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Abstract High product quality is one of key demands of

customers in the field of manufacturing such as computer

numerical control (CNC) machining. Quality monitoring

and prediction is of great importance to assure high-quality

or zero defect production. In this work, we consider

roughness parameter Ra, profile deviation Pt and roundness

deviation RONt of the machined products by a lathe.

Intrinsically, these three parameters are much related to the

machine spindle parameters of preload, temperature, and

rotations per minute (RPMs), while in this paper, spindle

vibration and cutting force are taken as inputs and used to

predict the three quality parameters. Power spectral density

(PSD) based feature extraction, the method to generate

compact and well-correlated features, is proposed in details

in this paper. Using the efficient features, neural network

based machine learning technique turns out to be able to

result in high prediction accuracy with R2 score of 0.92 for

roughness, 0.86 for profile, and 0.95 for roundness.

Keywords Computer numerical control (CNC)

machining � Quality prediction � Roughness parameter �
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1 Introduction

Productivity and quality of manufactured products have

been main attention of manufacturers in the increasingly

competitive economic environment. A comprehensive

approach to monitor and predict product quality is needed

in manufacturing industry towards full automation and to

achieve zero defect production. For computer numerical

control (CNC) manufacturing machines, the product final

surface quality is mainly influenced by the interaction

between the cutting tool, the workpiece and the machining

system [1].

Many researchers have conducted theoretical and

experimental studies to develop efficient prediction sys-

tems for machined product quality. Machining with CNC

requires setting process parameters such as feed rate, depth

of cut and spindle speed, which depends on knowledge and

experience. Quality monitoring and prediction have been

studied by analyzing the effects of these process parame-

ters on quality and furthermore by application of opti-

mization technique to these process parameters [2–4]. To

predict the quality using the process parameters more

precisely, machine learning techniques have been exten-

sively applied [5–9], among which Refs. [5–7] are con-

cerned with roughness; Ref. [8] is for both roughness and

profile accuracy; and Ref. [9] applies a neural network to

predict the profile error which is subsequently used to

correct CNC code. However, process parameters based

approaches cannot guarantee the achievement of desired

surface finish, as CNC machines are a bulky and complex

system, and the interaction between the cutting tool, the

workpiece and the machining system play a critical role in

influencing surface finish. As mentioned in Ref. [10], one

of the most important factors influencing the quality of the

machined workpiece surface is the vibrations of machine
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tool and spindle which may cause excessive surface

waviness and cylindricity. Therefore, sensors were instal-

led in the machine system such as vibration sensors and

force sensors, and the collected sensor signals were used to

predict the quality together with the process parameters.

For example, in Ref. [11], cutting forces, cutting vibrations,

cutting speed, and the ratio of feed rate to tool-edge radius

were taken as the inputs to a multi-layer perceptron neural

network to predict surface roughness. References [12–14]

considered spindle vibration, and the effect of spindle

vibration on surface roughness was studied. And in Ref.

[15], a linear regression model was developed to predict

surface roughness using the measured displacement signals

of relative spindle motion for an end milling machine.

Spindle error motion and machined workpiece roundness

are both studied in terms of relationship with spindle

rotational speed for a roll lathe in Ref. [16], implying that

spindle error motion causes the roundness deviation in

machined cylinder workpiece [17].

In this work, a machine learning based approach using

sensor signals of spindle vibration and cutting force is

proposed to predict surface roughness, profile accuracy and

roundness of the machined workpiece by a lathe. The

spindle preload and temperature for different rotational

speeds were set at different levels, by considering that

preload [18] and temperature [19–21] were two main fac-

tors affecting the spindle vibration. By analyzing and

interpreting the sensor signals under different settings of

spindle parameters of speed, preload, and temperature, the

features closely related to the parameters’ change are

extracted from the raw sensor signals. The workpiece

qualities are accurately predicted with the trained neural

network models using these features as inputs.

2 Experiment and data collection

The 2-axis CNC lathe machine (model: HAAS ST-10) as

shown in Fig. 1 is used to carry out the experiment. The

experimental setup consists of workpiece, sensors and

cutting tool, and is shown in Fig. 2a. The cylinder work-

piece is of stainless steel and clamped using the soft-jaw.

The cutting tool insert is DNGA-type CBN insert with the

information detailed in Fig. 2b, and the coating is PCBN.

For all cuttings, coolant was used.

