
Tool-path generation for industrial robotic surface-based
application

He Lyu1 • Yue Liu2 • Jiao-Yang Guo2 • He-Ming Zhang2 • Ze-Xiang Li1

Received: 19 May 2018 / Accepted: 19 December 2018 / Published online: 30 January 2019

� Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract Industrial robots are widely used in various

applications such as machining, painting, and welding.

There is a pressing need for a fast and straightforward robot

programming method, especially for surface-based tasks.

At present, these tasks are time-consuming and expensive,

and it requires an experienced and skilled operator to

program the robot for a specific task. Hence, it is essential

to automate the tool-path generation in order to eliminate

the manual planning. This challenging research has

attracted great attention from both industry and academia.

In this paper, a tool-path generation method based on a

mesh model is introduced. The bounding box tree and kd-

tree are adopted in the algorithm to derive the tool path. In

addition, the algorithm is integrated into an offline robot

programming system offering a comprehensive solution for

robot modeling, simulation, as well as tool-path generation.

Finally, a milling experiment is performed by creating tool

paths on the surface thereby demonstrating the effective-

ness of the system.

Keywords Industrial robot � Tool path generation �
Simulation � Intelligent manufacturing

1 Introduction

In the present era of rapidly evolving automation, the

manufacturing industries are compelled to constantly iter-

ate and diversify the products through product innovations

and flexible production lines to cope up with shortening

product life cycles. At the same time, they are severely

constrained by the shortage and high cost of skilled

workers. In this challenging context, automation especially

based on industrial robots is the best solution for enhanced

productivity and flexibility. Nevertheless, programming of

an industrial robotic system for a specific application is

time-consuming and expensive. Particularly, surface-based

operations such as painting, grinding, and milling are quite

complex consuming excessive time and energy of workers.

Manual teaching is still a widely adopted method in

robot programming. There have been many studies on this

method to generate tool paths based on the contour of the

workpiece [1, 2]. The teaching results largely depend on

the knowledge and experience of the engineers on pro-

duction facilities, equipment, processes, and tools. Trial

and error methods need to be used for path planning, and

the generated path is usually operator-dependent and error-

prone. When it is necessary to consider performance

standards, it is more difficult for engineers to find the path

that can be used.

Although computer-aided tool-path planning such as

CAD/CAM approach is often studied [3–5], it still caused a

bottleneck for robotic applications.

Tool-path generation based on triangle mesh is a tradi-

tional research topic, and many methods have been pro-

posed for this purpose. For example, mesh slicing is a

widely used method for 3D printing [6]. The method is

based on interception of the planes with mesh surface to

obtain the tool path layer by layer. Therefore, the tool path

& He Lyu

hlv@ust.hk

1 Department of Electronic and Computer Engineering, Hong

Kong University of Science and Technology, Hong Kong,

People’s Republic of China

2 Hong Kong University of Science and Technology, Shenzhen

Research Institute, Shenzhen 518057, Guangdong Province,

People’s Republic of China

123

Adv. Manuf. (2019) 7:64–72

https://doi.org/10.1007/s40436-018-00246-x

http://orcid.org/0000-0002-6514-8247
http://crossmark.crossref.org/dialog/?doi=10.1007/s40436-018-00246-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40436-018-00246-x&domain=pdf
https://doi.org/10.1007/s40436-018-00246-x

generated by this method is limited to only three dimen-

sions. Iso-parametric tool-path generation is also a com-

mon method whereby the mesh surface is first fitted into a

parametric surface, and then the tool path is generated by

discretizing its parameters [7]. Iso-planner tool-path gen-

eration is another method widely used in commercial CAM

software that obtains the path by finding the intersections

of the cutting planes and the surface analytically either

using surface and plane equations or by projecting lines

onto the surfaces [8].

This paper presents a tool-path generation method based

on triangle mesh. The tool path consists of the tool tip

contact position and the tool direction. This study focused

on the method of generating the contact position, involving

several steps: construction of bounding box tree to repre-

sent the surface, hierarchy traversal to get the intersection

pairs of triangles, triangle intersection to obtain the seg-

ments, and curve construction by connecting the segments.

The algorithm provides a new method of intersection of

two mesh surfaces. Compared with the mesh slicing algo-

rithm, the cutting surface in this method is not only limited

to planes but also to surfaces of any shape thereby facili-

tating generation of complicated tool paths. This method

provides a robust mesh surface intersection algorithm

compared with the analytical solution, and this can also be

adopted in conventional tool-path generation algorithms.

