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Abstract Metal matrix composites (MMCs) as advanced

materials, while producing the components with high

dimensional accuracy and intricate shapes, are more com-

plex and cost effective for machining than conventional

alloys. It is due to the presence of discontinuously dis-

tributed hard ceramic with the MMCs and involvement of a

large number of machining control variables. However,

determination of optimal machining conditions helps the

process engineer to make the process efficient and effec-

tive. In the present investigation a novel hybrid multi-re-

sponse optimization approach is proposed to derive the

economic machining conditions for MMCs. This hybrid

approach integrates the concepts of grey relational analysis

(GRA), principal component analysis (PCA) and Taguchi

method (TM) to derive the optimal machining conditions.

The machining experiments are planned to machine

Al7075/SiCp MMCs using wire-electrical discharge

machining (WEDM) process. SiC particulate size and its

weight percentage are explicitly considered here as the

process variables along with the WEDM input variables.

The derived optimal process responses are confirmed by

the experimental validation tests and the results showed

satisfactory. The practical possibility of the derived opti-

mal machining conditions is also analyzed and presented

using scanning electron microscope examinations.

According to the growing industrial need of making high

performance, low cost components, this investigation

provide a simple and sequential approach to enhance the

WEDM performance while machining MMCs.

Keywords Al7075/SiC metal matrix composites

(MMCs) � Wire-electrical discharge machining (WEDM) �
Principal component analysis (PCA) � Gray relational

analysis (GRA) � Taguchi method (TM)

1 Introduction

The material technologies in the present advanced manu-

facturing industries lead to the possible development of

innovative materials that have properties and shape suit-

able for practical use. The particulate reinforced metal

matrix composites (MMCs) in the class of advanced

materials have been gaining importance due to their out-

standing improved mechanical properties over conven-

tional metallic alloys for diverse specialized applications in

aerospace and automobile industries. However, due to the

presence of hard ceramic particulate as the reinforcement

made these materials as difficult-to-cut using traditional

machining methods [1, 2]. As the result, these materials

have limited their applications to only a few specialized

components. On the other hand, the non-traditional

machining methods have expanded their importance for

machining MMCs. However, non-traditional machining

methods involve expensive equipment and complex

mechanisms while producing the components with high

precision and intricate shapes.

Wire-electrical discharge machining (WEDM) in the

class of non-traditional machining methods has been pop-

ularly known as an efficient and economical machining

method used to machine difficult-to-cut materials regard-

less of their hardness into complex contours [3, 4]. WEDM
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is a widely accepted non-contact thermo-electrical

machining process for metal removal in which material is

removed by generating a series of discrete sparks between

electrode and work piece immersed in a dielectric medium

[5]. Therefore, WEDM is identified as an effective alter-

native for machining metal matrix composites for produc-

ing complex shapes with a high degree of accuracy.

Discharge current, pulse duration, pulse frequency, wire

speed, wire tension, and dielectric flow are significant

control variables in WEDM [6] while the metal removal

rate (MRR), surface roughness (Ra), kerf width (Kw) and

white layer thickness (WLT) are considerable output

parameters in evaluating the machinability. Apart from

these WEDM control variables, while machining MMCs,

the reinforced ceramic particulate size and percentage in

the matrix also play a significant role in evaluating the

machinability, as the ceramic content in MMCs as rein-

forcement alters the material hardness and electrical con-

ductivity apparently [7]. Generally, the selection of the

WEDM process variables is primarily based on the oper-

ator’s experience and the data handbook provided by the

machine tool manufacturer. However, such criteria may

guarantee neither high production rate nor good surface

quality of the machine component [5] because the process

responses are highly correlated with each other. This made

the process highly complicated in choosing the appropriate

cutting conditions. Hence, the selection of optimal

machining conditions became quite essential because the

MMCs are relatively costlier than the conventional metals

and alloys and the WEDM process also a cost expensive

machining process.