2.1 Design of experiment

Three spindle parameters, spindle preload, spindle housing

temperature and rotational speed, are used to study the

spindle failure. Each parameter has three value settings,

and therefore there are twenty-seven combinations or

cases. For each case, the cutting process was run three

times, and the cutting parameters, which were 100 m/min

cutting speed, 0.1 mm/r feed rate and 0.1 mm depth of cut,

were fixed for all cases. After each cutting, the quality of

the workpiece was measured to obtain the values of

roughness parameter Ra, profile deviation Pt and roundness

deviation RONt. In total, there are eighty-one sets of

experimental sensor data together with corresponding

workpiece quality data. Table 1 summarizes the design of

experiment.

The machine spindle was normally preloaded at the

level of 32 lm. A new lock nut of a different height with

internal locking was fabricated and used to lower the

spindle preload to 19 lm. The spacer used in between front

bearings were grinded to increase the spindle preload to

51 lm.

Industrial heating controller system was used to heat up

the spindle housing. A large ceramic heating pad was

wrapped around the spindle’s housing, before adding the

insulating layer of glass wool. The heating process usually

took about 2 h for temperature to reach equilibrium point.

To run the experiment with different rotations per

minute (RPMs), the cutting speed was fixed at 100 m/min,

and the workpieces with three different diameters of

80 mm, 120 mm and 150 mm were used. Accordingly, the

spindle rotational speeds were 400 r/min, 260 r/min, and

210 r/min.

2.2 Sensor location and data collection

A tri-axial dynamometer and a tri-axial accelerometer were

used to measure the cutting force and the spindle vibration,

respectively. The cutting force and the spindle vibration are

both simultaneously measured in XYZ standard three

directions of the machine.

The accelerometer (Dytran 3273A2) was attached at the

bottom of the spindle housing, and the dynamometer

(Kistler 9129AA) was mounted at the cutting tool side. The

Fig. 1 CNC lathe machine HAAS ST-10
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raw vibration signals were processed through a multi-

channel accelerometer amplifier, which was embedded in

an national instrument (NI) data acquisition system. The

raw force signals were processed through a multi-channel

charge amplifier that was also connected to an NI data

acquisition system. The signals from these sensors were

collected for each cutting. The NI data acquisition system

was programmed to capture all the sensor signals syn-

chronously, and the signals were all sampled at 25.6 kHz.

These collected raw signals were stored in TDMS file

format.

3 Analysis of workpiece quality

Analysis of variance (ANOVA) test was carried out for Ra,

Pt, and RONt, respectively, with respect to the spindle

parameters of preload, temperature and RPM. The purpose

of the statistical ANOVA test is to investigate which

parameter significantly affects Ra, Pt, and RONt. It turns out

that RPM is the major factor affecting Ra and Pt, followed

by temperature and preload, and preload is the major factor

affecting RONt, followed by RPM and temperature. Next,

Ra, Pt, and RONt relationships with the spindle parameters

will be shown individually.

Fig. 2 Experimental system a experimental setup inside the lathe machine, b DNGA-type of cutting tool and tool holder, D = 12.7 mm,

Re = 1.2mm, L10 = 15.5 mm

Table 1 Design of experiment (repeat the experiments for two more times)

Experiment No. Spindle preload Temperature/�C Rotational speed/(r�min-1)

1 Normal 25 210

2 Normal 25 260

3 Normal 25 400

4 Normal 50 210

5 Normal 50 260

6 Normal 50 400

7 Normal 70 210

8 Normal 70 260

9 Normal 70 400

10 to 18 Low Same combination of temperature and rotational speed as experiment

Nos. 1–9, respectively

19 to 27 High Same combination of temperature and rotational speed as experiment

Nos. 1–9, respectively
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3.1 Roughness parameter

Roughness as a measure refers to the texture of a surface

[22]. According to ISO 4287, roughness parameter Ra is the

arithmetical mean of the absolute values of the profile

deviations (Zi) from the mean line of the roughness profile,

as illustrated in Fig. 3. Surface roughness tester Talysurf

equipment is used to measure the roughness parameter Ra

of a workpiece.

The surface roughness is an important measure of pro-

duct quality since it influences the product mechanical

properties like fatigue behavior, corrosion resistance, creep

life, etc., as well as production cost. It is quantitatively

valued as the vertical deviation of a real surface from its

ideal form. Large deviation means the surface is rough, and

small deviation means the surface is smooth. Typically,

roughness is related to the high frequency component of a

measured surface.

