates that the less feed rate,

the longer hobbing length. When fa = 1.4 mm/r, LT
increases with the descending v, and a reverse relationship

pertains between v and LT. In this study, the pre-established

Generalized Taylor life model is utilized to predict tool life

with changeable v and fa, while the coefficients of tool life

are determined. Based on the tool life measurement, the

coefficients can be acquired by multi-regression analysis

which is adjusted to the process condition, that is,

r ¼ 13:298, x ¼ �0:173, 1 ¼ �0:738.

Moreover, the parameters in correlation to algorithm

also need to be determined. The input parameters of

modified MOMVO are listed in Table 4, with high con-

sideration of hobbing process.

5.2 Results discussion and comparative verification

Based on well-prepared information, the proposed

approach is coded with constraints. Section 5.2.1 parades

the obtained results and corresponding discussion, and

Sect. 5.2.1 confirms the superiority of proposed method by

comparative verification.

5.2.1 Results and discussion

With implementation process of proposed approach, the

optimal machining time, production cost, tool life and

corresponding decision variables can be acquired. Figure 6

depicts the obtained Pareto front via modified MOMVO.

With 100-amount archive presented, each point signifies a

{TM, CP, LT} objective. In Fig. 6a, it is the final Pareto

front. In fact, it is hard to determine which dot represents

the best objectives as no one dominates the other one in the

Pareto sets. Every dot has its advantages in one objective

that a selection mechanism needs to be proposed. By

expanding the three-dimension view, the relation trends

among machining time, production cost and tool life are

shown in Figs. 6b–d. There exists a polynomial function

relation between machining time and production cost in

Fig. 6b. By fitting the curve, the linear model is expressed

as

y ¼ �2:515� 10�5x2 þ 0:09424xþ 33:97: ð36Þ

Figures 6c, d are similar in the relation trend indicating

that TM–LT relation trend is consistent in CP–LT relation

trend. The descending trend indicates that an inverse cor-

relation may reside in machining time and tool life, and the

longer machining time means the worse tool life. This also

complies with the fact that the long-term usage of hob will

make it wear out gradually. Besides, the worn hob will be

replaced by a new one which costs a lot. Thus determining

optimal process parameters not only help enterprises

improve production efficiency but also assist in saving

production cost. In addition to the Fig. 6, the acquired 100-

amount archive is listed in Table 5 partially. The MOMVO

generates quite a lot Pareto sets and this shows MOMVO

has an advantage in generalizing more solution sets and

offering promising Pareto front.

As the decision-making of three objectives is a multi-

contradiction problem, it is not easy to determine the

parameters by manual experience because any objective

will be restricted by the other two. Hence, striking a bal-

ance among them by selecting appropriate process

parameters is necessary. By applying the exploration and

exploitation mechanism in MOMVO, the global optimum

Table 3 Involved tool life measurement

Experiment No. v/ mm �min�1
� �

fa/ mm � r�1ð Þ LT/m

1 220 2.0 3.14

2 220 1.8 3.45

3 220 1.6 3.62

4 220 1.4 4.02

5 200 2.0 3.19

6 200 1.8 3.48

7 200 1.6 3.72

8 200 1.4 4.14

9 180 2.0 3.21

10 180 1.8 3.56

11 180 1.6 3.82

12 180 1.4 4.25

13 160 2.0 3.26

14 160 1.8 3.57

15 160 1.6 3.86

16 160 1.4 4.37

Table 4 Input parameters of MOMVO

Input parameters Value

Population size 50

Niter 500

NAr 100

d 4

Nob 3

pWEP;max 1

pWEP;min 0.2

Nru 30
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and corresponding process parameters are obtained, as is

revealed in Table 6.

The historical process parameters provided by experi-

enced experts are also utilized for the comparison with the

proposed approach. By using MOMVO, the machining

time decreased 4.43%; production cost reduced 7.24% and

a 18.26% promotion in tool life can be achieved. The

optimized solutions of v and fa also comply to the experi-

mental results in tool life measurement. The diameter of

hob generated by proposed method is smaller than the

actual choice while the diameter of hob in high speed dry

cutting scene is usually smaller than that of general hob. To

conclude, the proposed approach has the capability to

simultaneously optimize optimum machining time, pro-

duction cost and tool life under the rational choice of

cutting parameters and hob parameters.

5.2.2 Comparative verification

In order to effectively demonstrate the superiority of

developed approach, two points are discussed as supporting

evidence.

(i) Necessity of considering tool life in multi-objective

hobbing process

The long-term use of the hob will cause tool wear

gradually, and in serious cases, the tool will be damaged.

The tool life is highly dependent on the selection of

parameters, which has been studied by Sari et al. [18].

Despite the fact that the improvement of tool materials and

coating materials has enhanced the tool life, the expendi-

ture for this is not a small expenditure for enterprises.

Determining the use of parameters and maximizing the

hobbing process is suitable for the sustainable development

of enterprises from the perspective of process parameters

optimization. The decision-making on appropriate process

parameters is right a profit-maximized process strategy for

industries to reduce research costs on tools.