Therefore, a significant amount of research has explored

on different methodologies of achieving the ultimate

WEDM goals of optimizing the numerous process param-

eters to enhance the overall machining reliability. Which

include the evolutionary optimization techniques such as

genetic algorithm (GA), simulated annealing (SA), particle

swarm optimization (PSO), ant colony optimization (ACO)

and artificial bee colony (ABC) algorithm [8] and the sta-

tistical based optimization techniques such as Taguchi

method (TM), grey relational analysis (GRA), principal

component analysis (PCA), etc. The evolutionary tech-

niques require a huge number of experimental data so that

they are treated as costlier and time consuming approaches

while the statistical optimization approaches are limited

with less number of process variables, their levels of

variability and are suitable for the process with a single

quality characteristic and to find its optimal process

parameters at a time. However, practically the manufac-

turing processes involve multiple quality characteristics

which are generally complex but essential. In case of

WEDM process, while machining MMCs, the increased

number of control variables made the process much

complex to derive its optimal process conditions due to the

conflicting nature between the process responses at their

process control parameters which in turn raised the diffi-

culty in finding the optimal machining conditions. There-

fore, the state of affairs raised the need of an effective

optimization approach to handle multiple correlated

responses simultaneously to succeed at the solutions to this

problem.

In this paper, a novel hybrid multi-response optimiza-

tion approach is proposed to derive the optimal machining

conditions for machining MMCs under WEDM process.

This hybrid approach integrates the concepts of GRA, PCA

and TM to deal with the problem of simultaneous opti-

mization of five correlated WEDM performance measure

such as metal removal rate, surface roughness, kerf width,

wire wear rate, and white later thickness while machining

Al7075/SiCp MMCs.

2 Literature review

WEDM is an effective alternative for machining advanced

materials like metal matrix composites [9]. To improve the

performance of WEDM process, the experimental works in

Ref. [9] have been well explored on various aspects of

modelling, simulation and process optimization. Ramakr-

ishnan and Karunamoorthy [10] proposed artificial neural

network (ANN) models and multi-response signal-to-noise

(MRSN) ratio in addition to Taguchi’s parametric design

approach to predict and optimize the performance charac-

teristics of WEDM process namely material removal rate

and surface roughness. Yuan et al. [11] developed a reli-

able multi-objective optimization technique based on

Gaussian process regression (GPR) to optimize the high-

speed wire-cut electrical discharge machining (WEDM-

HS) process. The model performance of the GPR, back-

propagation neural network (BPNN) was compared based

on the experimental results and found that, the GPR models

have the advantages over BPNN models in terms of model

accuracy and feature scaling and probabilistic variable.

Mandal et al. [12] proposed artificial neural network

(ANN) with back propagation algorithm was used to model

the MRR and tool wear rate in EDM process and simul-

taneously the non-dominating sorting genetic algorithm-II

(NSGA-II) was adopted for these models for optimization.

Kuriakose and Shunmugam [13] considered the cutting

velocity and surface finish as the process performance

characteristics of WEDM. A multiple regression model

was developed to represent the relationship between input

and output variables and a non-dominated sorting genetic

algorithm (NSGA) was used to optimize the process per-

formance. Scott et al. [14] presented a factorial design

model to predict the process responses via. MRR and
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surface finish and consequently based on the concept of a

non-dominated point the best control settings of WEDM

process were determined. In Ref. [6], the relationship

between control factors and responses were established by

means of nonlinear regression models and then GA was

employed to optimize the WEDM process.

In the aforesaid multi-objective optimization approaches

for WEDM, modeling of process responses is vital and

requires enormous experimental data for developing the

best-fit model. This results in a rise of experimentation

cost, time and expertise in process modeling. In addition,

the values of resulted process variables in the optimal front

may not be available with the parameter control panel of

the WEDM machine.

Taguchi’s utility concept is being used for a wide range

of manufacturing applications to improve the production

quality [15]. Ramakrishnan and Karunamoorthy [16] pro-

posed the Taguchi’s robust parametric design approach to

optimize three WEDM responses via. MRR, Ra and WWR.