ANOVA test showed that RPM and temperature were

two main factors affecting Ra, and among the three

parameters of preload, temperature and RPM, RPM was the

most significant factor. Figure 4 plots the change trend of

Ra with respect to RPM under different temperatures.

Except for under the room temperature where Ra kept

almost constant, it decreased as RPM was higher under the

temperatures of 50 �C and 70 �C.

3.2 Total deviation of primary profile

Figure 5 gives an example of parameter Pt measurement.

Here, Pt refers to the total deviation of primary profile of a

workpiece.

Through ANOVA test, it was known that RPM most

significantly affected Pt, followed by temperature and

preload. Figure 6 shows how Pt changes with RPM at

different temperatures. At the temperatures of 50 �C and

70 �C, Pt decreases as RPM is higher. At lower RPM, Pt is

higher at 50 �C than 70 �C. By viewing Figs. 4 and 6

together, it is found that Ra and Pt are similar in terms of

change trend with RPM and temperature.

3.3 Total roundness deviation

During the machining process, when a certain level of

spindle failure exists, the workpiece gets deformed. On the

convex deformed surface of the workpiece, the material

removal is higher, and on the concave deformed surface,

the material removal is lower. Consequently, the machined

workpiece shape differs from the previous state and causes

roundness deviation. In this work, the roundness of the

workpiece was measured using equipment Talyor Hobson

Talyrond 565XL. The reference type is LS circle; the filter

type is Gaussian; the filter range is 1–50 upr. Figure 7

shows an example of roundness measurement.

ANOVA test showed that preload was the most signif-

icant factor affecting roundness RONt, followed by RPM

and temperature. The relationship of RONt with RPM and

temperature is clearly observed in Fig. 8, where the

roundness deviation is higher as the preload increases,

which is consistent for all RPMs.

Fig. 3 Illustration of roughness parameter Ra [23]

Fig. 4 Roughness Ra vs. RPM for different temperatures
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4 Power spectral density (PSD) based feature
extraction

Multiple sensors are used with the aim to increase the

richness of information indicative of machine conditions.

But the information provided by the multiple sensors may

be redundant, which will deteriorate the accuracy of pre-

diction models. Using key sensor signal features closely

related to machine states or conditions is more effective

and necessary than using all possible sensor features.

Therefore, an extraction method for key features which will

be the input of the machine learning model, is critically

important to the achievable modeling accuracy. In general,

three signal processing methods are employed for feature

extraction, i.e., time and statistical domain method such as

amplitude, mean, kurtosis and root-mean-square (RMS),

frequency domain method such as FFT, PSD and har-

monics, and time-frequency domain method such as short-

time FFT and wavelet. After analyzing the sensor signals, it

is found that the frequency-domain method is most

appropriate as it shows obvious correlation with the change

of spindle parameters. Thereby, in this section, features

will be calculated from the power spectral density of the

raw signals. Feature selection will then be applied on the

candidate feature dataset to obtain a low dimension feature

vector. By this way, the proposed method, which, on one

hand, can reduce the risk of losing meaningful information

and improve the prediction performance, and on the other

hand, has little impact on the running speed of the machine

learning model.

Eighty-one sets of sensor data and corresponding eighty-

one sets of workpiece quality data (roughness Ra, profile Pt,

roundness RONt) were collected. For each set, there are six

channels of sensor signals, i.e., the spindle vibrations from

the tri-axial accelerometer, and the cutting forces from the

tri-axial dynamometer on the tool side. Figures 9a, b show

one set of the sensor signals, as an example. The signals

during the cutting period, as indicated in Figs. 9a, b by the

windows, are used to build a model to predict the quality.

In order to predict accurately, the features extracted from

the raw signals should be correlated well enough with the

machined workpiece quality, and the workpiece quality is

related to the spindle parameters of spindle preload, tem-

perature and RPM under consideration. In light of this, we

have investigated the change of PSD of each signal when

the spindle parameters of preload, temperature and RPM

are set differently. As an example, Fig. 10 shows the PSD

of the spindle vibration for different temperatures.

According to Fig. 10, the sensor signal PSD could be

used as a feature vector since it noticeably changes for

different levels of the spindle temperature which lead to the

change of the machined workpiece quality. Furthermore,

since the PSD change concentrates on certain frequency

ranges, an integrated PSD value in the frequency range is

taken as a feature component. This feature extraction

method can greatly reduce the length of the feature vector,

and thus speed up the training process and running of the

model.

