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Abstract Composite materials are widely employed in

various industries, such as aerospace, automobile, and

sports equipment, owing to their lightweight and strong

structure in comparison with conventional materials. Laser

material processing is a rapid technique for performing the

various processes on composite materials. In particular,

laser forming is a flexible and reliable approach for shaping

fiber-metal laminates (FMLs), which are widely used in the

aerospace industry due to several advantages, such as high

strength and light weight. In this study, a prediction model

was developed for determining the optimal laser parame-

ters (power and speed) when forming FML composites.

Artificial neural networks (ANNs) were applied to estimate

the process outputs (temperature and bending angle) as a

result of the modeling process. For this purpose, several

ANN models were developed using various strategies.

Finally, the achieved results demonstrated the advantage of

the models for predicting the optimal operational

parameters.

Keywords Laser forming (LF) � Fiber-reinforced
composite � Fiber-metal laminates (FMLs) � Glass laminate

aluminum reinforced epoxy (GLARE) � Artificial neural
networks (ANNs)

1 Introduction

A laser forming (LF) process is a non-conventional method

used for material shaping, which can be employed in vari-

ous industries, such as aerospace and automotive [1, 2].

This technology works based on the generated stresses due

to the thermal effect of the laser irritation. The laser heat

penetrates through the material surface, and then the cool-

ing process occurs rapidly. This procedure results in a local

expansion in the irradiated location and generates thermal

stresses and resultant plastic deformation in this area. Laser

bending is a class of LF process that can be applied in

several manufacturing industries. It can be employed as a

rapid prototyping method for deforming metal sheets using

a concentrated laser beam [3]. The advantage of this process

is the quick, non-contact procedure employed without

applying any external force [4]. Nevertheless, it is chal-

lenging to apply this process owing to the effects of laser

operational parameters on factors including absorption rate,

strain hardening and microstructural defects.

Fiber-metal laminates (FMLs) are common and high-

performance composite materials with numerous applica-

tions in the aerospace and aeronautics industries. They are

made of thin layers of metal sheets and a fiber-reinforced

polymer, and this combination can provide high toughness

and fatigue strength with lightweight properties [5]. Owing

to these advantages, FMLs can be used as substitutes for

aluminum and magnesium alloys in several metallic

products [6]. Airbus A380 is a good example related to the

wide application of composite materials. FML composite

with glass fibers (glass laminate aluminum reinforced
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epoxy (GLARE), and Kevlar aramid-reinforced aluminum

laminate (ARALL) have been used in the production of this

aircraft [7]. Compared with conventional aluminum alloys,

GLARE provides up to 30% weight reduction, outstanding

fatigue endurance, and excellent impact resistance because

of crack bridging and glass fibers. The combination of

titanium and graphite polymer (TiGr) is another type of

FML with a particular performance, as well as both metal

and fibers composite materials [8]. The novel form of

hybrid laminates can prevent and arrest crack growth

caused by cyclic loading, with high impact and damage

tolerance features and low density. Accordingly, this type

of composite plays an important role in the aerospace and

spacecraft industries [9].

An artificial neural network (ANN) is a data-processing

algorithm inspired by natural nervous operations, such as

the human brain, with a structure of a countless number of

extremely connected processing components (neurons)

operating simultaneously. Recently, ANN has been applied

as an accurate prediction model for achieving the optimal

operational parameters in various fields, such as manu-

facturing and material processes. For example, Hassani

et al. [10] successfully developed an ANN model for pre-

dicting the bending angle during LF of steel material.

Selvakumar et al. [11] applied ANN modeling for the

forming process of Al-Fe composite based on experimental

data, and the model could predict the forming parameters,

e.g., hydrostatic and axial stresses and the Poisson ratio.

Mishra et al. [12] employed a prediction model for esti-

mating the mechanical properties of machined glass-fiber-

reinforced plastic laminates, e.g., residual tensile stress

using the ANN approach and reported that the model

results were in good agreement with the experimental data.

Simulation or modeling techniques can be applied as

prediction tools to improve the quality of laser processes by

determining the optimum operational parameters [13–17].

This study deals with the LF of FMLs using a high-power

diode laser (HPDL). The purpose of this study is to

determine the optimum parameters in the LF process using

an ANN model. This model uses experimental data,

including the laser parameters, as the input, and tempera-

ture and bending angle as the output, for training the

model. From the results, the model predictions are in good

agreement with the experimental data sets, which is pro-

vided for the validation of the ANN model.

2 Experimental setup

2.1 Material and equipment

Two types of FMLs composite were used in this study. The

first type was called GLARE 1 and consisted of three

layers. The first and last layers were made of aluminum

alloy (AA7475-T671), and the middle layer was a com-

posite material. Three sheets of GLARE 1 were cut to a

size of 1 000 mm 9 1 500 mm 9 1 mm using a diamond

blade under controlled temperature.

