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Abstract In recent years, there has been a significant

increase in the utilization of Al/SiC particulate composite

materials in engineering fields, and the demand for accu-

rate machining of such composite materials has grown

accordingly. In this paper, a feed-forward multi-layered

artificial neural network (ANN) roughness prediction

model, using the Levenberg-Marquardt backpropagation

training algorithm, is proposed to investigate the mathe-

matical relationship between cutting parameters and aver-

age surface roughness during milling Al/SiC particulate

composite materials. Milling experiments were conducted

on a computer numerical control (CNC) milling machine

with polycrystalline diamond (PCD) tools to acquire data

for training the ANN roughness prediction model. Four

cutting parameters were considered in these experiments:

cutting speed, depth of cut, feed rate, and volume fraction

of SiC. These parameters were also used as inputs for the

ANN roughness prediction model. The output of the model

was the average surface roughness of the machined

workpiece. A successfully trained ANN roughness pre-

diction model could predict the corresponding average

surface roughness based on given cutting parameters, with

a 2.08% mean relative error. Moreover, a roughness control

model that could accurately determine the corresponding

cutting parameters for a specific desired roughness with a

2.91% mean relative error was developed based on the

ANN roughness prediction model. Finally, a more reliable

and readable analysis of the influence of each parameter on

roughness or the interaction between different parameters

was conducted with the help of the ANN prediction model.
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List of symbols

ANN Artificial neural network

CNC Computer numerical control

PCD Polycrystalline diamond

MMC Metal matrix composite

Vc Cutting speed

Fr Feed rate

Dc Depth of cut

uSiC Volume fraction of SiC

okm Output of the mth neuron in the layer under

consideration

ok�1
n

Output of the nth neuron in the preceding

layer

wmn Weight value of the connection between the

mth neuron in the layer under consideration

and the nth neuron in the preceding layer

bkm Bias value for the mth neuron in the layer

under consideration

factivation Activation function

Ra predicted Output roughness value by the prediction

model

Ra target Real roughness value of the milled surface

Ei Error between Ra predicted i and Ra target i for

the ith input vector
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Si Squared error between Ra predicted i and

Ra target i for the ith input vector

Wbnew New weights-bias matrix which consists of all

weights and biases updated over Wbold after

the ith input vector used for training

Wbold Old weights-bias matrix which consists of all

weights and biases

J Jacobian matrix

P Number of elements in weights-bias matrix

I Unit matrix

l Adaptive factor

Pmodel Roughness prediction model

Et Tolerable error

ANOVA Analysis of variance

BUE Built-up edge

1 Introduction

In recent decades, metal matrix composite (MMC) mate-

rials have been widely used in engineering fields due to

their superior mechanical and physical properties, such as

specific strength, high stiffness, and wear resistance. Alu-

minum reinforced with SiC particulates is a typical MMC

material and has replaced conventional materials in the

automotive, aerospace, and other diverse industries [1–4].

This material can provide higher strength, stiffness, and

fatigue resistance compared to the base alloy, with only a

small increase in density [5, 6]. These superior properties

contribute to the broader application of Al/SiC composite

materials. However, low plasticity, non-uniformity, and

uncontrollable distribution of SiC particulate increase the

difficulty of achieving a high surface quality when

machining Al/SiC composite materials. Despite the

sophisticated manufacturing techniques for producing sat-

isfactory Al/SiC MMC components, e.g., via near-net

shaping and casting processes, a high-quality machining

process is still essential to meet the requirements of high

surface quality and dimensional accuracy [7].

Over the past two decades, the issues of machining

MMC materials have been investigated by researchers

from both academia and industry. It is accepted that the

morphology, distribution, and volume fraction of the

reinforcement particulate in MMC materials are significant

factors in affecting the cutting process, compared with

conventional materials [8]. The effects of spindle speed,

feed rate, depth of cut, rake angle, coolant on the cutting

forces, tool wear, and surface quality were studied by

Hoecheng et al. [9]. Chan et al. [10] also investigated the

influence of cutting parameters on surface quality in ultra-

precision diamond machining of Al/SiC/15P. They con-

cluded that a high spindle speed and low feed rate could

improve the surface quality but the effect of cutting depth

on surface quality was small, dependent on the spindle

speed not being too low. Pramanik et al. [11] conducted

experiments on machining Al6061/SiC/15P materials and

found that surface quality was mainly affected by feed rate,

while the influence of spindle speed was negligible. Manna

and Bhattacharyya [12] researched the relationship

between parametric combination and surface finish during

turning of Al/SiC-MMC via analysis of variance

(ANOVA) and Taguchi experiment design and proposed

that cutting speed, feed rate, and depth of cut had

approximately equal influence on the average surface

roughness. Similarly, Palanikumar and Karthikeyan [13]

used ANOVA to analyze the influence of cutting factors

(cutting speed, feed rate, depth of cut, and volume fraction

of SiC) on surface roughness when machining Al/Si

composites and proved that the feed rate had the greatest

influence on surface roughness, followed by cutting speed

and volume fraction of SiC. Przestacki et al. [14] deter-

mined that selection of the effective depth of cut and the

tool’s angular distance from the laser beam affected the

machined surface quality during laser-assisted turning of

A359/20SiCP MMCs. Wojciechowski et al. [15] proposed

that surface roughness during the machining of direct laser

deposited tungsten was influenced by kinematic-geometric

factors and elastic-plastic phenomena that occurred when

the uncut chip thickness was shallow. Kilickap [16]

investigated the influences of cutting speed, feed rate, heat

treatment, and cutting environment on surface roughness

during drilling of Al/SiC MMC and found introducing the

MQL technique improved surface quality. Kilickap et al.

[17] also selected homogenized 5% SiC-p aluminum MMC

material experimental investigation of tool wear and sur-

face roughness. The authors found that tool wear was

mainly affected by cutting speed and increased with

increasing cutting speed during dry turning conditions.

