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Abstract In this article, a new trajectory programming

system that allows non-expert users to intuitively and

efficiently program trajectories for robots is proposed. The

system tracks a pen-shaped marker and obtains its position

and orientation by processing the point cloud data of the

workspace. A graphical user interface, which enables users

to save and execute the acquired trajectory immediately

after performing trajectory demonstration, is designed and

developed for the system. The performance of the devel-

oped system is experimentally evaluated by using it to

program trajectories for a UR5 robot. The results indicate

that compared with traditional kinesthetic programming,

the developed system has the potential of significantly

reducing the ergonomic stress and workload of users. The

system is developed based on the robot operating system,

which facilitates its integration with different robot control

systems.

Keywords Programming by demonstration (PbD) �
Trajectory programming � Point cloud � Robot operating
system (ROS)

1 Introduction

Robots, in general, are complex machines, and professional

knowledge and programming skills are necessary to control

them [1]. For small and medium-sized enterprises (SMEs),

it is considerably difficult to have a fully automated robotic

system that can handle all types of tasks, such as part

handling, assembly, and welding. In some cases, even if a

robotic system has been designed for these applications,

frequent reprogramming is required to cope with variations

in work contents. This can be performed by hiring a team

of experienced robotic engineers because regular factory

staffs typically have limited robot programming skills [2].

Robot reprogramming, however, remains difficult, thus

limiting the application of robots in SMEs and prevents the

further use of robots on a daily basis. In order to simplify

the programming of industrial robots and make them more

accessible to the general public, robotics researchers have

developed a new approach for robot programming. The

technique involves observing the tasks demonstrated by

humans or other robots—hence the name, robot program-

ming by demonstration (PbD or RPD) [3, 4].

In the traditional RPD system, teach pendants have been

adopted to demonstrate the movements that the robot

should perform. This technique has been used for industrial

manipulators for many years. During the demonstration,

the teach pendant is employed to move the robot to desired

positions, which are recorded to generate a robot program

that will reproduce the demonstrated task [1]. This type of

teaching method, however, is neither convenient nor intu-

itive, and certain programming skills are required to per-

form a feasible demonstration. Alternatively, kinesthetic

teaching (also known as playback programming) provides

an accessible method for non-experts to quickly and easily

program robots. In the kinesthetic teaching process, a

human manipulator guides the robot’s joints by hand to

achieve a certain pose or movement through a desired

trajectory while the robot is placed in compliant mode.

This program technique has become the most popular

method of robot programming because it is easy to
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comprehend and does not require additional hardware, such

as cameras, magnetic sensors, and data gloves. Problems

occur, however, when the robot is large; in such a case, a

smaller surrogate dummy robot is employed to execute the

task [5]. Moreover, during kinesthetic teaching, direct

physical contact between the operator and robot is inevi-

table; this can be inconvenient and even dangerous.

To resolve this problem, a novel robot programming

system that enables users to demonstrate, execute, and save

robot trajectories without any professional knowledge of

programming or even skills of operating robots is pro-

posed. The technique is low-cost, intuitive, efficient, and

most importantly, safe. The system is implemented with a

robot operating system (ROS) [6], which affords advan-

tages, such as modularity and extensibility. This means that

it can be integrated with literally all ROS compatible robot

control systems. The remainder of this paper is organized

as follows. In Sect. 2, related investigations on designing

robot trajectory programming systems are reviewed. In

Sect. 3, the proposed system is introduced and explained in

detail. To test the system’s performance, experiments are

conducted and described in Sect. 4, in which the advan-

tages and drawbacks of the system are also discussed.

Certain system improvements performed are presented in

Sect. 5. Finally, the conclusions drawn and discussions of

future research directions are summarized in Sect. 6.

2 Related work

According to Billard et al. [7], current RPD systems can be

broadly divided into two categories: trajectory encoding

RPD system (a low-level representation of skill in the form

of nonlinear mapping between sensory and motor infor-

mation, where the focus is on learning trajectories from a

human demonstrator) and symbolic encoding RPD system

(a high-level representation of skills that decomposes it

into a sequence of predefined motion elements). As we

focus on the former type of RPD systems, related work in

the field of robot trajectory programming is reviewed.