The tool path needs to be translated into a robot lan-

guage before executing a specific process that is completed

by post-processing. The tool-path generation algorithm is

integrated into an offline robot programming software

framework with robot modeling and simulation to achieve

a comprehensive solution for robotic applications.

The rest of this paper is organized as follows. Section 2

introduces tool-path generation algorithm based on trian-

gle-mesh model. The building of bounding box tree, hier-

archy traversal, and curve construction are included. In

Sect. 3, the software system framework is introduced.

Section 4 describes the experiments conducted to test the

algorithm and the milling workcell that is set up to verify

the tool path. Finally, the conclusions are presented in

Sect. 5.

2 Tool-path generation

The tool-path generation method involves several key

steps, as shown in Fig. 1. The algorithm cuts the target

surface through a series of cutting surfaces. Accordingly, it

finds the intersection of two surfaces by transforming them

into a problem of mesh intersection as the surface is rep-

resented by mesh data. The bounding box tree is built to

represent the surface in order to find the intersection pairs

of the triangles in the mesh data. The segments derived by

intersecting the triangle pairs are used to construct the

curve, which is the result of the intersection of two sur-

faces. To generate a tool path, the tool position and ori-

entation need to be determined. The intersection curves

provide three-dimensional (3D) position information cor-

responding to the displacement of the tool tip. The infor-

mation concerning the tool axis vector and the rotation

around this vector also needs to be supplemented to obtain

the complete constraints of the tool. In Fig. 1, the extra

freedom complement transfers the 5DoF path into the

6DoF tool path for the robot.

2.1 Mesh object representation

The mesh surface is composed of a large number of tri-

angular facets. Therefore, the intersection curve is com-

posed of a series of intersections of the corresponding

triangles. Accordingly, the algorithm is focused on finding

the corresponding triangle pairs. Organizing the triangles in

the mesh data into a hierarchical data structure is an

effective way to determine the triangle pairs. The bounding

volume (BV) and bounding volume hierarchy (BVH) are

used in this method.

In our cases, BV is a closed volume that contains the

union of triangles in the set, which are used to improve the

efficiency of geometrical operations using their simple

volumes. Unlike the original objects that are complex, the

simple volumes help achieve cheap and fast overlap test

(see Fig. 2); however, not all geometric objects serve as

effective bounding volumes [9]. The desirable properties

for bounding volumes include inexpensive intersection

Fig. 1 Steps of tool-path generation algorithm

Tool-path generation for industrial robotic surface-based application 65

123

tests, tight fitting, inexpensive to compute, easy to rotate

and transform, and use of only a little memory.

Typical examples of bounding volumes, as shown in

Fig. 3, include sphere, axis-aligned bounding box (AABB)

[10], oriented bounding box (OBB) [11], and discrete ori-

ented polytope (k-DOP) [12]. There exists a trade-off

between the above properties.While choosing a bounding

volume for a given application, various factors need to be

considered: determining the cost of overlap, calculating the

cost of computing the boundary volume of the object, the

cost of updating it in case an object is moved or changed in

shape or size, and the accuracy required for intersecting

tests. As the bounding volume is mainly used to reduce the

cost of intersection tests between primitives, it should

encapsulate the primitives tightly, and the geometry used to

enclose the volume should be as simple as possible.

The bounding volume helps speed up the computations

through the multiple sets of geometric primitives. By

arranging the bounding volume into a tree hierarchy known

as BVH, the time complexity can be reduced significantly.

Normally, the root BV encloses all the primitives of a

model; the primitives in a parent BV are divided into

several sub-BVs; and each BV encapsulates a separate

partition of the primitives [13]. This process is then per-

formed recursively, eventually resulting in a tree structure

with a single BV at the top of the tree and each primitive

wrapped in the BV as a leaf of the tree, as shown in Fig. 4.

Typically, the BV in a leaf node contains one primitive. In

some cases, several primitives may be placed at a leaf

node, or several volumes may be used to contain a single

primitive [14].

While building a bounding volume hierarchy, the degree

of the tree needs to be determined firstly where the degree

refers to the maximum number of children a node can have.