The literature mentioned above predominantly studied

the influence of different parameters on surface quality

during machining Al/SiC composites; they provided a

qualitative rather than quantitative relationship between

parameters and surface roughness. Regarding the predic-

tion and control of machining quality via machine learning

methods, there has been some research on materials other

than Si/Al composites and investigation of characteristics

other than machining quality. Moreover, the performance

and comparison of different machine learning methods

used in machining fields was further investigated by vari-

ous researchers. Benardros and Vosniakos [18] used an

artificial neural network (ANN) method to predict surface

roughness based on depth of cut, feed rate, cutting speed,

engagement of tool, cutting tool type, and use of coolant

when machining alloy using the Taguchi design of exper-

iments method. The mean squared error of validating this
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ANN model was 1.86%. Mahesh et al. [19] used a genetic

algorithm to predict surface roughness in terms of cutting

speed, feed rate, axial depth of cut, radial depth of cut, and

radial rake angle for end milling 6063Al. However,

experimental data were limited, which might have influ-

enced the reliability of the prediction model. Kilickap et al.

[20] used genetic algorithms for optimizing machining

conditions to minimize surface roughness when drilling

AISI 1045. The minimum surface roughness (Ra = 1.89

lm) value was obtained at V = 7.62 m/min, f = 0.1 mm/r,

and MQL. An ANN model was suggested by Khorasani

et al. [21] to predict the tool life based on cutting speed,

depth of cut, and feed rate when face milling machining of

7075 Al with a 4.6% mean relative error. Pimenov et al.

[22] investigated the effects of the relative position of the

face mill with respect to the workpiece and milling kine-

matics on the cutting forces, vibration acceleration, and

surface roughness during face milling, with the help of an

artificial intelligence model. Bustillo and Correa [23]

applied Bayesian networks to predict surface roughness

when deep drilling steel components. Rodrı́guez et al. [24]

predicted the roughness for face milling 11SMnPb37 steel

in terms of tool wear and type, using the decision tree

method. A fuzzy logic model was employed by Çelik et al.

[25] to estimate the surface roughness and thrust force

based on different cutting parameters during end milling of

GFRPC materials; they found low feed rate, high cutting

speed, and a large number of flutes resulted in low surface

roughness. Lin et al. [26] studied the relationship between

feed force and tool wear when machining A359 Al/SiC

composites and found that using the ANN method to define

this relationship was more accurate compared with

regression analysis. Mia et al. [27] compared the perfor-

mance of the teaching-learning-based optimization method

and bacterial foraging optimization method by using these

two methods to obtain the optimum cutting speed, feed

rate, and depth of cut for the lowest surface roughness and

cutting temperature during hard-turning hardened high-

carbon steel; they determined that the first optimization

method was recommended. Ensemble learning, which

could avoid neural network fine-tuning, compared to a

single learning algorithm, was used to build the roughness

prediction model for ball-end milling by Bustillo et al. [28].

Kilickap et al. [29] used ANN and RSM models to predict

cutting force, surface roughness, and tool wear based on

cutting speed, feed rate, and depth of cut when milling Ti-

6242S; they found that the accuracy of the ANN model was

higher than that of the RSM model.

From the aforementioned Refs. [18–29], it could be seen

that artificial intelligence methods were valid and reliable

means of investigating the quantitative relationship

between surface quality and cutting parameters (or other

parameters). However, research regarding roughness

prediction and control for machining Al/SiC composites is

too limited; this is the primary motivation for our work.

The purpose of this study is to develop a roughness pre-

diction and control model for milling Al/SiC composite

materials. With the help of the control model, apart man-

ufactured from Al/SiC composite materials could be pro-

duced with any specific surface roughness. The utilization

of such potential materials would be promoted accordingly.

Moreover, this study analyzes the influence of cutting

parameters on roughness, based on the roughness predic-

tion model. Various exciting and novel findings were

obtained, which might be of value as a reference for future

researchers.

2 Experiment

2.1 Identification of cutting parameters and their

levels

With regard to the above Refs. [8–17], factors that have a

significant influence on surface roughness during milling

Al/SiC MMC include the following: (i) spindle speed, (ii)

feed rate, (iii) depth of cut, (iv) volume fraction of SiC,

(v) cutting forces, (vi) vibration of machine, (vii) temper-

ature, and (viii) tool character. Clearly, investigating the

influence of all of these factors on surface roughness would

significantly increase the intricacy of the experiment and

was determined to be unnecessary. Moreover, the uncon-

trollable factors (v)–(vii) depend on factors (i)–(iv) and

(viii), which are controllable. In our experiment, cutting

parameter (viii) was defined as a constant to reduce the

complexity and cost of the experiment. Therefore, cutting

parameters (i)–(iv) were selected for study of their effect

on surface roughness when machining Al/SiC MMC. To

ensure the feasibility and safety of the experiments, the

level values of these selected parameters were appropri-

ately identified, subsequent to detailed analysis. The ranges

of level values and reasons are explained in the following.

(i) Cutting speed. According to Ref. [30], excessively

low speed results in poor surface roughness but

excessively high speeds increases the temperature

of the tool, accelerating tool wear. The max speed

of the machine in our lab was 8 000 r/min and the

diameter of the tool insert was just 6 mm; thus, the

max cutting speed was approximately 150 m/min.

Taking the surface quality, tool wear, and machine

stability into consideration, the range of cutting

speed was set as 40–100 m/min.

(ii) Feed rate. According to Refs. [31, 32], a high feed

rate increases cutting force and accelerates tool

wear when milling MMC materials. However, an
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excessively low feed rate directly decreases

machining efficiency. To balance efficiency and

cost, the feed rate was set at 0.1–0.4 mm/r.

(iii) Depth of cut. High depth also increases cutting

force. A test experiment was conducted and found

there was abnormal noise occurring in the

machine when the depth value was 0.2 mm.

Conversely, excessive low depth dramatically

decreases machining efficiency in practical pro-

duction. The range of depth of cut was thus set at

0.05–0.15 mm.