The second composite was called GLARE 2, and com-

prised of a total of five layers. Three layers were made of

aluminum alloys (AA2024-T3), and the composite material

was laid in between the aluminum-alloy layers. Addition-

ally, three sheets of GLARE 2 were cut to dimensions of

1 000 mm 9 1 500 mm 9 2 mm. Both composites were

made of a thermoset matrix reinforced with glass fiber, and

they were supplied by GTM Advanced Structures Com-

pany, Hague, Netherlands.

An HPDL system (Rofin Sinar, DL015 model) with a

maximum power of 1 500 W and wavelength of 940 nm

was applied for the LF process. The system was applied

because of its excellent interaction with aluminum and its

low cost. The laser spot was ellipse-shaped with diameters

of 1.2 mm and 3.8 mm. Moreover, the laser pass was ori-

ented in the direction of the smaller side during the process.

The bending angles were measured using a Mitutoyo

optical projector, while the combination of a thermocouple

and thermographic camera was used to measure the tem-

perature outputs. The generated temperature achieved

during the laser process was measured using a type K

thermocouple (nickel-chromium).

2.2 Experimental procedure

Two steps were followed during this experiment. In the

first step, a single laser pass was used for GLARE 1 and

GLARE 2 materials to identify the acceptable operational

parameters for the bending process. Then, the sequence of

laser passes on the surface of the materials was investigated

in the second step to obtain the curve profile. Subsequently,

the laser paths were designed to perform along an equal

distance on the flat laminate surface to determine the

desired bending angle. Figure 1 shows a schematic of the

experimental process for both GLARE 1 and GLARE 2

composite materials.

As shown in Fig. 1a, the laser beam was irradiated along

a straight path at the center of the sheet. Table 1 illustrates

the experimental setup for two various composite materi-

als, including 36 and 24 tests for GLARE 1 and GLARE 2,

respectively. The results of the primary experimental

operation were temperature and bending angle.

The second experimental process was performed based

on the initial settings developed from the results of the first

experimental analysis. The goal of the second process was

to reach the curve profile of FMLs using the parallel lines

on the surface of the composite sheet, as shown in Fig. 1b.

Table 2 shows the various parameters included in the
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second part of the experiment. The capability of the pro-

cess and mainly laser bending of FMLs are significantly

dependent on the operational parameters and fundamental

experiment design. Accordingly, a higher number of

bending lines were applied to bend GLARE 1 (up to 9

lines) during the second experiment because of its higher

flexibility (a three-layer material). Conversely, a smaller

number of bending lines were applied for bending GLARE

2 (up to 5 lines) due to its less flexible structure (five layers

and more material). A high-resolution scanner was used to

measure the curvature radii (Artec 3D, Artec Space Spider,

Luxembourg).

3 ANN setup and progress

The neural network model consisted of two phases

including learning and recall. The recall phase function is

based on the obtained weight from the learning phase of the

data set achieved from the input and output, which is

recorded from the real experimental dataset [18]. Several

ANN models were investigated using MATLAB 2017 to

Fig. 1 Experimental set-up a for GLARE 1 in the first step and b for GLARE 2 in the second step

Table 1 Experimental set-up

Power/W Scan speed/(mm�s-1) N pass

GLARE 1 145 10 3

185 15 6

225 20 –

GLARE 2 125 10 3

150 20 6

175 – –

Table 2 The second experimental set-up

Power/

W

Scan speed/

(mm�s-1)

Pitch/

mm

N

passes

N bending

lines

GLARE

1

225 20 3 5 9

7 7

8 6

10 5

GLARE

2

165 20 3 10 5

13 4
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determine the optimal network. Table 3 presents a sum-

mary of the characteristics of the optimal network.

Figure 2 represents the applied neural network model

with the application of two hidden layers. As can be seen

from Fig. 2, the laser power, scan speed, and numbers of

passes were considered as the inputs, whereas the tem-

perature and bending angle were considered as the outputs.

To increase the dimension of the input features, the tem-

perature and bending angle attend to the input subset

because the temperature and bending angle parameters are

interrelated, and it improves the accuracy of the network.

In this study, a logsig transfer function was used in a

multilayer perceptron (MLP) network as a function

approximation in the model structure [19]. In addition, the

MLP network was designed and trained with the Leven-

berg-Marquardt (LM) and adaptive learning rate Back-

Propagation (BP) algorithm. Different indexes were used in

assessing the ability of each model to evaluate the capa-

bility of networks as predictable tools. These indexes are as

follows: coefficient of determination (R2), root mean

square error (RRMSE), coefficient of correlation (R).

The best fit between the desired and predicted values

would be RRMSE = 0 and R = 1.