Theoretically, a tree can have any number of children at a

node. A tree with a high degree tends to be shorter; how-

ever, such a case requires more work as each node is

searched. There exists a trade-off between trees of high and

low degrees. The binary tree is widely used by far, because

it is easier to build, represent, and traverse than the other

trees.

In the proposed method, AABB is selected to build a

binary tree for the mesh. For a given set of data objects, the

AABB is easy to compute, and it needs only a few bytes of

storage. Besides, robust intersection tests are easy to

implement with high efficiency. The bounding box tree

construction algorithm is shown in Fig. 4. For each step,

the algorithm requires to partition the model into two sub-

models as the children of the current node. There are

several options in splitting the model: by objects mean, by

spatial median, by bounding box centers, by objects med-

ian, etc. In Algorithm 1, the bounding box is split along its

longest axis and at the center of the box, as shown in

Fig. 5.

Fig. 2 Bounding volume example

Fig. 3 Types of bounding volume

66 H. Lyu et al.

123

Algorithm 1 Build bounding box tree
Input: Mesh data: M;
Output: Bounding box tree: bbtree
1: function TreeBuild(meshdata)

2: bbtree.bbox = makeBoudingBox(M)

3: if M.indivisiable() then
4: return
5: end if

6: M1 = SplitOnLongestAxis(M,1)

7: M2 = SplitOnLongestAxis(M,2)

8: bbtree.left = TreeBuild(M1)

9: bbtree.right = TreeBuild(M2)

10: end function

2.2 Hierarchy traversal

The recursive traversal strategy is used to perform the

intersection checks to find all the corresponding pairs of the

intersecting triangles. The recursive algorithm is shown in

Algorithm 2, and its input is the bounding box tree derived

from Algorithm 1.Two trees (one for target surface and the

other one for cutting surface) are traversed simultaneously

in order to find all the intersection triangle pairs of both

trees. The recursive strategy of traversal helps maintain the

balance, and larger tree is traversed firstly for each step.

Only when both inputs are leaves and the bounding boxes

overlap, the two inputs are saved as an intersecting triangle

pair. This is because the probability of these two triangles

intersecting each other is high when the bounding boxes

overlap.

Algorithm 2 Hierarchy traversal
Input: bbtree: b1, b2;
Output: Intersection Pair: P
1: function Traversal(b1, b2, P)
2: l1 = b1.indivisiable()
3: l2 = b2.indivisiable()
4: if l1&l2 then
5: if b1.overlap(b2) then
6: tmp = makepair(b1, b2)
7: P.push(tmp)
8: end if
9: return
10: end if
11: if ! b1.overlap(b2) then
12: return
13: end if
14: if b1.size > b2.size then
15: c1 = b1.left
16: c2 = b1.right
17: Traversal(c1, b2, P)
18: Traversal(c2, b2, P)
19: else
20: c1 = b2.left
16: c2 = b2.right
22: Traversal(b1, c1, P)
23: Traversal(b1, c2, P)
24: end if
25: end function

2.3 Intersection of triangles pair

The intersection of two triangles forming a line segment is

a simple geometric phenomenon [15, 16]. The intersecting

Fig. 4 A bounding volume hierarchy

Fig. 5 Mesh partition method

Tool-path generation for industrial robotic surface-based application 67

123

strategy designed in this study is shown in Fig. 6. T1 and T2
are two triangles for intersection check. First, a ray L is

obtained by intersecting the two planes where these trian-

gles lie. Subsequently, two segments L1 and L2 are

respectively generated by chipping the triangles with

L. Finally, the intersection of these two line segments L1
and L2 forms the line segment L3.

2.4 Curve construction

As described above, after the triangular intersection step,

many segments without topology information are obtained.

The proposed curve construction algorithm, shown in

Algorithm 3, is intended to connect these segments into a

curve.

Algorithm 3 Curve construction
Input: Segments

S = (S1, S2, , Sk)
Output: Paths

Path=(C1, C2, Cn)
1: function CurveCstrct(S)
2: tree=kdTreeBuild(S)

3: while S.size()! = 0 do

4: seg=S.pop()

5: while true do
6: seg1= kdTresearch (seg)
7: if seg1 =null||seg1 is searched() then
8: break

9: end if

10: C.push(seg1)

11: end while

12: Path.push(C)
13: end while
14: return Path=(C1, C2, Cn)
15: end function

A kd-tree is constructed firstly by organizing the points

of the segments in a k-dimensional space [17]. It is a binary

search tree with a set of constraints imposed on it, which

are very useful for range and the nearest neighbor searches.