(iv) Volume fraction of SiC. The existence of SiC

particulates increased the difficulty of machining

[31]. A large volume fraction of SiC would lead to

extremely poor surface roughness; conversely, the

influence of other parameters, such as cutting

speed, feed rate, and depth of cut, on surface

roughness would be weakened, which was unde-

sirable for this study. The range of volume

fraction of SiC was thus set at 0–30%.

2.2 Design of experiment matrix

The number of levels of each selected parameter was set as

three and the values are shown in Table 1, based on the

range of level values mentioned in the previous section. In

this experiment, all possible combinations of levels were

covered, i.e., there were 34 (3 was the number of levels and

4 was the number of parameters) trials in total. Other

authors [18, 33–36] applied Taguchi experiment design to

reduce the considerable number of trials. However, this

method would damage the experimental data’s integrity

and consequently influence the reliability of the neural

network model and accuracy of the data analysis. A large

number of trials could be completed in a shorter space of

time than anticipated when aided by the CNC machine

programming system.

2.3 Selection of tool and materials and conduction

of experiment

Al2009, Al2009/SiC/15P, and Al2009/SiC/25P MMCs,

three materials with different volume fraction of SiC, were

selected as workpiece materials in this experiment. The

workpiece material was fabricated via the powder metal-

lurgy method using Al2009 (Cu: 4.5% (mass fraction), Mg:

1.5% (mass fraction), Al: redundant) powder and SiC

powder. The average grain size of the Al2009 and SiC

powder was approximately 30 lm and 12 lm, respectively.

The first fabrication step was to mix these two powders

uniformly in a three-dimensional tubular mixer for 40 min.

The second step was to cold compact the mixed powders at

a pressure of 350 MPa. The sintering operation was then

conducted at 550 �C for 1 h. Finally, the sample materials

were extruded in a pre-heated mold at 500 �C. Al2009 is

selected as the matrix as it is a comparatively new type of

aluminum alloy with some unique characteristics; research

on Al/SiC composites with Al2009 has been limited up

until now. The workpiece of each material was a block

with dimensions 50 mm 9 50 mm 9 20 mm. El-Gallab

and Sklad [37] found that the PCD tool had a longer life

than other tools. Therefore, a 2-tooth PCD tool was

selected to machine the Al/SiC composites with high wear

resistance in this experimentation. An emulsion was used

as a coolant throughout this experiment. This experiment

was conducted on a specific milling machine. The milling

machine and PCD tool information can be seen in Fig. 1.

The face milling operations were performed as per the

condition given by the design matrix randomly. Table 2

shows the experiment design matrix and corresponding

measured average surface roughness. Average surface

roughness has received most attention from the industry

field and was thus taken as the object of this study. To

obtain average roughness measurement, the roughness

tester probe was moved 2.5 mm in the feed direction along

the milled surface, gathering values at five different loca-

tions; the average of these values was then used. The

deviation of the tester was 0.001 lm. All experimental data

used for building the ANN model was shown in Table 2.

According to Grzenda et al. [38], an incomplete or partly

Table 1 Settings of parameters’ level values

No. Parameter Notation Unit Level

1 2 3

1 Cutting speed Vc m=min 40 70 100

2 Feed rate Fr mm=r 0.10 0.25 0.40

3 Depth of cut Dc mm 0.05 0.10 0.15

4 Volume fraction of SiC uSiC % 0 15 25
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wrong dataset will lead to an unreliable roughness pre-

diction model. Therefore, the imputation of missing data

before the training process was a necessary and essential

procedure. We repeatedly checked the completeness and

correctness of our experimental data. We found that our

data were reliable (the mean relative error of the validation

of Model 1 in Table 3 was just 3.50%); therefore, the

imputation of missing data step was omitted from this

study.

3 Development of the roughness prediction
and control model

3.1 Development of the roughness prediction model

With the further development of artificial intelligence and

machine learning, their application has rapidly spread to

the field of engineering. ANN has the powerful ability to

learn complicated and non-linear relationships between

multiple variables with high accuracy. Therefore, ANN

was selected for studying the relationship between cutting

parameters and surface roughness. In this section, a feed-

forward multi-layered perceptron ANN roughness predic-

tion model with a Levenberg-Marquardt backpropagation

training algorithm was trained and validated using experi-

mental data.

3.1.1 Structure of a multi-layered ANN model

The human brain is a classic biological neural network.

The ANN has been developed to learn from pre-existing

pure data to obtain deeper knowledge or determine patterns

regarding this data, emulating the brain. Figure 2 shows the

general structure of a multi-layered perceptron neural

network, consisting of an input layer, one hidden layer, and

an output layer. Each neuron from one layer was connected

with all neurons from the neighboring layer so that the

entire structure resembled a network. Functionally, the

input layer input the data into the network without any

processing. The complex data processing was conducted by

the hidden layer and the output layer, as shown in Fig. 3.

The training process of the neural network model involved

iteratively adjusting the connection weight between neu-

rons and the biases of the neurons until specific require-

ments were satisfied.

3.1.2 Procedure of building the ANN model

The following statements give the detailed steps of training

the ANN model.

Step 1 Set parameters of the network model. The fol-

lowing statements describe these parameters and the setting

rules.

(i) Number of hidden layers. There was no strict

rule of selection regarding the number of

Fig. 1 Information of machine and tool
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hidden layers [39]. However, the original

number of hidden layers was generally set as

one and then increased until the accuracy of

the network model lay within an expected

range of values, with a practical iteration

count and cost of computing power.

(ii) Number of neurons in all layers. The number

of neurons in the input and output layer was

equal to the number of variables in the input

vector and output layer, respectively. The

number of neurons in the hidden layer was

generally set as 2n ? 1 (n is the number of

neurons in the input layer), based on the

Kolmogorov theorem.

(iii) Activation function. For the regressor prob-

lems, to which the problem in this paper

belonged, the sigmoid or SoftMax function

was the most popular activation function set

for hidden layers and the linear function was

set as the activation function for the output

layer.