As mentioned previously, the MLP network was per-

formed using MATLAB. Through the training process, the

biases and weights of the ANN model were iteratively

adjusted to minimize the errors between the network results

and the real outputs. According to the trial study, the pri-

mary learning rate was achieved at each epoch with the

optimum performance goal [20].

The LM algorithm has been applied as a learning rule in

MLP network models to achieve a faster training process,

compared to the momentum learning. The LM algorithm is

broadly used as a second-order learning algorithm for

optimizing problems, and it is usually for small networks

due to numerous computations and large memory

requirements. The main advantage of the LM algorithm is

the minimization of training error, which consequently

increases the model accuracy [21]. This algorithm, which

was developed by Levenberg [22] and Marquardt [23], is

based on a least-square estimation of the nonlinear

parameters expressed as [24]

min

x
FðxÞk k 2

2
¼ min

x

X

i

F2
i xð Þ: ð1Þ

where vector x is the local minimizer, and the F(x) function

is the sum of squares.

The BP algorithm is a supervised learning algorithm that

contains forwarding computing and backward learning. It

was employed in this study to compute the efficiency

function derivatives according to the weight and inclination

factors of the network and to minimize mapping errors in

cooperation with neurons. Further information is provided

in Refs. [18, 19, 25] on the BP algorithm.

4 Results and discussion

The experimental results were collected from a previously

published study [5], which investigated the effect of laser

parameters (including laser power and velocity, and num-

ber of passes) on the formability of FMLs. In this study, a

multiple scanning method was introduced to achieve the

final structure. Therefore, this section directly discusses the

results of the modeling process. This ANN model was used

to present a predictable tool for estimating two relevant

targets: temperature and bending angle. The MLP neural

network was employed with the application of LM and BP

algorithms for modeling the experimental data, including

both the inputs and outputs, and all the results were

obtained based on the coefficient of determination (R2)

value. The coefficient of determination is a generally

applied statistical approach used for presenting data on the

strength of the linear correlation connecting the observed

and the calculated values. Figure 3 depicts the comparison

between the measured and the predicted temperatures for

GLARE 1 in the training and testing phases. These graphs

show the best fitting line between the calculated and

desired output data set with respect to the temperature data

for various learning rates and the number of hidden layers.

Table 4 shows the statistical reports of linear regression

for the temperature parameter related to GLARE 1. The

minimum values for the total observed data were achieved,

and the lowest R2 value for the training and testing phases

were 0.999 86 and 0.978 45, respectively. Moreover, the

coefficient of determination of these models for the testing

temperature set was close to 1. Therefore, the correlation of

determination for the testing set demonstrates the output

accuracy, which is due to the capability of the LM algo-

rithm for predicting laboratory outputs.

Table 3 Characteristics of selected network

Parameter Characteristic

Activation function Logsig-Logsig

Number of layers 2

Number of neurons 20–20

Data davison percentage 70–15–15

Number of epochs 1 000

Type of learning rule Levenberg-Marquardt, Back-Propagation

Type of code MATLAB code

Software requirement MATLAB
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The same model was employed for predicting the

bending angle for GLARE 1. Linear regression analyses

were also applied to estimate the correlation of determi-

nation for the ANN model. Figure 4 shows the relationship

between the real and the predicted output data and, it can

be observed that the value of R2 is close to unity, which

proves the capability of the modified model. According to

Table 5, the R2 value is 0.980 6 for the training and 0.963 2

for the testing of the bending angle. The MLP model

provides an excellent fitting for each of the two bending

phases with the experimental results.

Fig. 2 Schematic of the neural network model

Fig. 3 Comparison between the measured and the predicted temperatures in the training/testing phase (GLARE 1)

Table 4 Statistical report of linear regression in the training and

testing phase (temperature)

Statistical parameters Training Testing

Residual sum of squares 2.985 57 49.397 10

Pearson’s ratio 0.999 93 0.989 17

Coefficient of determination (R2) 0.999 86 0.978 45

Adj. R-square 0.999 85 0.956 91
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As mentioned previously, the prediction model that was

applied for the GLARE 1 yielded excellent results, and the

network could be used to predict any experimental results

related to the temperature and bending angle accomplished

through the LF process. Accordingly, the same model was

applied to investigate GLARE 2 using similar connection

weights and bias. Figure 5 displays the trend of the

experimental data and a regression model of the correlation

between the real and the predicted temperature output

values for GLARE 2. Table 6 shows that the achieved

results have an excellent performance and can be used to

accurately predict the temperature of the LF process with

an average predicting error of less than 5%.

Figure 6 shows the comparison of the measured and

predicted bending angles for GLARE 2. From the obtained

results, which are listed in Table 7, the predicted data show

good agreement with the measured bending results. Fur-

thermore, these results demonstrate that the proposed

approach is an accurate and reliable model for precisely

predicting the forming under variable parameters and

conditions.