These three responses were replaced by an MRSN ratio

which represents the overall quality index and hence the

optimal process settings were derived for the maximum

MRSN. Tosun et al. [17] used Taguchi’s analysis of S/N

ratio to obtain the optimum machining parameter combi-

nation based on kerf and MRR as WEDM responses. The

investigations presented in Refs. [16] and [17], in the for-

mer, the multi-response optimization problem was con-

verted into a single objective of MRSN to maximize, while

in the later, a weighting method was adopted to transform

the normalized kerf and normalized MRR into a single

objective format, and hence minimized the resultant

weighted objective function. Owing to the increasing

complexity of the present advanced manufacturing pro-

cesses with simultaneous optimization of multiple respon-

ses, the original Taguchi approach failed to solve a multi-

response optimization problem as it is designed to optimize

a single response only.

To overcome these shortcomings in dealing with the

problem of simultaneous optimization of multiple correlated

responses, the Taguchi’s utility concept has been integrated

with the other suitable multivariate statistical methods such

as desirability function approach, GRAand PCA.The idea of

these coupled approacheswas the derivation of an equivalent

process quality index by accumulating the multiple respon-

ses to represent the overall quality of the process so that the

problem of simultaneous optimization of multiple responses

is substituted by the problem of maximizing the overall

quality index of the process. Hence, Taguchi’s utility theory

can be effectively applied to maximize the overall quality of

the process.

The results in GRA and PCA approaches are based on

the original data and the calculations are simple and easy to

understand [15]. In GRA coupled Taguchi technique, the

data are processed based on the assumption that the output

responses are interrelated or independent. Therefore, the

multiple output responses are weighted and aggregated into

a single quality index to optimize. PCA based Taguchi

approach aggregates the multiple process responses dis-

tributed in multiple dimensions by eliminating the corre-

lation among them without much loss of information and

expresses as a single quality index to optimize. However,

the relative performance of these optimization methods is

completely unknown as the optimal results of these

approaches are different [18, 19]. The grey relational

analysis eventually presents the comparative difference

between the values in sequence based on the grey relational

grade values. Therefore, GRA is useful to measure the

approximate correlation among the members in the

sequence [17]. While PCA highlights the similarity and

dissimilarity among the data sequences by identifying the

dimensions in which the data sequences are distributed. By

accumulating these merits in GRA and PCA, Chiang et al.

[20] proposed the Taguchi method combined with the grey

relational analysis to find the robust parameters of thin-film

sputtering process with multiple quality characteristics. In

order to consider the correlation between quality charac-

teristics, the principal component analysis was eventually

used. The weights for quality characteristics were deter-

mined by employing the entropy measurement method to

eliminate the multiple co-linearity between them. Sibalija

and Majstorovic [21] also integrated GRA and PCA to un-

correlate and synthesize responses into a single perfor-

mance measure. They used the grey relational grade as the

synthetic multi-response performance index which ade-

quately takes into account of all the possible correlated

responses with respect to the customer specifications.

Weights for the grey relational coefficients are derived

based on the total variance of the original responses from

PCA. However, the multiple responses in these coupled

approaches were aggregated based on the allocation of

individual priority weights for each response. The change

in the value of priority weights changes the overall quality

index value [22]. In addition, the process responses prac-

tically may not hold equal weights and are varied based on

the functional requirement of the machined product spec-

ified by the manufacturing engineer. For a particular

machining application: (i) the degree of the importance of

the output response may vary based on the application

criteria and the functional requirements which alters the

weights for the response; (ii) the correlation between the

responses should not be negligible as the change in one

response causes to significant change in the rest of the

responses. Therefore, the judgement of priority of weights

in conjunction with the assumption of negligible response

correlation may lead to imprecision, uncertainty as well as

vagueness in the solution [23].
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In contrast to the above multi-response optimization

approaches, the specific objective of this paper is to

develop a simple, sequential and efficient method to deal

with the simultaneous optimization of multiple correlated

performance measures of WEDM process for machining

the metal matrix composites. Therefore, the concepts of

GRA, PCA and TM are integrated to handle the correlated

multiple responses with due consideration of the correla-

tions among them, their individual importance and

assumptions related to the type of process.

3 Methodology for multi-objective optimization

For simultaneous optimization of multiple WEDM

quality characteristics in the present investigation,

GRA, PCA and TM are integrated and applied sequen-

tially. This section gives a brief idea about these three

approaches.

3.1 GRA

GRA based on grey system theory was first proposed by

Deng [24]. Grey theory deals with a system containing

insufficient information or in which the model is unsure.