(iv) Training algorithm. There are several popular

training algorithms. The gradient descent

backpropagation algorithm [40], which is the

most common and easiest to use but struggles

to converge when the training dataset is small;

Levenberg-Marquardt backpropagation [41],

which performs well for the majority of

problems; and Bayesian regulation backprop-

agation [42], which contains some modifica-

tions to Levenberg-Marquardt backpropaga-

tion and is suitable for datasets containing

noise but the convergence rate is lower. The

size of data used for training in this study was

Table 3 Configurations and performances of different models

Model parameter Model

1 2 3

Configurations

Training algorithms Levenberg-Marquardt

backpropagation

Gradient descent

backpropagation

Bayesian regulation

backpropagation

Number of hidden layers 1 1 1

Number of neurons in input layer 4 4 4

Number of neurons in hidden layers 9 9 9

Number of neurons in output layer 1 1 1

Activation function for hidden

layer(s)

SoftMax SoftMax SoftMax

Activation function for output layer Pure linear Pure linear Pure linear

Learning rate Adaptive 0.9 Adaptive

Tolerable error 0 0 0

Minimum MSE gradient 10-7 10-5 10-7

Maximum iterations 1 000 10 000 1 000

Performance

Iterations required for convergence 15 7137 126

Mean squared error of the

validation

8.59 9 10-5 1.40 9 10-3 7.54 9 10-5

Mean relative error of the

validation/%

3.50 13.93 3.67

Note: The weights and biases for Models 1, 2 and 3 can be seen in the following pages

Fig. 2 Structure of multi-layered perceptron ANN
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less than 81 groups and the data were

complete and correct. Hence, the Levenberg-

Marquardt backpropagation algorithm is the

most appropriate choice of training algorithm

in this study. Other training algorithms were

also tested for the purpose of comparison.

(v) Learning rate. For many training algorithms,

the learning rate is adaptive. The learning rate

was generally set in the range 0.1–0.9 for the

training algorithms that required an explicit

learning rate.

(vi) Tolerable error. The tolerable error, which

represents the goal mean square error (MSE)

between the outputs from the model output

layer and the corresponding target outputs,

was often set as 10-6 or 0.

(vii) Minimum MSE gradient. When the difference

between the current MSE for all input vectors

and the old MSE before a training epoch is

less than the minimum MSE gradient, the

training process ends.

(viii) Maximum iterations. The aim of maximum

iterations was to avoid the occurrence of an

infinite weight updating loop if the model

cannot converge. If the convergence rate of

the training algorithm is empirically high, the

maximum iteration is often set as a smaller

value and vice versa. Example smaller and

larger values are 1 000 and 10 000,

respectively.

Step 2 Assign the initial weight values for all connec-

tions and bias values for all neurons in hidden and output

layers randomly.

Step 3 Input an input vector to the neural network

model. The input vector in this paper was [uSiC, Vc;Fr;Dc].

Step 4 Based on the input vector in Step 3, the output

values for all neurons in the hidden layer and output layer

are calculated via Eq. (1). In particular, the output of any

neuron in the input layer is equal to the input to this neuron.

okm ¼ factivation
XN

n¼1

wnm ok�1
n

 !
þ bkm

 !
; ð1Þ

where okm is the output of the mth neuron in the layer under

consideration; ok�1
n is the output of the nth neuron in the

preceding layer and N is the number of neurons in the

preceding layer; wmn is the weight value of the connection

between the mth neuron in the layer under consideration

and the nth neuron in the preceding layer; bkm is the bias

value for the mth neuron in the layer under consideration;

factivation is the activation function. In this paper, the Soft-

Max function and pure linear function were set as the

activation functions for the hidden layer(s) and output

layer, respectively. The explanation of the SoftMax func-

tion and pure linear function is as follows. SoftMax func-

tion: f xð Þ ¼ exPM

m¼1
exm

(M and m are the number of neurons

and the mth neuron in the layer under consideration,

respectively); pure linear function: f xð Þ ¼ x.

Step 5 Obtain the output value of one neuron in the

output layer and calculate the error and square error

between this output value (Ra predicted) and the corre-

sponding target output value (Ra target) via Eqs. (2) and (3),

respectively.

Fig. 3 Data processing of the mth neuron in hidden or output layer
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Ei ¼ Ra predicted i � Ra target i; ð2Þ

Si ¼ ðRa predicted i � Ra target iÞ2; ð3Þ

where Ei and Si are the error and squared error between

Ra predicted i and Ra target i for the ith input vector,

respectively; Ra predicted i and Ra target i are the calculated

output value and target output value of one neuron in the

output layer for the ith input vector, respectively.

Step 6 Adjust weights and biases based on the various

errors in Step 5 and the training algorithm. Levenberg-

Marquardt backpropagation was selected as the training

algorithm, which provided the rule (as shown in Eqs. (4)–

(5)) below, for adjusting

Wbnew ¼ Wbold þ JT þ lI
� ��1

JTEi; ð4Þ

J ¼ oEi

oWb 1

; � � � ; oEi

oWb P

� �
; ð5Þ

where Wbnew is the new weights-bias matrix which consists

of all weights and biases updated over Wbold after the ith

input vector is used for training; J is the Jacobian matrix; P

is the number of elements in the Wb matrix; I is a unit

matrix; and l is an adaptive factor influenced by the Si.

Step 7 Execute Steps 3 to 6 for an intact epoch and

observe whether the current Ems (mean squared error) for

all input vectors, calculated using Eq.(6), is less than the

tolerable error or whether the difference between the cur-

rent Ems and the Ems before this training epoch is less than

the minimum MSE gradient; if so, proceed to Step 8 and if

not, repeat Steps 3 to 7 until the maximum iteration count

is reached.

Ems ¼
PNtrain

i¼1 Ra predicted i � Ra target i

� �

Ntrain

2

; ð6Þ

where Ntrain is the number of input vectors in training

dataset (or the size of the training dataset).