As previously mentioned, traditional trajectory program-

ming methods, such as kinesthetic teaching and the use of

teach pendants, are inconvenient and time-consuming.

Moreover, from the perspective of safety, both techniques

pose a substantial risk to the operator. More reliable and

practical techniques are therefore urgently required. Landa-

Hurtado et al. [8] developed a flexible trajectory generation

approach based on Microsoft Kinect sensor to generate new

trajectories for an ABB IRB1600ID welding robot. During

trajectoryprogramming, the camera detects the skeletonof the

operator, and the way-points position information is extracted

from the operator’s right hand. The robot autonomously

generates a trajectory that connects these points, complying

with position and orientation constraints. The relative position

of the operator’s left hand compared to that of the right is also

extracted as a means of human robot interaction (HRI) to

control the system’s running mode. It should be noted, how-

ever, that the accuracy of the three-dimensional (3D) position

of the operator’s skeleton is not appropriate for industrial

application. Moreover, the technique of comparing the rela-

tive position of the user’s two hands as a means of HRI is

practically not recommended in industrial scenarios.A similar

system is proposed by Moe and Schjølberg [9]. The system

developed by the latter is capable of capturing position and

orientation information during a trajectory demonstration

from Kinect and a smartphone accelerator, respectively.

Moreover, it allows real-time interaction with the robot with

average response times of 0.675 0 s and 1.155 0 s for position

and orientation, respectively. To indicate the start and end of

the hand guiding process, the system recognizes a ‘‘focus’’

gesture. Once the gesture is perceived, the system tracks the

hand that performed the ‘‘click’’ gesture (the hand is quickly

pushed forward and then pulled back), which signals the start

of guiding. The end of guiding is completed by clicking using

the other hand. During the task demonstration, however, the

user must hold a smartphone on the other hand to control the

orientation of the robot’s end effectors. This makes it cum-

bersome to some extent and unsuitable for industrial appli-

cations. More similar research works related to robot

programming through gestures are conducted in Refs.

[10–12].

The application of augmented reality (AR) in industrial

robot spatial programming is also a popular research trend in

the RPD field. Different from conventional forms of visu-

alization, this technique enhances a camera image by adding

spatially related information, thereby enabling the user to

visualize information of robot programs or intuitively

coordinate systems. Task level information, such as poses

and trajectories, can also be visualized within the real robot

environment. Lambrecht and Krüger [13] presented a spatial

programming system for industrial robots that included

different modules for gesture-based definition of poses,

trajectories, and tasks. Additionally, the system covers pro-

gram evaluation in an AR application as well as program

adaption through spatial interaction with virtual objects

representing the robot program. Their system consists of the

following basic hardware components: industrial robot

(KUKA robot), handheld device (Samsung Galaxy S II

smartphone), and motion tracking system (Kinect Sensor).

The Kinect sensor tracks the 3D trajectories of the user’s

hand, and the smartphone is utilized to recognize two-di-

mensional hand gestures through its camera and display

virtual objects and trajectories with its screen. Moreover, for

haptic feedback, the phone will vibrate once the user per-

forms a virtual object griping task. Using their developed

system, users can easily program and modify robot
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trajectories as well as acquire visual feedbacks in the AR

simultaneously. The orientation information of the trajec-

tory, however, cannot be acquired during programming, and

the accuracy of the 3D trajectory obtained by Kinect is not

adequate for industrial application. A similar system related

to robot programming in an AR environment is developed

by Ng et al. [14]. The system contains a laser range finder, a

pan-tilt assembly unit (PTU), and a camera. During pro-

gramming, the camera captures the workpiece image, and

users can define a target position by simple point-and-click

on the image. The Cartesian coordinates of the corre-

sponding position is thereafter acquired using a laser range

finder and the PTU. A virtual frame and tool will be

superimposed at the particular position to provide visual

feedback to the user, and the virtual tool’s orientation can be

modified to a desired state in the AR environment. Apart

from generating trajectories by selecting points in the image,

their system allows users to generate trajectories through

line and curve detection from a selected region of interest.

The method can eliminate potential human errors caused by

jerks and jitters while performing repetitive mouse-clicking

along the joint lines. Their system is capable of achieving

planar positioning and vertical liftoff distance accuracies of

approximately 0.5 mm and 1 mm, respectively. It should be

noted, however, that it is cumbersome for users to specify

the orientation of each point in the generated trajectory, thus

making it inefficient for robot programming. Works related

to AR application in the industrial scenario are well studied

in Refs. [15–17].