GRA can be applied to complex multivariate systems to

analyze the uncertain relations between multiple variables

associated with the system [25]. In recent years, grey

relational analysis has become a powerful tool to analyze

the processes with multiple performance characteristics.

Since, the present problem consists of five process quality

measures which have correlation between them. Therefore

finding the optimal settings of the process is a highly dif-

ficult task. Therefore, application of grey relational anal-

ysis is inevitable to handle these five responses for

optimizing the production quality [26]. To bring all the

responses of different dimensions at diverse ranges of the

system, usually GRA uses the data pre-processing given as

follows [27]:

Step 1: Array of measured multiple responses during

machining

A ¼

y11 y12 y13 � � � y1n
y21 y22 y23 � � � y2n
y31 y32 y33 � � � y3n

..

. ..
. ..

. ..
. ..

.

yi1 yi2 yi3 � � � yin

2
666664

3
777775
; ð1Þ

where A is the array of the original sequence of the mea-

sured responses, i the number of experimental run and n the

number of the response.

Step 2: Normalization of array of original sequence of

the measured responses

The responses are normalized using the following

formulas.

The lower-the-better (LB) is the criterion:

xiðkÞ ¼
max yiðkÞ � yiðkÞ

max yiðkÞ �min yiðkÞ
: ð2Þ

The higher-the-better (HB) is the criterion:

xiðkÞ ¼
yiðkÞ �min yiðkÞ

max yiðkÞ �min yiðkÞ
; ð3Þ

where x�i ðnÞ is the normalised value of the ith corre-

sponding to the nth response; the max yoi ðnÞ is the largest

value of yi(n) in the nth response and the min yoi ðnÞ is the
smallest value of yi(n) in the nth response. Therefore, the

normalized array of the original sequence of the responses

x is represented as

x ¼

x11 x12 x13 � � � x1n
x21 x22 x23 � � � x2n
x31 x32 x33 � � � x3n

..

. ..
. ..

. ..
. ..

.

xi1 xi2 xi3 � � � xin

2
666664

3
777775
: ð4Þ

Step 3: Calculation of grey relational coefficient and

grey relational grade

In GRA, the grey relational grade represents the mea-

sure of relevance among the process responses. After the

data processing, the grey relational coefficient ni(k) for the
kth process response in the ith experiment can be expressed

as

niðkÞ ¼
Dmin þ 1Dmax

D0iðkÞ þ 1Dmax

; ð5Þ

where D0i ¼ x0ðkÞ � xiðkÞk k is the deviation of absolute

value x0(k) and xi(k). 1 is the distinguishing coefficient

0 B w B 1.

Dmin ¼ min
8j2i

min
8k

x0ðkÞ � xjðkÞ
�� ��; ð6Þ

Dmax ¼ max
8j2i

max
8k

x0ðkÞ � xjðkÞ
�� ��: ð7Þ

Step 4: Determination of overall grey relational grade

The overall grey relational grade represents as the

overall performance characteristic of multiple responses of

the process. This is calculated as the average of individual

grey relational grades of the responses at the ith experi-

mental run

ci ¼
1

n

Xn
k¼1

niðkÞ: ð8Þ

Therefore, the overall grey relational grade converts the

multiple responses (multi-grey relational grades) into a

single response (overall grey relational grade) with the

objective to maximize. Finally the overall grey relational
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grades rank the experimental runs and the set of variables

corresponding to the experimental run having higher grey

relational grade referred as closer to the optimal values.

3.2 PCA

PCA is a multivariate statistical approach introduced by

Pearson [28] and was further developed by Hotelling [29].

To deal with multiple correlated performance responses,

PCA converts the data of the multiple correlated responses

into several uncorrelated quality indices called principal

components and is then simultaneously accumulated to

formulate a mathematical function called composite prin-

cipal component (CPC). CPC represents the overall quality

of the process. Thus, based on the maximization of the

overall quality of the process, the composite principal

component is maximized to find the optimal set of process

variables. PCA uses the data pre-processing to bring all the

responses of different dimensions at diverse ranges of the

system. The procedural steps involved in PCA are given

below [7, 18].

Step 1: Array of measured multiple responses during

machining

A ¼

y11 y12 y13 � � � y1k
y21 y22 y23 � � � y2k
y31 y32 y33 � � � y3k

..