Step 8 Stop iteration and fix all model parameters,

including weights and bias values.

Step 9 Validate the model using the validation dataset

and calculate the Emsv via Eq. (7). If Emsv is not more than

the tolerable error, then the neural network has been suc-

cessfully built. Otherwise, the model is considered as

overfitting; the model parameters should be changed and

all the above steps repeated.

Emsv ¼
PNval

i¼1 Ra predicted i � Ra target i

� �

Nval

2

; ð7Þ

where Emsv is the mean squared error between the outputs

and target outputs for all input vectors in the validation

dataset; and Nval is the size of the validation dataset.

In this experiment, 8 out of 81 groups of data (see

Table 2) were randomly selected as the validation dataset

and the rest were used for training. After sufficient attempts

with different model parameters, an ANN surface rough-

ness prediction model, named Model 1 in Table 3, with

better performance was successfully built and selected.

Models 2 and 3 were representative of this model but with

inferior performance. Using the successfully developed

prediction model, the user could obtain surface roughness

during the process of milling rather than after the milling

process, based on the cutting parameters. Obtaining the

roughness at this earlier stage may have limited signifi-

cance in practical production. However, if the predicted

roughness provides the user with some information on how

to adjust cutting parameters to achieve a desired roughness,

the significance of the roughness prediction model would

greatly improve. Therefore, a roughness control model was

also developed, based on the roughness prediction model.

3.2 Development of the roughness control model

Based on the selected roughness prediction model descri-

bed in the above section, a roughness control model that

could determine cutting parameters corresponding to a

specific desired roughness value was developed. Using this

control model, the roughness of the milled surface could be

specified via control of the cutting parameters. The flow

diagrams in Fig. 4 describe the roughness control model

algorithms, which can achieve different functions with

different inputs. The objective of the algorithms in

Figs. 4a–c is to determine the cutting parameters for a

specific roughness, minimum roughness, and roughness

under a certain value, respectively, within a given cutting

parameters’ range. The control model can be applied to

improve the production efficiency when the requirements

for the milled surface are special. For example, when a

manufacturer requires a part with a specific friction factor,

i.e., a particular roughness value, the control model with

Algorithm (a) in Fig. 4 can assist in milling this manu-

facture part. The industry field typically requires a rough-

ness below a certain value or the smallest roughness value

possible. The control model with algorithms (b) and (c) in

Fig. 4 contributes to satisfying such requirements.

4 Results and discussions

4.1 Evaluation of roughness prediction model

results

To maintain the objectivity of the evaluation, further

experiments were conducted after two months to obtain test

data for evaluating the performance of the selected ANN

surface roughness prediction model (Model 1 in Table 3).

The test data and predicted surface roughness values can be
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seen in Table 4. Figure 5 shows the difference between

target and predicted values of surface roughness and

visually illustrates the insignificance of the difference.

Here, mean relative error (MRE) was selected as the metric

for measuring the difference. The expression and mathe-

matical implications of MRE are easy to understand and

MRE is often used by researchers to evaluate the roughness

prediction model [19]. By calculating the mean relative

error based on Eq. (8) (2.08%), it can be concluded that this

ANN surface roughness prediction model is reliable and

feasible.

Emr ¼
1

Ntest

XNtest

i¼1

Ra predicted i � Ra measured i

Ra measured i

����

����; ð8Þ

Fig. 4 Algorithms of surface roughness control model

Prediction and control of surface roughness for the milling 495

123



where Emr is the mean relative error; Ra predicted i and

Ra measured i are the predicted and measured Ra of the ith

test data, respectively; and Ntest is the size of the test data.

4.2 Evaluation results of roughness control model

Further experiments were conducted to evaluate the effi-

ciency and accuracy of this roughness control model. Ini-

tially, the ranges and adjustment rate of the cutting and

other system parameters were set based on Table 5. We

subsequently determined the cutting parameters corre-

sponding to a specific or minimum roughness via this

roughness control model and recorded the time cost.

Finally, these parameters were input into the CNC machine

and the average roughness of the machined workpiece was

measured. The test data are listed in Table 6. Figure 6

shows the comparison of desired and measured roughness.

Based on Table 6 and Fig. 6, the average time cost by the

control system can be obtained (36.33 s). The mean

squared error and mean relative error between desired

roughness and measured roughness is 1.02 9 10-4 and

2.91%, respectively; this proves that the roughness control

model has satisfactory efficiency and accuracy. It is of

further note that the value of Et in Table 5 should have

been set to 0.001 lm as the resolution of the roughness

tester is 0.001 lm. However, too many groups of the cor-

responding cutting parameters were output by the control

model when Et was equal to 0.001 lm, dramatically

Table 4 Test data and evaluation results for roughness prediction model

No. uSiC=% Vc= m �min�1
� �

Fr= mm � r�1ð Þ Dc=mm Measured Ra/lm Predicted Ra/lm Error/lm

1 0 55 0.15 0.07 0.174 0.177 0.003

2 0 70 0.25 0.10 0.230 0.237 0.007

3 0 85 0.35 0.13 0.342 0.340 0.002

4 15 55 0.25 0.13 0.349 0.359 0.010

5 15 70 0.35 0.07 0.452 0.449 0.003

6 15 85 0.15 0.10 0.181 0.188 0.007

7 25 55 0.35 0.10 0.629 0.613 0.016

8 25 70 0.15 0.13 0.234 0.234 0.000

9 25 85 0.25 0.07 0.265 0.274 0.009

Fig. 5 Evaluation results of surface prediction model

Table 5 Parameter settings for the roughness control model

Parameter Value

Lower bound Upper bound Adjustment rate

Cutting parameter

uSiC=% 0 25 5

Vc= m �min�1
� �

40 100 5

Fr= mm � r�1ð Þ 0.10 0.40 0.05

Dc=mm 0.05 0.15 0.01

System parameter

Pmodel The successfully built roughness prediction Model 1 in Table 3

Et 0.000 1 lm
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increasing the workload of the milling process. Therefore,

Et was set to 0.000 1 lm in this experiment. Moreover,

other parameters’ values, apart from Pmodel, can be set to

different values dependent on the users’ requirements. For

example, decreasing the range or enlarging the adjustment

rate of cutting parameters can improve the efficiency of the

control model.