In terms of generation of tool paths, it usually deals only

with 3D points; therefore, the constructed kd-tree is also

3D. Each level of a kd-tree splits all children along a

specific dimension using a hyperplane that is perpendicular

to the corresponding axis. After constructing a kd-tree, the

segments can be connected recursively into a path by

searching for the nearest points as shown in Fig. 7. The

segments SiðPsi ;1;Psi ;2Þ and Siþ1ðPsiþ1 ;1;Psiþ1 ;2Þ are con-

nected by the same points Psi ;2 ðPsiþ1 ;1Þ which can be easily

searched through the kd-tree.

There are two types of paths as shown in Fig. 8. One is a

closed polygon path, and the other one is a free-end path.

For closed polygons, the curve construction algorithm ends

when the kd-tree search result is an already traversed

segment. For curves with free ends, the algorithm ends

only when there is no nearest point within a given

tolerance.

For a complete tool path, it is also usually necessary to

determine the tool orientation. The tool direction consists

of two parts, that is, the tool axis direction and the rotation

of the tool axis around itself. In general, the tool orientation

is determined based on the application. In the actual work,

the tool direction generally adopts surface normal or along

a certain fixed direction. As shown in Fig. 9, P and N give

the displacement and axis of the tool, respectively. a is the

rotation around N . The rotation N is irrelevant to the tasks

to be finished, but it has a great effect on the manipulator

configuration. The method in Ref. [18] is used to determine

the extra freedom.

2.5 Adaptive mesh cutting

A series of cutting surfaces are selected to cut the target

surface to create a tool path. In practice, the type and

orientation of the cutting surface are defined in advance.

The parallel plane and the cylindrical surface are the most

common types as shown in Fig. 10, which generates two

main path patterns, namely, raster and spiral, as shown in

Fig. 11, respectively. The cut surface needs to be meshed

before applying the above intersection algorithm.

The offset between the cutting surfaces determines the

distance between tool paths. The offset is determined by

the geometric information related to the current cutting

surface and the target surface as shown in Fig. 12.

Fig. 6 Triangle intersection Fig. 7 kd-tree search for counter construction

68 H. Lyu et al.

123

Equations (1) and (2) give the offset adaptively, where h is

the angle between n1 and n2. The vectors n1 and n2 are the

norm vectors of the cutting surface and the target surface,

respectively. The offset mainly depends on h as shown in

Eq. (2), where h is the average value of the angle between

two surfaces which is obtained by integrating h along the

paths. d is offset between the cutting surface. � is a constant

small value. C is a constant value, and L is the given

maximum steps.

�h ¼
Pn

1 h
�
�

�
�

n
; ð1Þ

d ¼

L

C
; �h 6 �

2�hL
p

; otherwise:

8
>><

>>:
ð2Þ

3 CAD based interface programs

The above algorithm is integrated into a software frame-

work (RSCAM) (see Fig. 13), a system that integrates

geometric modeling, analysis, and viewing capabilities. It

employs a mature CAD kernel as a geometry engine and

adopts the component-based architecture shown in Fig. 14

[19].

In addition to extracting the surface information from

CAD model and generating the tool path for different

applications, the system also supports robot kinematic

simulation by integrating kinematic library and related

algorithms [20].

Fig. 8 Path types

Fig. 9 Tool path for industrial manipulators

Fig. 10 Two typical methods for tool-path generation

Fig. 11 Two typical patterns for tool path

Fig. 12 Cutting surface offset

Tool-path generation for industrial robotic surface-based application 69

123

4 Experiment

4.1 An intersection test

A World Cup model represented by mesh is selected as the

experiment object to test the proposed algorithm by inter-

secting it with a hemisphere surface as shown in Figs. 15a

and b. Two bounding box trees containing the model and

the cutting surface are built. Figure 15c gives the bounding

box tree of the World Cup model. Axis-aligned bounding

box is utilized in this binary tree, and each mesh triangle is

contained in a leaf of this tree. The World Cup and

hemisphere contain 67 254 and 11 396 triangles; therefore,

the two corresponding bounding box trees also have the

same number of leaves.