. ..
. ..

. ..
. ..

.

yi1 yi2 yi3 � � � yik

2
666664

3
777775
; ð9Þ

where A is the S/N ratio of each response, i the number of

experimental runs and k the number of the response.

Step 2: Normalization of array of multiple responses

The responses are normalized using the following

formula.

The lower-the-better (LB) is the criterion

xiðkÞ ¼
max yiðkÞ � yiðkÞ

max yiðkÞ �min yiðkÞ
: ð10Þ

The higher-the-better (HB) is the criterion

xiðkÞ ¼
yiðkÞ �min yiðkÞ

max yiðkÞ �min yiðkÞ
; ð11Þ

where xi(k) is the normalised value of the kth response;

min yi(k) is the smallest value of yi(k) for the kth response;

and max yi(k) is the largest value of yi(k) for the kth

response. The normalized array x is shown as

x ¼

x11 x12 x13 � � � x1k
x21 x22 x23 � � � x2k
x31 x32 x33 � � � x3k

..

. ..
. ..

. ..
. ..

.

xi1 xi2 xi3 � � � xik

2
666664

3
777775
: ð12Þ

Step 3: Calculation of variance-covariance matrix M

from the normalized data

M ¼

N11 N12 N13 � � � N1k

N21 N22 N23 � � � N2k

N31 N32 N33 � � � N3k

..

. ..
. ..

. ..
. ..

.

Ni1 Ni2 Ni3 � � � Nik

2
666664

3
777775
; ð13Þ

Nk;l ¼
Cov xiðkÞ; xiðlÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var xiðkÞ½ �Var xiðlÞ½ �

p ; ð14Þ

where l = 1, 2, 3, ���, k, and Cov[xi(k), xi(l)] is covariance

of sequences xi(k) and xi(l).

Step 4: Calculation of eigenvalues kj and eigenvectors

Vj from the correlation coefficient array.

Step 5: Evaluation of the principal components wj.

The eigenvector Vj represents the factor of the jth number

of quality characteristics of the jth principal component. For

example, if represents the jth quality characteristic, the jth

principal component wj can be treated as a quality indicator

with the required quality characteristic.

wj ¼ V1jQ1 þ V2jQ2 þ � � � þ VjjQj

� �1=j

¼
Pk
j¼1

VjQj

� �1=j
;

ð15Þ

where w1 is the first principal component, and w2 is the 2nd

principal component, and so on. The principal components

are aligned in descending order with respect to variance,

and therefore the w1 accounts for the most variance in the

data.

Step 6: Evaluation of the composite principal compo-

nent w.
The composite principal component w represents the

index of multi-composite quality for multi-quality respon-

ses. It is defined as the combination of principal compo-

nents with their individual eigenvalues.

3.3 TM

TM is an effective tool to deal with the optimization of

multiple responses influenced by multiple variables

simultaneously. It minimizes the number of experimental

runs without considerable loss of data. Hence, it has

become an extensively adopted method to solve the com-

plex problems. In this method, the performance charac-

teristic is represented by S/N ratio and the largest value of

S/N ratio is desired. S/N ratios are logarithmic functions of

desired output and served as objective function in the

optimization process. There are three types of S/N ratios:

the lower-the-better, the higher-the-better, and the nomi-

nal-the-better and these are expressed as [30]
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(i) Lower-the-better

S

N
¼ �10 log

1

n

Xn
i¼1

y2i

 !
: ð16Þ

(ii) Higher-the-better

S

N
¼ �10 log

1

n

Xn
i¼1

1

y2i

 !
: ð17Þ

(iii) Normal-the-better

S

N
¼ �10 log

1

ns

Xn
i¼1

y2i

 !
; ð18Þ

where yi is the ith value of measured response, n the total

number of runs and s the standard deviation.