According to the data in Table 3, the relationship trends

between cutting parameters v, fa and tool life LT are

depicted in Fig. 7. Obviously, an inverse relationship

between LT and fa can be seen from Fig. 7a when v is fixed.

Relatively small fa contributes to longer tool life. When

fixing fa in Fig. 7b, the relationship between v and LT is not

so prominent. In addition, the geometric parameters of hob

itself will also affect tool wear and tool life. Thus, it is of

great significance to consider the combined action of cut-

ting parameters and hob parameters on tool life. And

improving the performance of hob is also conducive to

elevate work efficiency and processing quality. Consider-

ing the tool life as one of decision objectives and making

decisions on process parameters are key components in

hobbing process.

(ii) Comparison with traditional optimization method

Fig. 6 Obtained Pareto front via modified MOMVO
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In addition to the implementation process in MOMVO,

the established decision model was also executed in

MOPSO method, which has been widely used in turning

process, milling process and other engineering optimiza-

tion problems. The requisite input parameters of MOPSO

are set as: velocity inertia wmax = 0.8, wmin = 0.2, position

weight c1 = 1, c2 = 1. Certainly, the dimension of vari-

ables, the number of objectives, population and iterations

keep correspondence with values in Table 4. To make the

MOPSO more suitable for the hobbing process problem, a

dynamic update of w is adopted with changeable iterations.

The formula is shown as

w ¼ wmax �Icu
wmax � wmin

Imax

; ð37Þ

where Icu and Imax are denoted as current iteration and total

iterations, respectively. Therefore, by running the program,

the achieved results are displayed in Table 7.

It can be observed that TM, Cp, LT acquired by proposed

approach is superior to the results in MOPSO by 18.24% in

machining time, 6.78% in production cost and 35.55% in

tool life. It is obvious that obtained results by proposed

method are better than traditional MOPSO. The corre-

sponding process parameters are also generated by separate

runs. Both methods recommend hob parameters with

d0 = 80 mm and z0 = 3, this is also in line with the chosen

hob in actual production. The cutting parameters provided

by MOPSO are relatively larger than those in MOMVO,

but the obtained objectives are not so satisfactory.

To further evaluate the performance of two methods in

hobbing parameters problem, a statistical test had been

conducted which is statistically meaningful. The two

algorithms are taken a 30-run program. The statistical test

and statistical data are acquired by generating Pareto front.

Table 8 shows the results of MOMVO and MOPSO, where

Table 5 Pareto front of 100-ammount archive

No. TM/s Cp/CNY LT/m No. TM/s Cp/CNY LT/m

1 180.101 7 50.011 98 4.756 692 51 286.266 2 58.803 51 2.956 045

2 214.210 3 53.193 90 3.041 115 52 295.494 1 59.565 72 2.946 172

3 199.702 6 51.885 94 3.586 244 53 284.535 7 58.673 87 2.957 425

4 268.701 7 57.482 66 2.971 169 54 245.383 7 55.607 99 2.999 711

5 334.609 7 62.617 59 2.908 937 55 189.609 1 50.890 16 4.145 370

6 399.766 3 67.724 01 2.859 136 56 191.138 5 51.029 45 4.080 592

7 196.459 5 51.581 13 3.738 842 57 188.006 0 50.775 10 4.221 028

8 186.752 2 50.619 51 4.329 803 58 203.978 8 52.205 83 3.496 776

9 288.363 3 59.016 04 2.951 719 59 200.819 2 51.979 05 3.539 932

10 189.700 3 50.953 46 4.106 181 60 193.497 4 51.294 78 3.921 403

: : : : : : : :

40 361.582 7 64.687 98 2.891 694 90 187.522 7 50.739 12 4.278 714

41 357.229 9 64.378 13 2.893 063 91 187.887 7 50.735 40 4.279 652

42 340.900 6 63.100 42 2.905 109 92 183.163 7 50.235 84 4.666 189

43 183.894 2 50.393 62 4.457 039 93 180.856 6 50.054 04 4.746 159

44 349.450 0 63.77 21 2.900 299 94 189.167 4 50.894 04 4.160 070

45 213.806 8 53.134 08 3.067 204 95 198.915 7 51.807 90 3.636 408

46 254.724 1 56.349 46 2.988 900 96 199.391 3 51.858 14 3.635 908

47 257.996 6 56.609 62 2.987 959 97 379.571 0 66.157 24 2.874 326

48 266.193 7 57.270 66 2.975 501 98 381.170 1 66.259 58 2.874 056

49 258.277 8 56.600 33 2.988 692 99 382.424 2 66.337 04 2.874 020

50 230.704 5 54.467 40 3.020 692 100 381.370 2 66.275 21 2.874 047

Table 6 Optimal solution set and optimal front

Method v/ mm �min�1
� �

fa/ mm � r�1ð Þ d0/mm z0 TM/s Cp/CNY LT/m

Optimized solutions 175 1.48 80 3 191.14 51.02 4.08

Experienced case 160 1.60 90 3 200.00 55.00 3.45
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the mean value, standard value for three objectives and p-

value between two algorithms are reported.