The proposed features are defined as follows.

Fig. 5 Example of a workpiece profile deviation Pt measurement

Fig. 6 Pt vs. RPM for different temperatures
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g kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X kþ1ð Þs�1

i¼ks
S fið Þ2

r

; k ¼ 0; 1; 2; � � � ; ð1Þ

where S fið Þ is the PSD value of a sensor signal at frequency

fi. Equation (1) means that g(k) is defined as the root of sum

of the PSD squares in the sequential frequency range from

ksDf to ((k ? 1)s - 1)Df, where Df is the frequency reso-

lution of the PSD. The frequency range is (s - 1)Df and s

is selected to determine the value of the frequency range.

Therefore, for a sensor signal x, its feature vector, namely

G(x), is composed of g(k) in Eq. (1), and given by

G xð Þ ¼ g 0ð Þ g 1ð Þ � � � g Nð Þ½ �: ð2Þ

From all available sensor signals, we have the feature

given by

H ¼ G Vxð Þ G Vy

� �

G Vzð Þ G Fxð Þ G Fy

� �

G Fzð Þ
� �

;

ð3Þ

where Vx, Vy, Vz respectively refer to spindle vibrations in

XYZ directions, and Fx, Fy, Fz respectively represents cut-

ting force signals in XYZ directions. It should be noted that

each feature vector H corresponds to quality values of Ra,

Pt, and RONt. Note that the feature vector H in Eq. (3) is

calculated from all sensor signals in the full frequency

range from 0 to 12.8 kHz.

As seen in Fig. 10 for example, the signal responds to

the change of the spindle parameter by different levels in

Fig. 7 Example of measurement result showing the roundness (green curve)

Fig. 8 Roundness RONt vs. preload for different RPMs
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the frequency ranges. It is recalled that the change of the

spindle parameter leads to the workpiece quality differ-

ence. The observation from Fig. 10 implies that the

importance level of the feature components in Eq. (3) is

different to the workpiece quality. Therefore, feature

ranking based on the importance levels is necessary, and

redundant features can be removed through just selecting

top features for building machine learning models. Here,

the importance level is determined by the correlation

coefficient of the feature to the workpiece quality.

Rewrite H in Eq. (3) and the corresponding workpiece

quality Q as follows.

H ¼

h11 h12

h21 h22

� � �
� � �

h1m

h2m

..

. ..
. . .

. ..
.

hn1 hn2 � � � hnm

2

6

6

6

6

6

4

3

7

7

7

7

7

5

Q ¼

q1

q2

..

.

qn

2

6

6

6

6

4

3

7

7

7

7

5

;

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð4Þ

where m is the feature number, and n is the sample number.

For each feature j, its correlation coefficient r(j) is calcu-

lated as

r jð Þ ¼
Pn

i¼1 hij � lj
� �

qi � qð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 hij � lj

� �2Pn
i¼1 qi � qð Þ2

q ;

j ¼ 1; 2; � � � ;m;
ð5Þ

Fig. 9 One set of the sensor signals a spindle vibration and b cutting force in X, Y, Z directions (the signals within the steady cutting period used

for workpiece quality prediction)

Fig. 10 Power spectral density of a set of spindle vibration, in the directions of a X, b Y and c Z for the temperatures of 25 �C, 50 �C, and 70 �C
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where lj is the mean value of {hij}, q the mean of Q={qi},

i=1,2,_, n. The feature ranking can be done by comparing

r(j), j=1, 2,_, m.

The signal processing for the feature extraction in this

section and the machine learning work in the next section

are all carried out through Python programing. Addition-

ally, the functions such as ExtraTreesClassifier for classi-

fication and ExtraTreesRegressor for regression in Python/

sklearn.ensemble [24, 25], can be used to do the feature

ranking and directly come up with the sorted features.

The next task is to use machine learning method with

the sorted features and the corresponding quality to train a

model that is subsequently used to predict the quality for

another experiment which is not included in the dataset

building for the previous model training. Here, the neural

network algorithm will be used as the machine learning

method, which is powerful in solving regression problem.