4 PCA based GRA integrated TM

GRA is one of the successfully used multi-response

optimization techniques for solving the problems with

multiple correlated performance characteristics of dis-

tinct manufacturing processes. Some of these manufac-

turing processes are: CNC turning [31], high-speed end

milling [32], drilling of Al/SiC metal matrix composite

[33], electrical discharge machining (EDM) [34], Micro-

EDM [35], Wire-EDM process of particle-reinforced

material [36], and laser cutting process [37]. GRA

defines the grey relational grade favourable as an indi-

cator of overall performance of the process replacing the

multiple performance characteristics. However, while

data processing in GRA, most of the researchers deter-

mined the weighting values for the process responses

based on their own subjective estimation, but this

approach cannot objectively reveal the relative impor-

tance of various performance characteristics.

PCA converts the data of multiple responses into a set

of principal components which are consequently con-

verged and accumulated based on their eigenvalues into

a composite principle component (CPC). The CPC is

assumed to replace multiple quality characteristics into a

single quality index representing the overall process

quality. Hence, the optimal combination of the process

variables is derived by maximizing the CPC. However,

there are two shortcomings highlighted in the process of

dealing with multiple correlated process responses in

PCA [38] that: firstly if there exists one eigen value

which is greater than 1, then based on Kaiser’s criterion,

the corresponding principal component is assumed to

represent the actual responses and the eigen vector cor-

responding to the largest Eigen value is used to replace

the actual responses for further analysis. Stochastic

manufacturing systems may result more than one prin-

cipal component and may exist more than one eigenvalue

which is greater than 1. In such case, determination of

feasible solution corresponding to each response is not

guaranteed. Secondly, the derived composite principal

component based optimal values cannot be guaranteed in

replacing the multiple responses as the chosen principal

component with only fewer variations can be explained

by the total variation [28].

In the present investigation, five WEDM process

responses viz., surface roughness, metal removal rate,

wire wear ratio, kerf and white layer thickness were

taken into consideration to represent the WEDM per-

formance quality characteristics during machining

Al7075/SiCp MMCs with due consideration of particu-

late size, volume fraction, pulse-on time, pulse-off time

and wire tension as the process variables to present the

total performance compliance of the machining process.

Since the chosen process responses highly correlate with

the process control variables, they need to optimize

simultaneously. Therefore, the problem is treated as the

multi-response optimization problem to optimize five

correlated responses simultaneously.

Therefore, with reference to the above discussions, the

GRA or PCA alone cannot be applied to the present

problem as they aggregates the process responses based

on their individual priorities. Therefore, in the present

investigation, initially to transfer the experimentally

measured data into comparability sequences the GRA is

adopted and then grey relational coefficients are calcu-

lated for each response. In the next step, to estimate the

grey relational grade (GRG) in GRA, the PCA is applied

to evaluate the weighting values corresponding to the

performance characteristics so that their relative impor-

tance can be properly and objectively described. How-

ever, the derived GRG, based on optimal set of variable

cannot be assured to replace the multiple responses

because the chosen principal components, in which fewer

variations can be explained by total variation. Therefore,

the Taguchi’s robust higher-the-best SNR criterion is

employed to optimize the PCA weighted GRG to deter-

mine the optimal settings to make the methodology more

practical and efficient [32]. Finally, the significance of the

chosen process variables for the process performance is

studied by employing the analysis of variance (ANOVA).

The proposed methodology of PCA based GRA integrated

Taguchi’s approach for multi-response optimization

approach is depicted in Fig.1.
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5 Experimentation

5.1 Equipment, workpiece material

and experimental procedure

Machining experiments were conducted on a five-axis

CNC-Wire Electrical Discharge Machine, model number

CT 520A, made by Joemars Machinery and Electric

Industrial Co. Ltd., Taiwan. Details of work specimens, the

electrode and the other machining conditions are listed in

Table 1. Prior to machining, experiments were designed

according to the design of experiments (DOE) to minimize

the number of experimental runs and total 27 experiments

were conducted based on Taguchi’s L27 orthogonal array

[39].

Work materials are the stir cast Al7075/SiCp MMCs.

The cast specimens consist different sizes of silicon carbide

particulate such as 25, 50 and 75 lm at different volumes

such as 5%, 10% and 15%. Based on the pilot experimental

runs, the levels of WEDM control variables were selected

as listed in Table 2. The experimental design matrix is

presented in Table 3.