As is indicated by above table, the standard deviation of

MOMVO is much bigger than the value in MOPSO, which

confirms that MOMVO has ability in generating the solu-

tion sets with obvious individual difference. This greatly

assists in searching for hobbing process parameters and

optimal objectives through a large jump value. The mean

values of TM and Cp in MOMVO are smaller and this

satisfies the need that MOMVO can get the minimum

machining time, minimum production cost and maximum

tool life in the same situation. For p-value, it is a parameter

that is used to determine the result of hypothesis test. The

smaller the p-value is, the more significant the result is,

which could be utilized to support performance superiority

of algorithm. The Wilcoxon rank sum test is used to

compare the two methods. Generally, the result is regarded

as significant when p� 5%. As can be seen from Table 8,

the p-values of three objectives in two algorithms are all

less than 5%, which presents that the result is remarkable.

Therefore, the arguments for applying MOMVO come

to following three aspects.

(i) The proposed MOMVO strike a best balance

among machining time, production cost and tool

life with optimal hobbing process parameters, by

comparing with MOPSO in terms of final objec-

tives and statistical values. It helps acquire better

solutions.

(ii) The MOMVO has the ability to generate a series

of diverse process parameters thus it can enrich

the knowledge of hobbing process and provide

more parameter schemes for technologists in

practical production.

Fig. 7 Relationship trend between cutting parameters and tool life a relationship trend fa–LT b relationship trend v–LT

Table 7 Comparison to traditional MOPSO method

Method v/ mm �min�1
� �

fa/ mm � r�1ð Þ d0/mm z0 TM/s Cp/CNY LT/m

MOMVO 175.00 1.48 80 3 191.14 51.03 4.08

MOPSO 184.62 2.20 80 3 233.78 54.74 3.01

Relative error – – – – 18.24% 6.78% 35.55%

Table 8 Statistical performance comparisons between MOMVO and MOPSO

TM/s Cp/CNY LT/m

MOMVO MOPSO MOMVO MOPSO MOMVO MOPSO

Mean 239.86 263.55 55.03 57.06 3.52 3.02

Standard deviation 66.31 54.18 5.32 4.25 0.66 0.15

p-value 0.0087 0.0080 0.0061
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(iii) As a superior approach to multi-objective hobbing

process optimization, the MOMVO can be also

transferred as an optimal strategy for other

engineering optimization problems which pro-

vides a novel idea in decision-making for

enterprises.

With above-mentioned, it is reasonable to conclude that

the proposed method performs better than MOPSO. From

the different statistical criterion, the MOMVO is proved to

be reliable and effective in dealing the hobbing process

parameters decision-making problem. By utilizing

MOMVO, the generation of Pareto solution sets and Pareto

front are further improved with iterations.

6 Conclusions and prospective

This study investigated the dry hobbing process parameters

problem and analyzed the importance and necessity of

process parameters decision-making for improving

machining performance. For the optimum machining

effect, three objectives as machining time, production cost

and tool life had been comprehensively considered. The

quantitative relationship between process parameters and

objectives were established, with specific presentation in

the objective function models. On account of function

models, a multi-objective hobbing process decision-mak-

ing model was built. Then, a modified MOMVO-based

decision approach was proposed, to optimize and deter-

mine the optimal process parameters for achieving the best

machining effect. The verification results illustrated the

efficiency and effectiveness of the proposed method. The

major aim of using the proposed approach was to promote

the capability of hobbing performance and develop process

improvement techniques. And the obtained results showed

that v = 175 m/min, fa = 1.48 mm/r, d0 = 80 mm, z0 = 3

are the optimal solution set. It should be noted that multiple

comparisons have proved the superiority of the proposed

method, in particular, the conventional MOPSO has been

utilized for comparison by statistical test. The comparison

results revealed that the proposed method could achieve a

better balance in machining time, production cost and tool

life. It can be derived that the modified MOMVO has an

excellent ability in process optimization for benign dry

hobbing.

For deeper investigation, the following two aspects can

be further considered. Firstly, except the optimization of

hob from the perspective of process parameter decision, the

improvement in shifting mode of hob can better improve

the cutting performance. And in each cutting pass, con-

sidering the influence of hob wear and its corresponding

cutting parameters on the service life deserves more

attention. Secondly, the presented modified MOMVO

performs well in established multi-objective process

parameters decision-making model, in addition to intelli-

gent algorithms, a more suitable agent for adaptive process

optimization and decision making can be studied with

increasing popularity in deep learning, reinforcement

learning, etc. It is the focal point in the next research.
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14. Petrović M, Mitić M, Vuković N et al (2016) Chaotic particle

swarm optimization algorithm for flexible process planning. Int J

Adv Manuf Technol 85:2535–2555

15. Karpuschewski B, Beutner M, Köchig M et al (2017) Influence of
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