Then, by hierarchy traversal, those overlapped the

bounding box pairs from two trees are detected as shown in

Fig. 16. The red and the green triangles are from the World

Cup model and half sphere, respectively. From Fig. 16, it is

noticed that some triangle pairs do not intersect with each

other; however, it does not have effect on the final inter-

secting curve generation. The reason behind these non-

intersecting pairs is that their bounding boxes overlap with

each other. For this experiment, we obtain a total of 4 653

triangle pairs, among which 910 pairs are intersecting with

each other. Then, the triangle-intersecting test applied on

these pairs generates 910 segments. Using Algorithm 3,

these segments can finally be constructed into a curve in

Fig. 16.

4.2 Tool-path generation

In this section, the proposed algorithm is applied to a

World Cup model to generate a milling tool path for an

industrial robot. In this case, a series of parallel planes are

used to cut the model. These planes are perpendicular to

the z-axis, and the cutting step adapts to the geometric

information using the proposed algorithm. The result

shown in Fig. 15d obtained by setting C = 10 and L = 5

shows the effect of the adaptive information. For real

milling applications, L is usually assigned a fairly small

value, depending on the milling requirements. As can be

seen from Fig. 15d, the tool path is adapted to the surface

slope. For example, at the top of the model, the cutting step

is lower than the rest.

Fig. 13 Software UI

Fig. 14 Software framework

70 H. Lyu et al.

123

4.3 Hardware workcell

The workstation platform, designed to mill a World Cup

model, consisted of Kawasaki RS020N robots [21] with

Marvie Controller [22], a worktable with a fixture, a

spindle tool, and a workpiece. RS020N robot is a 6-DoF

robot with parameters as shown in Table 1. The controller

supports three types of motion including linear motion

(MOVL), arc motion (MOVC), and joint motion (MOVJ).

The minimal control accuracy of the controller is 1 mm. In

our experiment, the milling path is performed by translat-

ing the tool paths into robot control files employing the

linear motion. The spindle tool is a ball end mill with a

diameter of 6 mm. The material of the workpiece is wood;

therefore, the cutting force is not too large for the 20 kg

payload robot. The algorithm generates a tool path and then

converts it into a robot program through post-processing to

control the robot and thereby perform the program. Finally,

the World Cup model is obtained as shown in Fig. 15e.

5 Conclusions

In this paper, a tool-path generation method based on a

mesh CAD model is proposed. The method is implemented

by six steps: bounding box tree construction, hierarchy

Fig. 15 World Cup mesh model

Fig. 16 Intersecting curve

Tool-path generation for industrial robotic surface-based application 71

123

traversal, triangle intersection, curve construction, assign-

ing normal vector, and complementing extra freedom.

Finally, the algorithm is integrated into the RSCAM system

to provide a friendly interface and visualization. The

algorithm is tested by intersecting the World Cup model

with a hemisphere model. The results show that the method

is effective. The parallel plane is then used to cut the

model, obtain the tool path, and execute it on the milling

work cell.

In summary, the main contribution of this paper consists

of two parts. Firstly, the paper proposes an algorithm to

calculate the intersection of two mesh surfaces for tool-

path generation. Then, a system (RSCAM) is developed by

integrating the tool-path generation algorithm with a CAD

engine to provide a complete solution for robotic surface-

based applications. With RSCAM, programming time is

reduced significantly compared with traditional manual

teaching.

Acknowledgements Funding was provided by Research Grants

Council, University Grants Committee (Grant No. 16205915) and

Innovation and Technology Commission (HK) (Grant No. TS/216/

17FP).

References

1. Lee S, Li C, Kim D et al (2009) The direct teaching and playback

method for robotic deburring system using the adaptive force-

control. In: IEEE international symposium on assembly and

manufacturing, 17–20 Nov 2009, Seoul, South Korea,

pp 235–241

2. Kim HJ, Back J, Song JB (2009) Direct teaching and playback

algorithm for peg-in-hole task using impedance control. J Inst

Control Robot Syst 15(5):538–542

3. Asakawa N, Toda K, Takeuchi Y (2002) Automation of cham-

fering by an industrial robot; for the case of hole on free-curved

surface. Robot Comput Integr Manuf 18(5–6):379–385

4. Nagata F, Kusumoto Y, Fujimoto Y et al (2007) Robotic sanding

system for new designed furniture with free-formed surface.