5.2 Measurement of responses

Surface roughness (Ra), MRR, wire wear ratio (WWR),

kerf (Kw) and WLT are considered as the machining

responses to measure, as these are more significant WEDM

performance characteristics representing the machined

component surface quality, dimensional accuracy and

production rate. Ra was measured by using MITUTOYO

surface tester with 0.8 mm cut-off value. Total six mea-

surements were taken at six different locations in the

direction perpendicular to the cutting and their average

value was considered as the final Ra value. While calcu-

lating MRR, the work piece weight was measured before

and after machining and MRR was estimated as the ratio of

the weight difference of the work piece before and after

machining to the machining time. For WWR measurement,

the weight of the wire spool was measured before

machining and after machining. Then WWR was calcu-

lated as the ratio of the weight loss of wire after machining

to the weight of wire before machining. The weights of the

wire before machining and after machining were measured

Fig. 1 Proposed methodology

Table 1 Machining conditions

No. Description

1 Work piece (anode): Al7075/SiCp

2 Tool (cathode): brass wire of diameter 250 lm

3 Work piece height: 5 mm

4 Cutting length: 75 mm

5 Angle of cut: vertical

6 Location of work piece: centre to the table

7 Servo reference voltage: 35 V

8 Average voltage gap maintained: 40 V

9 Die-electric temperature: 25 �C
10 Die-electric fluid: distilled water

Table 2 Control factors and their levels

S. No. Variable Notation Levels

-1 0 1

1 Particulate size /lm X1 25 50 75

2 Volume of SiC /% X2 5 10 15

3 Pulse-on time /ls X3 5 7 9

4 Pulse-off time /ls X4 25 35 45

5 Wire tension /g X5 1 5 9
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using an electronic balance with high accuracy and recor-

ded as the response value of WWR.

In WEDM, the corner errors due to variation in Kerf are

quite common and are limiting the internal corners to be

produced in the WEDM components. This occurs because

of the vibrations and deflections of the wire in the spark

gap. Therefore Kerf greatly influences the dimensional

accuracy of the finished part. In order to produce the

WEDMed components with a high degree of dimensional

accuracy, the study of process parameters on Kerf is

important. The surface quality of the WEDM part is usu-

ally measured in terms of surface integrity, surface cracks,

surface roughness, etc. and all of these are greatly affected

by the white layer thickness. There are many WEDM

process variables which are significant to the formation of

white layer during machining. The study of the parameters

in this investigation for white layer thickness helps to

produce better surface quality of the machined product.

Hence, the Kw and WLT were taken into consideration

as the process responses and were measured using

computerized optical microscope, model GX51 inverted

microscope made by OLYMPUS CORPORATION with

the magnification range of 20 lm. The measurements

were taken across the direction of machining at six dif-

ferent locations along the machined length and the

averages of them were considered as the kerf and WLT

values. The measured values of responses are listed in

Table 4.

6 Optimization using GRA–PCA–TM technique

In the procedure of the proposed method, the experimen-

tally measured data were normalized as the first step using

Eqs. (2) and (3) to minimize the redundancy and the

dependency between the responses. Typically, MRR is

treated as a maximization response; Eq. (3) was used to

normalize. While the rest of the responses, such as surface

roughness, wire wear ratio, kerf and white layer thickness

were considered to minimize, therefore Eq. (2) was used to

normalize. The resulted normalized values are listed in

Table 5. From Table 5, the larger values of the normalized

results stand for better performance, and the maximum

normalized results that are equal to 1 specify the best

performance [24].

After normalization, the resulted normalized values

were used to compute the grey relational coefficients for

each response by using Eq. (5). Deviation sequence

values in Eq. (5) were derived by substituting the nor-

malized values in Eqs. (6) and (7). Table 6 presents the

results of all deviation sequences (D0i) for i = 1–27, and

Table 7 presents the obtained grey relational coefficient

values from the deviation sequence. Consequently to

reflect the relative importance of process responses

objectively while calculating the grey relational grade,

the method of PCA is specifically introduced to derive

the appropriate weight of each response [40]. The eigen

values and the corresponding eigenvectors and the

variance contribution of the responses are presented in

Table 8. The weighted grey relational grade (WGRG)

was calculated and listed in Table 9. Hence the multi-

response optimization problem is converted into a single

objective optimization problem with the objective to

maximize the WGRG. Subsequently, Taguchi’s robust

higher-the-best SNR criterion is employed to optimize

WGRG listed in Table 9. The S/N ratio plot for the

WGRG is represented graphically in Fig. 2. With the

help of Fig. 2, the set of optimal WEDM process vari-

ables were determined. From Fig. 2, the predicted opti-

mal levels of control variables refer to X1: -1, X2: 0, X3:

-1, X4: 1, X5: -1.