5 Modeling and prediction of Ra, Pt, and RONt

All signals are segmented to several portions, as indicated

in Fig. 11 as an example. Here, the segment length we used

is 2 s. Features are extracted for each segment. The fea-

tures have been sorted by the feature ranking method stated

in the previous section. As an example, the top ten features

for roundness RONt are listed in Table 2. The model

training and the quality prediction with the trained model

are based on top fifty features. Multi perceptron neural

network [24, 26] for solving regression problem was used

to build machine learning models by training on the fea-

tures extracted from the experimental data.

Recall Table 1. There are eighty-one experiments in

total. Each of the experiments is used for the validation of

trained machine learning model, and the (feature, quality)

dataset for all other experiments is used to build the model

through training. The built model is then used to predict the

quality value for the validation experiment. This scheme is

employed to emulate real-time scenarios using all available

data for training, with the purpose to have a well-trained

accurate model to predict the current and online case. The

final predicted quality is valued as the mean of the pre-

dicted results using the features from the segments, which

refers to the mean value of Ns values predicted from the

trained model. R2 score (1 means perfect) is used to eval-

uate the accuracy of the predictions.

The predicted Ra, Pt, and RONt are respectively shown in

Figs. 12–14 for total 81 experiments with comparison to

the measured values. The obtained R2 score is 0.92 for

roughness Ra, 0.86 for profile Pt, and 0.95 for roundness

RONt. These high R
2 scores show that the proposed methods

of feature extraction and neural network based modelling

are able to precisely predict the product qualities using the

sensor signals and without using the information about the

process parameters.

Using only the spindle vibrations, the regression models

were also built. The resultant R2 scores are all lower than

using both the cutting forces and the spindle vibrations,

which are 0.88 for roughness Ra, 0.77 for profile Pt, and

0.93 for roundness RONt, though for roundness, the accu-

racy is just slightly lowered.

Fig. 11 Example of the signal with segments 1, 2, 3,_, Ns

Table 2 Top ten features for roundness RONt

Sensor signal Frequency range/Hz

Spindle vib. Y 104.0–200.0

Cutting force Y 110.0–206.0

Spindle vib. Z 202.0–298.0

Spindle vib._Y 204.0–300.0

Cutting force_X 104.0–200.0

Spindle vib. Z 2 402.0–2 498.0

Spindle vib. Y 11 804.0–11 900.0

Spindle vib. Y 2 404.0–2 500.0

Spindle vib. X 6 106.0–6 202.0

Cutting force X 7 912.0–8 008.0

Fig. 12 Predicted roughness parameter Ra compared with its

measured values (R2 score: 0.92)
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6 Conclusions

The quality parameters of roughness Ra, profile Pt and

roundness RONt of the workpiece machined by a lathe have

been predicted with the measured spindle vibrations and

cutting forces. The prediction has been accurately accom-

plished by modeling with neural network based machine

learning technique. The feature extraction method in the

frequency domain is proposed, since it has produced well-

correlated features containing rich information relevant to

the product qualities. The multi perceptron neural network

algorithm is powerful in solving the regression problem. As

such, using these effective features through the neural

network algorithm, accurate models have been built for the

prediction of the product qualities. Comparison has been

made between the predicted and the measured quality

values. The achieved R2 score is 0.92 for roughness

parameter Ra, 0.86 for profile deviation Pt, and 0.95 for

total roundness deviation RONt.

The developed frequency-domain feature extraction

method in this paper works effectively to find rich and

useful information from sensor signals, particularly for

those situations where the studied performance or param-

eters are only sensitive to sensor signals in certain fre-

quency ranges. It should be mentioned that using the

standard time and statistical domain features such as RMS,

mean, skewness, and kurtosis, etc., are also carried out for

the quality prediction. However, the prediction accuracy is

not as satisfactory as using the proposed feature extraction

method in this paper.

Overall, the approach proposed in this paper enables the

machined workpiece quality to be accurately predicted

with the acquired sensor signals, and time-consuming

manual measurement is no longer necessary. And the

extracted feature based machine learning approach is

advantageous in fast running speed and thus efficient

modelling and prediction. As such, real-time monitoring on

the product quality can be achieved. Considering that the

used vibration and force sensors are of high cost, in the

future, cost-effective sensors will be used so as to improve

practical benefit. To overcome the drawback of big amount

of training data needed for machine learning, as another

future work, new machine learning methodologies will be

studied to handle limited amount of available sensor data

for training models without much sacrifice of modeling

accuracy.
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