3 Material and methods

In this section, the developed trajectory teaching system is

discussed in detail. Compared with the aforementioned

technologies, the proposed system is more economical and

efficient. Moreover, a graphical user interface is developed

to allow convenient interactions with the system.

3.1 Hardware components

The system hardware components consist of a Microsoft

Kinect camera mounted on a shelf above the work plat-

form, an Ubuntu 16.04 laptop with ROS kinetic, a UR5

robot, a CB3 robot controller, and a key element (an

inexpensive 3D printed color marker). The marker consists

of three 1.5-cm radius green spheres and three 7.5-mm

diameter white cylindrical rods; the angle between each rod

is 90�. The system hardware setup is shown in Fig. 1.

3.2 Trajectory teaching

To program a trajectory for a robot, the user can accom-

plish the task by simply moving the color marker along a

desired path. Thereafter, the system will automatically

track and record both the position and orientation infor-

mation of its trajectory. This can be immediately executed

after the demonstration. The trajectory information can be

saved and reloaded in the form of extensible markup lan-

guage (XML) files that can be further processed (e.g.,

optimization and generalization).

For the purpose of tracking the trajectory of the color

marker, a ROS program is developed to track and publish the

marker’s real-time position and orientation information. The

program employs the point cloud information of the working

scenario acquired from theKinect sensor as input and outputs

the current pose of the color marker in the base frame of the

robot. The workflow of the program is presented in Fig. 2.

3.2.1 Point cloud segmentation

To determine the position of the color marker, the point

cloud of the marker should first be extracted from the data

acquired by Kinect. Although a number of complex tech-

niques can be adopted to perform point cloud segmenta-

tion, color filtering is employed to accomplish the task.

This is because under a homogeneous illumination

Fig. 1 System hardware setup
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condition, the method is robust and computationally effi-

cient [18]. In computer vision and image analysis, the HSV

color space is widely employed for feature detection and

image segmentation [19]. A colored object in an image can

be easily identified by an HSV filter, which can also be

applied in point cloud segmentation to extract a specific

color component of point cloud data.

The point clouds acquired through Kinect usually con-

tain invalid values because of its range limitation or

unusually reflecting surfaces in the platform. These invalid

points should therefore be removed before further

processing. The color information of the point cloud is

usually encoded in the RGB color space. A conversion

between the RGB and HSV point clouds should be per-

formed before color filtering. After preprocessing the point

cloud, an HSV color filter is applied to separate the mar-

ker’s point cloud (see Fig. 3). In order to improve system

robustness and flexibility, users can specify a color crite-

rion for the filter by selecting a colored point from point

clouds on a point cloud viewer. This means that users can

choose different marker colors provided it can be easily

distinguished in the working platform.

3.2.2 Point cloud clustering

After color filtering, the point cloud data contain point

clouds of the surfaces of the three colored spheres. To

separately acquire point clouds for each sphere, the data

should be classified into three different clusters. This task is

accomplished through the Euclidean clustering algorithm,

which is available in the point cloud library (PCL) [20].

The algorithmic steps are presented as Algorithm 1.

Fig. 2 Workflow of the marker tracker program

Fig. 3 Point cloud segmentation
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By applying Algorithm 1, the point clouds can be easily

separated into three clusters, each of which corresponds to

a single sphere (see Fig. 4).

3.2.3 Sphere fitting

In order to track the position and orientation information of

the moving marker, a coordinate system is set up according

to the distribution of colored spheres. The position of the

coordinate is placed at the center of the middle sphere; the

pose of the coordinate is illustrated in Fig. 5. In this

manner, the pose of the coordinate can be identified with

respect to the origins of the three spheres. The point cloud

of each sphere has been acquired; hence, the origin of each

point cloud can be identified using data-fitting algorithms.

Fitting a model to noisy data (regression analysis) is

frequently employed in computer vision for a wide range of

objectives, such as reverse engineering. As a traditional

technique, the method of least squares has become the most

popular algorithm applied in regression analysis. The

method can achieve an optimum result when the error

distribution of the data is Gaussian. If the noise has non-

zero mean components and/or the data contain outliers,

however, then the method of least squares may output

erroneous results [21].