4.3 Results of assessing cutting parameters’ effects

on surface roughness

4.3.1 Assessing results based on the ANN model

Various researchers [11–13, 43] have used experimental

data to directly investigate the influence of cutting

parameters on surface roughness via the ANOVA or

regression tree method. Even though the ANOVA and

regression tree method, based on mathematical analysis,

could provide more detailed information compared to the

2D- or 3D-charts, the size of the data from the experiment

was limited in general. The accuracy of the analysis result

would be influenced based on such limited data. A reliable

ANN surface roughness prediction model could describe

the accurate mathematical relationship between the cutting

parameters and surface roughness. However, the ANN

model was a ‘‘black box’’ that was difficult to provide with

Table 6 Test data and evaluation results for roughness control model

No. Desired Ra=lm Obtained cutting parameters Time of cost/s Measured Ra/lm Error/lm

uSiC=% Vc= m �min�1
� �

Fr= mm � r�1ð Þ Dc=mm

1 0.2 0 85 0.25 0.06 32.97 0.215 0.015 0

15 50 0.15 0.06 0.201 0.001 0

15 60 0.15 0.08 0.192 0.008 0

2 0.3 0 100 0.35 0.11 39.69 0.304 0.004 0

25 75 0.25 0.07 0.310 0.010 0

25 90 0.25 0.13 0.306 0.006 0

3 0.4 25 70 0.30 0.07 37.83 0.406 0.006 0

25 100 0.40 0.06 0.393 0.007 0

4 0.5 15 85 0.40 0.10 33.65 0.478 0.022 0

0.7 - - - - 32.94 - -

5 Minimum roughness (0.127 5) 0 100 0.10 0.05 40.89 0.131 0.003 5

Fig. 6 Evaluation results of roughness control system

Table 7 Example data for analyzing a single parameter’s influence on roughness

No. uSiC=% Vc= m �min�1
� �

Fr= mm � r�1ð Þ Dc=mm Predicted Ra/lm

1 15 40 0.25 0.1 0.348 0

2 15 41 0.25 0.1 0.347 7

3 15 42 0.25 0.1 0.347 3

..

. ..
. ..

. ..
. ..

. ..
.

59 15 99 0.25 0.1 0.242 2

61 15 100 0.25 0.1 0.240 5
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the visualized influences of cutting parameters on rough-

ness. In this paper, the ANN model was used to generate

sufficient data for analyzing the cutting parameters’ influ-

ence on average roughness via 2D- and 3D-charts. For

example, if the influence of cutting speed on surface

roughness was expected to be studied, data could be gen-

erated, as in Table 7. An analysis curve, such as in Fig. 7a,

could then be obtained. If the influence of the interaction of

cutting speed and feed rate on roughness was intended for

investigation, the data could be generated, as in Table 8.

An analysis curve, such as in Fig. 8a, could then be

obtained accordingly.

Similarly, the curves showing the influence of feed rate,

depth of cut, volume fraction of SiC, or the interaction of

Fig. 7 Influences of a cutting speed, b feed rate, c depth of cut, and d volume fraction of SiC on average roughness

Table 8 Example data for analyzing multiple parameters’ influence on roughness

No. uSiC=% Vc= m �min�1
� �

Fr= mm � r�1ð Þ Dc=mm Predicted Ra/lm

1 15 40 0.10 0.1 0.187 5

2 15 40 0.11 0.1 0.193 0

3 15 40 0.12 0.1 0.199 1

..

. ..
. ..

. ..
. ..

. ..
.

31 15 40 0.40 0.1 0.707 1

32 15 41 0.10 0.1 0.187 1

33 15 41 0.11 0.1 0.192 7

..

. ..
. ..

. ..
. ..

. ..
.

1891 15 100 0.40 0.1 0.411 9
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two different cutting parameters, on surface roughness

were also generated, shown in Figs. 7 and 8.

From Fig. 7a, it can be seen that the average surface

roughness value decreases with increasing cutting speed

when the feed rate and depth of cut are 0.25 mm/r and 0.1

mm, respectively, regardless of the volume fraction of SiC.

The decreasing speed of roughness value with increasing

cutting speed increases with the increase of volume frac-

tion of SiC when the cutting speed exceeds a certain value.

Figure 7b shows that the roughness value increases with

increasing feed rate when the cutting speed and depth of

cut are 70 mm/min and 0.1 mm, respectively. The

roughness value has an approximately exponential rela-

tionship to the feed rate when the feed rate is within the

proper range. According to Fig. 7c, the roughness value

increases with the depth of cut when the cutting speed and

feed rate are 70 mm/min and 0.25 mm/r, respectively.

There is a linear relationship between the roughness value

and depth of cut and the slope of the line is approximately

0.515 lm/mm, 0.754 lm/mm, and 0.797 lm/mm when the

volume fraction of SiC is 0, 15%, and 25%, respectively.

Similarly, it can be seen from Fig. 7d that the roughness

value also increases linearly with the increase of volume of

fraction of SiC, and the line slope is approximately

Fig. 8 Influences of interaction of two cutting parameters on average roughness
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0.004 lm/% when the cutting speed, feed rate, and depth of

cut are 70 mm/min, 0.25 mm/r, and 0.1 mm, respectively.

Figure 8 describes the effect of the interaction between

two different cutting parameters on the average surface

roughness value. The relation between roughness value and

the interaction of cutting speed and feed rate is shown in

Fig. 8a. From this figure, it can be seen that the influence of

feed rate on roughness value is more significant than that of

cutting speed and the influence of cutting speed becomes

more significant as the feed rate increases. Figure 8c shows

that the significance of the influence of cutting speed on

roughness value is greater than that of the volume of SiC.