Robot Comput Integr Manuf 23(4):371–379

5. Buckmaster DJ, Newman WS, Somes SD (2008) Compliant

motion control for robust robotic surface finishing. In: World

congress on intelligent control and automation, 25–27 June 2008,

Chongqing, China, pp 559–564

6. Minetto R, Volpato N, Stolfi J et al (2017) An optimal algorithm

for 3D triangle mesh slicing. Comput Aided Des 92:1–10

7. Sun YW, Guo DM, Jia ZY et al (2006) Iso-parametric tool path

generation from triangular meshes for free-form surface

machining. Int J Adv Manuf Technol 28(7–8):721–726

8. Ding S, Mannan M, Poo AN et al (2003) Adaptive iso-planar tool

path generation for machining of free-form surfaces. Comput

Aided Des 35(2):141–153

9. Ericson C (2004) Real-time collision detection. CRC Press, Boca

Raton

10. Bergen GVD (1997) Efficient collision detection of complex

deformable models using AABB trees. J Graph Tools 2(4):1–13

11. Gottschalk S, Lin MC, Manocha D (1996) OBB tree: a hierar-

chical structure for rapid interference detection. In: Proceedings

of the 23rd annual conference on computer graphics and inter-

active techniques, New Orleans, LA, USA, 4–9 August,

pp 171–180

12. Klosowski JT, Held M, Mitchell JS et al (1998) Efficient collision

detection using bounding volume hierarchies of k-dops. IEEE

Trans Vis Comput Graph 4(1):21–36

13. Larsen E, Gottschalk S, Lin MC et al (2000) Fast distance queries

with rectangular swept sphere volumes. Proc IEEE Int Conf

Robot Autom 4:3719–3726

14. Quinlan S (1994) Efficient distance computation between non-

convex objects. In: Proceedings of the IEEE international con-

ference on robotics and automation, 8–13 May, San Diego, USA,

pp 3324–3329

15. Tropp O, Tal A, Shimshoni I (2006) A fast triangle to triangle

intersection test for collision detection. Comput Anim Virtual

Worlds 17(5):527–535

16. Sabharwal CL, Leopold JL, McGeehan D (2013) Triangle-trian-

gle intersection determination and classification to support qual-

itative spatial reasoning. Polibits 48:13–22

17. Wald I, Havran V (2006) On building fast kd-trees for ray tracing,

and on doing that in O(N log N). In: IEEE symposium on inter-

active ray tracing, Salt Lake City, USA, 18–20 Sept, pp 61–69

18. Lyu H, Song X, Dai D et al (2017) Tool path interpolation and

redundancy optimization of manipulator. In: The 13th IEEE

conference on automation science and engineering (CASE),

20–23 Aug, Xi’an, China, pp 770–775

19. The 3D modeling and visualization platform. http://www.anycad.

net/. Accessed 30 March 2018

20. Murray RM, Li ZX, Sastry SS et al (1994) A mathematical

introduction to robotic manipulation. Chemical Rubber Company

Press, Boca Raton

21. RS020N product detail. https://robotics.kawasaki.com.cn/cn1/

products/robots/small-medium-payloads/RS020N/. Accessed 2

Sept 2018

22. Marvie controller product detail. http://www.googoltech.com.cn/

product/mcp/marvie/142/. Accessed 2 Sept 2018

Table 1 RS020N robot parameter

Payload/kg Horizontal reach ability/mm Vertical reach ability/mm Repeatability/mm Maximum speed/

(mm�s-1)

20 1 725 3 078 0.05 11 500

72 H. Lyu et al.

123

http://www.anycad.net/
http://www.anycad.net/
https://robotics.kawasaki.com.cn/cn1/products/robots/small-medium-payloads/RS020N/
https://robotics.kawasaki.com.cn/cn1/products/robots/small-medium-payloads/RS020N/
http://www.googoltech.com.cn/product/mcp/marvie/142/
http://www.googoltech.com.cn/product/mcp/marvie/142/

	Tool-path generation for industrial robotic surface-based application
	Abstract
	Introduction
	Tool-path generation
	Mesh object representation
	Hierarchy traversal
	Intersection of triangles pair
	Curve construction
	Adaptive mesh cutting

	CAD based interface programs
	Experiment
	An intersection test
	Tool-path generation
	Hardware workcell

	Conclusions
	Acknowledgements
	References