To find the center of the sphere’s point cloud, a robust

regression method that remains reliable in the presence of

various types of noise should be employed. In computer

vision, the least-median-of-squares method and random

sample consensus (RANSAC) method are robust algo-

rithms with a certain resistance to outliers [22, 23]. The

RANSAC algorithm is applied to our sphere fitting prob-

lem to find its origin. The basic algorithm can be sum-

marized as Algorithm 2 [24].

The RANSAC algorithm and several extended algo-

rithms are available within the PCL (e.g., the maximum

likelihood estimation sample and consensus, M-estimator

sample and consensus and progressive sample and con-

sensus). These algorithms provide fast and robust fitting

results for the 3D detection of geometrically simple shapes,

such as cylinders, spheres, and planes [25]. By applying the

algorithm, the center of the sphere-shaped point cloud can

be estimated, and the difference between the actual and

resulting sphere radii is used as a criterion to ensure the

accuracy of results. The fitting results are displayed in the

point cloud viewer with red spheres (see Fig. 6).

Fig. 4 Point cloud clustering
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3.2.4 Pose computation and coordinate transformation

After gathering all three positions of the centers of spheres,

the pose of the frame fixed on the marker in the camera

frame can be easily identified. Suppose that the coordinates

of the origin of the three spheres in the camera frame are P1

(x1, y1, z1), P2 (x2, y2, z2) and P3 (x3, y3, z3). Then, the

distances between each point can be expressed as

PiPj

�
�

�
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxj � xiÞ þ ðyj � yiÞ þ ðzj � ziÞ
q

;

i; j 2 f1; 2; 3g; i 6¼ j:
ð1Þ

Considering the spatial distribution of the colored

spheres of the marker, the three points form a right triangle

in space, and the vertex of its right angle is the origin of the

marker’s frame. This can be easily identified by comparing

the length of the triangle’s edges; the intersection of the

legs of the triangle is the origin. The position of the current

marker can then be represented as

CtM ¼ ½CXM;
CYM;

CZM�T: ð2Þ

The direction vector of the shortest leg of the right tri-

angle originating from COM
CXM;

CYM;
CZMð Þ is considered

as the positive direction of the x axis. Similarly, the

direction of the y axis is defined by the other leg of the

triangle. The direction vector of the z axis can be thus be

determined as

CzM ¼ CxM � CyM: ð3Þ

The orientation of the marker with respect to the camera

can therefore be described as

C
MR ¼ ½CxM; CyM;

CzM�; ð4Þ

where x, y and z are the unit vectors; C
MR is an orthogonal

matrix. The pose of the marker in the camera’s coordinate

system can be represented by a homogeneous transforma-

tion matrix

C
MH ¼

C
MR

CtM
03�1 1

� �

: ð5Þ

Fig. 6 Sphere fitting result

Fig. 5 Marker’s frame
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Figure 7 shows the pose of the marker in the camera

frame in the point cloud viewer. After the camera cali-

bration, the transformation from the camera coordinates to

the robot’s base frame can be described by a transformation

matrix, B
CH. The pose of the marker in the robot’s coordi-

nate system can then be expressed by a homogeneous

transformation matrix

B
MH ¼ B

CH
C
MH ¼

B
MR

BtM
03�1 1

� �

; ð6Þ

where BtM ¼ ½BXM;
BYM;

BZM�T; BMR ¼ ½BxM; ByM;
BzM�:

The position of the origin of the marker’s frame in the

robot’s coordinate system, BOM
BXM;

BYM;
BZMð Þ, can thus

be determined, and the orientation can be identified by the

rotation matrix, B
MR.

After obtaining the pose of the marker in the robot’s

frame, the position and orientation information of the

marker’s tip can be further obtained. A coordinate system

named ‘‘tool frame’’ is fixed on the tip; it has the same

orientation as the marker’s frame and a translation along

the z axis. Suppose that the length of the pole below the

middle sphere is l mm. Then, the homogeneous transfor-

mation matrix from the tool frame to the marker’s frame,
M
T H, can be denoted as

M
T H ¼

M
T H

MtT
03�1 1

� �

¼ I3�3 ½0; 0; l�T
03�1 1

� �

: ð7Þ

The pose of the tool frame in the robot’s frame B
TH can

be expressed as

B
TH ¼ B

MH
M
T H ¼

B
TR

BtT
03�1 1

� �

; ð8Þ

where BtT ¼ ½BXT;
BYT;

BZT�T and B
TR ¼ ½BXT;

BYT;
BZT�.