Figure 8f suggests that the importance of the influence of

volume of SiC on roughness value is slightly higher than

that of the depth of cut. Table 9 presents the measure of

judging which parameter’s influence on roughness value is

the most significant. To summarize, the feed rate has the

most significant influence on roughness value, followed by

cutting speed and volume of SiC. The depth of cut has the

smallest influence on roughness value. Moreover, it can be

seen from Fig. 8b that the influence of the depth of cut on

the roughness value is always stable and small, regardless

of the value of cutting speed. From Fig. 8d, we can see that

the increasing speed of roughness value with the increasing

depth of cut increases slightly with the increase in feed

rate. Figure 8e illustrates that the increasing speed of

roughness value with the increase in volume fraction of

SiC increases with the increase in feed rate.

4.3.2 Assessing results based on ANOVA

ANOVA has often been used to determine which of the

cutting parameters’ influence on roughness is the most

significant [12, 13, 44]. ANOVA is a method of portioning

variability in an experiment into identifiable sources of

variation and the associated degrees of freedom. In statis-

tics, an F test is used for analyzing the significant effect of

the parameters on the quality characteristic. Table 10 gives

Table 9 Measure of the significance of the parameter’s influence on roughness

Two parameters The measure to decide which one is the more significant influence on roughness

Vc and Fr Variation of roughness for 0.15 mm/r feed rate variation = significance of feed rate

Variation of roughness for 30 m/min cutting speed variation = significance of cutting speed

Vc and uSiC Variation of roughness for 30 m/min cutting speed variation = significance of cutting speed

Variation of roughness for 10% (volume fraction) of SiC variation = significance of depth of cut

uSiC and Dc Variation of roughness for 10% (volume fraction) of SiC variation = significance of depth of cut

Variation of roughness for 0.05 mm depth of cut variation = significance of depth of cut

Table 10 ANOVA table

Source of validation Degrees of freedom Sum of squares Mean square F-value Contribution/% P-value

uSiC 2 0.085 15 0.042 58 201.40 3.11 0.000

Vc 2 0.266 34 0.133 17 629.91 9.74 0.000

Fr 2 2.046 06 1.023 03 4 839.16 74.80 0.000

Dc 2 0.072 44 0.036 22 171.32 2.65 0.000

uSiCVc 4 0.010 23 0.002 56 12.10 0.37 0.000

uSiCFr 4 0.041 39 0.010 35 48.94 1.51 0.000

uSiCDc 4 0.001 28 0.000 32 1.52 0.05 0.244

VcFr 4 0.163 73 0.040 93 193.62 5.99 0.000

VcDc 4 0.001 46 0.000 36 1.72 0.05 0.194

FrDc 4 0.021 63 0.005 41 25.57 0.79 0.000

uSiCVcFr 8 0.012 23 0.001 53 7.23 0.45 0.000

uSiCVcDc 8 0.001 23 0.000 15 0.73 0.04 0.667

uSiCFrDc 8 0.004 51 0.000 56 2.67 0.16 0.045

VcFrDc 8 0.004 22 0.000 53 2.49 0.15 0.057

Error 16 0.003 38 0.000 21 0.12

Total 80 2.735 27 100.00
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the ANOVA results for average surface roughness based on

the data in Table 11.

From Table 10, it can be concluded that feed rate is the

dominant parameter influencing the average surface

roughness, with a percentage contribution of 74.80%, fol-

lowed by cutting speed, volume fraction of SiC, and depth

of cut with percentage contributions of 9.74%, 3.11%, and

2.65% respectively. This result by the ANOVA is consis-

tent with the visual analysis results based on the ANN

roughness prediction model. Regarding the interaction of

parameters, the interaction of cutting speed and feed rate

has the most significant effects on roughness, with a per-

centage contribution of 5.99%, followed by the interaction

of volume fraction of SiC and feed rate, with a 1.51%

contribution.

4.4 Discussion

This section explains why a higher cutting speed, lower

feed rate, smaller volume fraction of SiC, and lower depth

of cut can lead to a lower roughness value during milling

Al/SiC composites. According to Section 2.3, the main

component of the Al/SiC composite materials used in this

experiment is aluminum, implying that these materials are

more similar to plastic materials. When milling plastic

materials, the formation of built-up edge (BUE) is an

important phenomenon that influences the roughness of the

milled surface. At low cutting speeds, BUE and chip

fracture form readily, resulting in a rough surface. With an

increase in cutting speed, the BUE begins to vanish, chip

fracture decreases, and hence the roughness decreases.

Furthermore, the increasing depth of cut leads to a higher

normal pressure and seizure on the rake face, which pro-

motes formation of the BUE. When the feed rate increases,

the BUE forms so quickly that the removal speed of chip

fracture is much lower than its formation speed. Therefore,

the roughness increases with increasing depth of cut or feed

rate. During the process of milling Al/SiC composites, soft

Al matrix and hard SiC particles are cut alternately, caus-

ing tool vibration. Hence, the formation of the milled

surface is not only influenced by the common cutting

parameters, such as cutting speed, feed rate, and depth of

cut but is also greatly influenced by the hard SiC particles.

The rotation, pressed-in, pulled out, and fracture of SiC

particles after milling contributes to the formation of

micro-cracks, pits, swellings, and cavities [7]. The increase

of the volume fraction of SiC increases the formation

probability of these defects and hence the roughness

increases.

5 Conclusions

In conclusion, an accurate roughness prediction and control

model was well developed based on the ANN method for

milling Al/SiC composites. This suggests that machine

learning methods are reliable and effective for solving

problems in the field of machining. Introducing more

machine learning methods to the industry field should be

encouraged. High-precision milling of the Al/SiC com-

posite is a difficult task. However, we can control the

roughness to a specific value or range using the roughness

control model, which contributes to widening the potential

application of such materials. Furthermore, an in-depth

analysis of the cutting parameters’ influences on roughness

was conducted in this study. The following presents the

various exciting and novel findings of this study.