The ANN data processing can be improved by increas-

ing the size of the databases of effective parameters,

expanding the number of recorded datasets in the labora-

tory, or both [26]. The strategy of increasing the number of

data was applied in this study through data mining, which

was a combination of the GLARE 1 and GLARE 2 data

sets. Figure 7 shows the network performance results of the

training and testing phases of the temperature process of

the GLARE 1 and GLARE 2 materials. As can be seen

from Fig. 7, the coefficient of determination (R2) for the

temperature increased from 0.978 4 for GLARE 1 to

0.981 1 for GLARE 1 ? GLARE 2 based on the new

method, as listed in Table 8.

Linear regression was used to compare the predicted

data of temperature and bending angle. Figure 8 shows the

best fitting performance of the training and testing phases

of the bending angle from the combined data of GLARE 1

and GLARE 2. The statistical parameters, such as coeffi-

cient of determination, increased significantly from 0.963 2

for GLARE 1 to 0.987 6 for GLARE 1 ? GLARE 2, as

shown in Table 9. The results prove that a relationship

between the value of the data and the accuracy of the

network model exists.

Table 10 compares the statistical reports obtained from

linear regression fitting curves for the training and testing

phase of GLARE 1 versus GLARE 1 ? GLARE 2 data

sets for temperature and bending angle, respectively. The

correlation between the training and testing phases of the

bending angle for GLARE 1 and GLARE 1 ? GLARE 2 is

close to 1. Therefore, the obtained results prove the data-

base modification effect in increasing the value of data

inside the database, as well as the ability of the imple-

mented model to predict the experimental values of tem-

perature and bending angle. Furthermore, it is confirmed

that the improved MLP model with the LM algorithm is

reliable and suitable for the LF of FMLs. From the results,

it can be observed that one of the applicable techniques is

Fig. 4 Comparisons between measured bending and predicted bending in the training/testing phase (GLARE 1)

Table 5 Statistical report of linear regression in the training and

testing phase (bending angle)

Statistical parameters Training Testing

Residual sum of squares 5.136 46 1.594 42

Pearson’s ratio 0.995 22 0.981 21

Coefficient of determination (R2) 0.980 65 0.963 24

Adj. R-square 0.977 72 0.896 49
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to enhance the model accuracy by compiling a database

with recorded data from several laboratories and employ-

ing the training and testing phases of the prediction.

5 Conclusions

This paper presents a prediction model for the LF of two

different types of FML composite materials using several

neural network models. The prediction tool was applied as

a reliable method to determine the temperature and bending

Fig. 5 Comparisons between measured and predicted temperature (GLARE 2)

Table 6 Statistical report of linear regression in the prediction phase

(temperature)

Statistical parameters ANN result

Residual sum of squares 49.397 14

Pearson’s ratio 0.989 17

Coefficient of determination (R2) 0.978 45

Adj. R-square 0.956 91

Fig. 6 Comparisons between measured and predicted bending angle (GLARE 2)

Table 7 Statistical report of linear regression in the prediction phase

(bending angle)

Statistical parameters ANN result

Residual sum of squares 1.594 42

Pearson’s ratio 0.981 21

Coefficient of determination (R2) 0.963 24

Adj. R-square 0.896 49
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angle during the LF process based on the operational

parameters (laser power and scan speed). In this study, an

MLP model was employed by applying the LM algorithm

for the simulation of the process variables. From the results

of the study, the following conclusions can be drawn.

(i) The ANN model was proposed to estimate the

temperature and bending angle based on the

process inputs, including laser power and scan

speed. The validation of the model was evaluated

quantitatively using a mean prediction error based

on the coefficient of determination (R2).

(ii) The correlation of coefficients (R2) for the training

and testing patterns for the bending angle and

temperature are close to unity, which demon-

strates excellent agreement between the experi-

mental data and predicted values.

Fig. 7 Training and testing results of the GLARE 1 and GLARE 2 model for temperature

Table 8 Statistical report of linear regression in the training and

testing phase (temperature)

Statistical parameters Training Testing

Residual sum of square 4.854 09 337.389 00

Pearson’s ratio 0.999 96 0.990 52

Coefficient of determination (R2) 0.999 92 0.981 12

Adj. R-square 0.999 91 0.974 83

Fig. 8 Training and testing results of the GLARE 1 and GLARE 2 model for bending angle

Table 9 Statistical report of linear regression in the training and

testing phase (bending angle)

Statistical parameters Training Testing

Residual sum of squares 2.272 57 0.403 07

Pearson’s ratio 0.995 46 0.993 81

Coefficient of determination (R2) 0.990 95 0.987 64

Adj. R-square 0.990 45 0.983 52
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(iii) The ANN model can be applied as a production

tool for optimizing the LF of FMLs. The neural

network solution can be a powerful tool for

predicting, controlling, and managing laser pro-

cessing and an adequate alternative to analytical

and numerical models.
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