Coordinate BOT
BXT;

BYT;
BZTð Þ is the position of the

origin of the tool frame in the robot’s coordinate system,

and its orientation can be represented by the rotation

matrix, BTR. The relationship of the coordinates is presented

in Fig. 8.

3.3 Graphical user interface

A graphical user interface (GUI) based on the Qt and ROS

that allows users to control the system’s running mode and

drive the robot to execute the recorded trajectories is

developed (see Fig. 9) [26]. The interface is mainly com-

posed of two panels: information and command panels.

The information panel consists of two tags, each of which

is responsible for displaying different information. The

‘‘Robot Info’’ tag is used to present the robot information,

including the position and orientation of its end effector

and joint angles. This tag also contains several buttons that

allow users to move the robot to predefined positions, and

operating information related to trajectory planning and

execution is also displayed in the ‘‘Info’’ window. The

Fig. 7 Marker’s pose in camera frame
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‘‘Scene Info’’ tag is mainly responsible for displaying the

pose information of the marker and operating information

of trajectory tracking, recording, etc.

The command panel on the right is the system’s control

center, which consists of five different sections. From top

to bottom, the first region contains certain options related

to the connection with the ROS master, which is the

communication center of the ROS system. Users are

allowed to set the URL and IP for the ROS master or

choose to employ environment variables. If the check box

‘‘Remember settings on startup’’ is marked, the interface

will store the current settings and reload it during the next

startup.

Below the ‘‘ROS Master’’ section is the ‘‘RPD Control’’

panel, which allows users to control the trajectory

demonstration process. Users can specify a time duration

for the trajectory teaching procedure, which will be auto-

matically terminated at the end of the countdown. Manu-

ally stopping the recording process is also supported. After

acquiring the trajectory information of the marker, users

should click the ‘‘Finish’’ button to indicate the termination

of the teaching process and enable the system to perform

trajectory manipulations (e.g., planning and saving).

The ‘‘Plan and Execute’’ panel contains functions rela-

ted to trajectory planning and execution. Users can

immediately execute the recorded trajectories by clicking

the ‘‘Plan’’ and ‘‘Execute’’ buttons after the trajectory

demonstration process. This is accomplished through a

motion planning library (i.e., ‘‘MoveIt’’), which can gen-

erate feasible robot trajectories according to the recorded

trajectory information [27].

The ‘‘Save and Load’’ panel mainly includes file

manipulation functions, allowing users to save and load the

recorded trajectory information in the form of XML files

(see Figs. 10 and 11). The ‘‘Scene Objects’’ panel is

composed of four buttons with different functions. It pro-

vides users with the ability to add collision objects to the

planning space of MoveIt and thus eliminate the danger of

collision with obstacles during trajectory execution.

During the trajectory demonstration, the recorded tra-

jectory information can be intuitively visualized through

rviz, which is a 3D visualizer for displaying sensor data and

state information from ROS [28]. Users can visualize and

monitor the current sensor information acquired from

Kinect and working scene. The coordinate system and

resulting robot trajectories can also be observed

conveniently.

4 Experiment and discussion

To test the performance of the developed system, a vali-

dation experiment, which assesses the accuracy and effi-

ciency of the system compared with the traditional

approach of trajectory programming (i.e., kinesthetic pro-

gramming), is conducted. Five subjects are invited to

program and execute a simple trajectory that contains five

waypoints for the UR5 robot with the developed system.

The same trajectory is programmed by employing UR5’s

kinesthetic programming interface.

The required time of both approaches is recorded, and

execution results are also saved by mounting a pen on the

robot’s end effector. A piece of paper, which contains nine

circles with the same radii (0.75 mm) scattered in the

middle of the edges or at the corners of a rectangle

(150 mm 9 200 mm), is placed on the working table. Each

circle on the test paper represents a possible waypoint of

the trajectory. The experimental setup is displayed in

Fig. 12.