(i) The Levenberg-Marquardt backpropagation train-

ing algorithm is reliable and efficient for devel-

oping the roughness prediction model for

machining.

(ii) Among the factors investigated in this paper, the

feed rate has the most significant influence on

surface roughness, followed by cutting speed and

volume fraction of SiC.

(iii) The speed of roughness decreases with cutting

speed and increases with an increase in volume

fraction of SiC and feed rate.

(iv) Surface roughness has an approximately exponen-

tial relation to the feed rate when the feed rate is

within a certain range.

(v) The relation between surface roughness and depth

of cut is approximately linear, as is the relation

between roughness and volume fraction of SiC.
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Table 12 Trained weights of connections between neurons in the input and hidden layer of Model 1

mth neuron in the

hidden layer

wmn

nth neuron in the input layer

1 2 3 4

1 1.017 589 213 060 440 0 0.863 445 286 458 416 - 0.330 939 553 640 245 - 0.059 180 991 210 196 0

2 0.087 754 617 396 610 7 - 0.544 277 024 420 964 - 0.265 088 274 193 894 - 0.296 575 362 795 697 0

3 - 0.027 544 590 829 428 8 0.943 183 213 345 640 0.386 853 517 682 408 0.069 105 989 222 525 3

4 - 0.563 462 234 809 686 0 0.501 484 695 543 195 - 0.534 129 349 227 771 - 0.169 088 343 746 247 0

5 0.750 727 921 402 287 0 - 0.523 671 687 926 136 1.004 873 469 718 330 - 0.097 307 665 808 396 4

6 0.742 115 967 957 793 0 - 1.518 660 500 798 010 - 0.912 847 028 631 556 - 0.466 465 775 340 742 0

7 0.470 689 352 311 570 0 1.532 687 479 703 330 - 0.459 260 066 479 935 - 0.441 407 562 353 176 0

8 0.249 714 338 890 135 0 0.044 143 877 764 294 - 1.228 634 016 998 820 - 0.453 162 627 256 598 0

9 - 0.945 979 972 345 994 0 - 0.254 776 933 181 228 0.468 244 460 182 997 - 0.593 225 046 641 105 0

Table 13 Weights of connections between neurons in the hidden and output layer of Model 1

nth neuron in the hidden layer wmn (mth neuron in the output layer, m = 1)

1 - 0.203 481 663 022 754

2 0.893 604 432 333 132

3 0.909 538 682 572 744

4 - 0.948 614 299 262 459

5 2.311 361 137 406 700

6 - 0.533 626 377 004 459

7 - 0.707 609 156 773 631

8 - 0.650 662 401 597 233

9 - 0.462 132 046 445 955

Table 14 Biases of neurons in the hidden layer of Model 1

mth neuron in the hidden layer bm

1 0.567 921 472 505 165

2 - 0.070 663 769 287 509

3 - 0.200 999 139 853 644

4 0.337 329 717 218 552

5 0.281 363 388 420 558

6 - 0.027 017 995 211 923

7 0.102 025 920 162 819

8 1.683 367 752 712 950

9 - 0.453 464 876 665 677

Table 15 Biases of neurons in the output layer of Model 1

mth neuron in the output layer (m = 1)

bm 0.567 921 472 505 165
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Table 16 Trained weights and biases of connections between neurons in the input and hidden layer of Model 2

mth neuron in the

hidden layer

wmn

nth neuron in the input layer

1 2 3 4

1 0.333 062 533 482 354 00 - 0.669 929 278 358 898 - 0.082 981 876 711 817 2 0.186 638 062 025 992

2 0.406 927 229 515 461 00 - 0.407 159 204 165 448 1.178 805 199 628 140 0 0.319 046 218 050 420

3 0.131 433 605 769 185 00 0.425 163 770 931 838 0.546 936 973 434 565 0 0.747 451 106 781 039

4 - 0.712 312 846 373 877 00 - 0.362 670 660 588 039 0.611 434 399 420 019 0 0.441 350 512 610 603

5 0.042 118 540 173 047 20 0.905 484 006 607 461 - 0.749 583 820 409 598 0 - 0.381 709 490 224 342

6 0.222 720 165 880 150 00 0.405 493 198 562 445 - 0.696 422 527 572 816 0 0.017 369 337 958 777

7 - 1.044 946 520 360 790 00 - 0.605 247 580 547 393 - 0.751 776 084 836 262 0 - 0.477 307 125 596 477

8 0.003 535 162 671 403 27 0.102 405 437 268 855 - 0.770 228 065 696 404 0 0.384 781 851 585 763

9 0.684 357 463 538 259 00 0.799 245 174 944 205 - 1.169 035 941 829 800 0 - 0.712 623 450 617 290

Table 17 Weights of connections between neurons in the hidden and output layer of Model 2

nth neuron in the hidden layer wmn (mth neuron in the output layer, m = 1)

1 - 0.367 917 589 384 117 00

2 1.378 204 354 180 820 00

3 - 0.436 266 961 244 193 00

4 - 0.391 868 678 305 883 00

5 - 0.399 323 095 161 256 00

6 - 0.656 778 272 594 529 00

7 - 0.774 456 822 418 629 00

8 0.004 746 512 709 425 99

9 - 0.881 874 781 298 528 00

Table 18 Biases of neurons in the hidden layer of Model 2

mth neuron in the output layer bm

1 0.371 130 002 742 130

2 0.932 020 345 350 965

3 0.332 015 072 928 862

4 - 0.362 807 748 256 077

5 0.164 239 345 525 504

6 - 0.030 060 084 132 496

7 - 0.753 800 000 855 562

8 0.467 431 236 169 857

9 0.466 655 670 783 005

Table 19 Biases of neurons in the output layer of Model 2

mth neuron in the output layer (m = 1)

bm - 0.379 230 855 865 313
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