During the experiment, five subjects are asked to pro-

gram a desired trajectory passing through five different

waypoints on the paper. These subjects have no expertise in

robot programming and are taught to operate our system

and UR5’s kinesthetic interface to program robot trajec-

tories before the experiment. After the demonstration, the

maximum deviation of the executed trajectory compared

with the ideal one is measured and recorded for analysis

(see Fig. 13).

The experimental results are summarized in the Table 1.

Evidently, the developed trajectory programming by

demonstration system is more efficient than kinesthetic

programming. The average times to complete the pro-

gramming task by employing the proposed developed

system and kinesthetic programming are 30.46 s and

109.35 s, respectively, indicating that the efficiency of the

proposed trajectory programming system is 3.5 times that

of kinesthetic teaching.

It should be mentioned that the subjects involved in the

experiment, especially female subjects, find it laborious to

move the robot’s arm to desired positions and control itsFig. 8 Frames displayed in rviz
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orientation. They all claim that compared with the kines-

thetic programming interface, the proposed system is easier

to learn and more convenient to operate. In addition, the

proposed system provides users with visual information of

the recorded trajectory in real time, making the program-

ming process more natural and intuitive (see Fig. 14).

The deviation of the executed trajectory of the proposed

system, however, is not as good as that of kinesthetic

teaching, and certain factors affect its accuracy. For

Fig. 9 GUI based on Qt

Fig. 10 GUI for trajectory saving and loading operations
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example, the error in the extrinsic parameters of the camera

after calibration can affect the accuracy of the tracking

results in the robot’s frame. Inadequate intrinsic calibration

results and the random error of depth measurements of the

Kinect sensor can also cause errors in computing the

position of the colored sphere in the camera frame, thus

resulting in trajectory deviation [29].

5 Further developments

In the experiments, it has been noticed that during task

demonstration, it is difficult to signal the system that

demonstration has begun or completed using input devices

(e.g., mouse or keyboard). To further improve system

friendliness, a hand gesture recognition (HGR) module (see

Fig. 15) is developed based on a convolutional neural

network (CNN), whose structure is designed based on a

classic neural network model, LetNet-5. The HGR module

is capable of recognizing seven different hand gesture

commands corresponding to the functional buttons on the

graphical interface. Videos on performing robot trajectory

demonstration using the hand gesture recognition interface

is uploaded to https://www.youtube.com/watch?v=

zrDPwKBzDR4.

Some advanced functions have also been developed

towards planning scene collision object manipulation. By

using the system, users can simply draw a collision object

with standard geometrical shapes using the pen-shaped

marker and adjust its position and orientation in the plan-

ning scene. This can provide a quick approach of setting up

the robot’s working environment for users who are unfa-

miliar with ROS and MoveIt. A module that provides users

with some simple task-based robot programming by

demonstration options, such as a pick-and-place task, is

developed (see Fig. 16). The corresponding video is

uploaded to https://www.youtube.com/watch?v=

maANrNGWW3w.

6 Conclusions and future work

In this paper, a low-cost and easy-to-use robot trajectory

programming by the demonstration method is presented.

The system allows users who have no experience in robot

programming to efficiently and intuitively program robot

trajectories with the aid of a pen-shaped marker and Kinect

Fig. 11 Saved trajectory

Fig. 12 Hardware setup for the validation experiment
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sensor. A graphical user interface, which allows users to

conveniently control the system’s running states, is

developed. The system also provides intuitive visual

feedback that allows users to visualize the demonstrated

trajectory dynamically. The system is developed based on

the ROS; thus, it can be integrated with different types of

robots provided they are ROS compatible. A comprehen-

sive instruction that guides the implementation and oper-

ation of the developed system can be found online (https://

github.com/Zhang-Hongda). Users can download the ROS

packages and build the system on their local machines

according to the guide.

Fig. 13 Maximum deviation between ideal trajectories and actual ones

Fig. 14 Real-time display of demonstrated trajectories during programming

Table 1 Result of the validation experiment

Subject Time/s Error/mm

RPD Kinesthetic RPD Kinesthetic

1 33.58 137.89 9.00 2.50

2 31.89 78.28 5.00 3.00

3 28.23 90.30 7.50 3.20

4 24.86 139.44 5.10 3.00

5 33.72 100.84 7.50 3.00

Average 30.46 109.35 6.82 2.94
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A set of experiments is conducted using a UR5 robot to

evaluate the system performance. The experimental results

indicate that our system can boot the speed of robot tra-

jectory programming by approximately 3.5 times faster

than the traditional kinesthetic programming method. The

results indicate that the developed system can potentially

reduce the ergonomic stress and workload of users. The

accuracy of the system can be further improved by

employing high-precision sensors and more accurate

camera calibration. Videos of system implementation and

operation are available at https://www.youtube.com/

watch?v=F18YgKlDluw, which also includes some of the

experimental processes and results.

Further developments have been performed to improve

the system, including a hand gesture recognition module

and a scene object manipulation module. Users can intu-

itively control the system through hand gestures and edit or

create new collision objects in MoveIt’s planning scene

with the pen-shaped marker. A task-based trajectory pro-

gramming module is still under development. Currently,

the module supports only the pick-and-place task. To

program a pick-and-place task, users should only select

pick and place points using the pen-shaped marker.

Thereafter, the system will automatically generate a tra-

jectory according to initial points.

In the future, the authors intend provide users with more

powerful functions, such as the dynamic editing of the

trajectory’s waypoints, and modify their speed and accel-

eration. More programming tasks will be supported by the

task-based trajectory programming module, whose perfor-

mance will be evaluated in a specific working scenario.

Additionally, advanced modules, such as object recogni-

tion and tracking, will be developed to further process and

generalize the demonstrated trajectories to cope with

dynamic working scenarios.

Acknowledgments This research was supported by the Major Pro-

jects of Guangzhou City of China (Grant Nos. 201907010012,

201704030091 and 201607010041), the Guangdong Innovative and

Entrepreneurial Research Team Program (Grant No.

2014ZT05G132), Shenzhen Peacock Plan (Grant No.

Fig. 15 Trajectory demonstration using hand gestures

Fig. 16 Collision objects editing and task-based programming

Robot programming by demonstration: a novel system for robot trajectory programming based on… 227

123

https://www.youtube.com/watch?v=F18YgKlDluw
https://www.youtube.com/watch?v=F18YgKlDluw


KQTD2015033117354154), the Major Projects of Guangdong Pro-

vince of China (Grant No. 2015B010919002), the Major Projects of

Dongguan City of China (Grant No. 2017215102008), and the Nansha

District International Science and Technology Cooperation Project of

Guangzhou City of China (Grant No. 2016GJ004).

References

1. Biggs G, MacDonald B (2003) A survey of robot programming

systems. In: Proceedings of the Australasian conference on

robotics and automation, Brisbane, Australia, pp 1–3

2. Ng CL, Ng TC, Nguyen TAN et al (2010) Intuitive robot tool

path teaching using laser and camera in augmented reality envi-

ronment. In: 2010 IEEE 11th international conference on control

automation robotics and vision, Singapore, pp 114–119

3. Schaal S, Ijspeert A, Billard A (2003) Computational approaches

to motor learning by imitation. Philos Trans R Soc Lond Ser B

Biol Sci 358(1431):537–547

4. BillardAG Calinon S, Dillmann R (2016) Learning from humans.

In: Siciliano Bruno, Khatib Oussama (eds) Springer handbook of

robotics. Springer, Cham, pp 1995–2014

5. Helander MG, Landauer TK, Prabhu PV (2014) Handbook of

human-computer interaction, 2nd edn. Elsevier, Amsterdam

6. ROS.org (2018) Powering the world’s robots. http://www.ros.org.

Accessed 15 May 2019

7. Billard A, Calinon S, Dillmann R et al (2008) Robot program-

ming by demonstration. Springer handbook of robotics. Springer,

Berlin, pp 1371–1394

8. Landa-Hurtado LR, Mamani-Macaya FA, Fuentes-Maya M et al

(2014) Kinect-based trajectory teaching for industrial robots. In:

Pan-American congress of applied mechanics (PACAM), Santi-

ago, Chile

9. Moe S, Schjølberg I (2013) Real-time hand guiding of industrial

manipulator in 5 d of using microsoft kinect and accelerometer.

In: 2013 IEEE RO-MAN, Gyeongju, Korea, pp 644–649

10. Lambrecht J, KleinsorgeM, KrügerJ (2011) Markerless gesture-
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