Table 3 Design of experimental matrix: Taguchi’s L27 orthogonal

array

Exp. No. Coded control factor

X1 X2 X3 X4 X5

1 -1 -1 -1 -1 -1

2 -1 -1 0 0 0

3 -1 -1 1 1 1

4 -1 0 -1 0 0

5 -1 0 0 1 1

6 -1 0 1 -1 -1

7 -1 1 -1 1 1

8 -1 1 0 -1 -1

9 -1 1 1 0 0

10 0 -1 -1 0 1

11 0 -1 0 1 -1

12 0 -1 1 -1 0

13 0 0 -1 1 -1

14 0 0 0 -1 0

15 0 0 1 0 1

16 0 1 -1 -1 0

17 0 1 0 0 1

18 0 1 1 1 -1

19 1 -1 -1 1 0

20 1 -1 0 -1 1

21 1 -1 1 0 -1

22 1 0 -1 -1 1

23 1 0 0 0 -1

24 1 0 1 1 0

25 1 1 -1 0 -1

26 1 1 0 1 0

27 1 1 1 -1 1
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7 Results and discussions

7.1 Statistical analysis of WGRG

Analysis of variance test (ANOVA) was conducted for

WGRG values to understand the significance of each

individual process variable on the WGRG. Table 10 shows

the output of ANOVA. It is observed from Table 10 that

the p-value less than 0.05 indicate that the variable is

considered to be statistically significant at 95% confidence

level. It is also observed from Table 10 that pulse-on time,

wire tension and particulate size are the most significant

process parameters on the overall performance of the

process. The individual percentage contribution of each

variable in the performance of the process is presented in

Fig. 3. It is clear from Fig. 3 that pulse-on time is the major

influencing factor contributing 67.87% to the overall

quality of the machine component followed by wire tension

contributing 20.09%, particulate size contributing 10.58%,

volume fraction contributing 1.12% and pulse-off time

contributing 0.35%.

7.2 Confirmatory experiments

The derived set of optimal values for the process variables

from the proposed approach is: 25 lm of particulate size,

10% volume of SiCp, 6 ls of pulse-on time, 45 ls of

pulse-off time and 1 g of wire tension. Once the optimal

level of the machining parameters was identified, the

confirmation experiments were conducted to validate the

derived optimal WEDM parameters to assess practical

feasibility of the proposed novel methodology. The results

of confirmation tests listed in Tables 11 and 12 show close

correlation between the predicted and experimental values

of the derived optimal control variables.

Figures 4, 5, 6 and 7 show the microscopic examina-

tions of the machining responses of the obtained levels of

variables. Figure 4 indicates the best possible surface finish

Table 4 Experimentally measured responses

Exp. No. Ra /lm MRR /(g�min-1) WWR Kw /mm WLT /lm

1 0.75 0.064 0.003 0.314 3.568

2 1.07 0.069 0.018 0.368 3.573

3 1.46 0.073 0.057 0.398 3.627

4 1.00 0.057 0.005 0.320 3.511

5 1.23 0.037 0.024 0.350 3.541

6 1.30 0.089 0.054 0.356 3.593

7 1.34 0.019 0.015 0.310 3.523

8 1.25 0.061 0.023 0.333 3.565

9 1.78 0.079 0.070 0.350 3.533

10 1.17 0.046 0.011 0.340 3.550

11 0.96 0.035 0.016 0.347 3.539

12 1.55 0.104 0.056 0.371 3.690

13 0.88 0.017 0.006 0.291 3.521

14 1.31 0.063 0.023 0.340 3.567

15 1.81 0.082 0.074 0.352 3.586

16 1.43 0.040 0.014 0.320 3.544

17 1.77 0.044 0.042 0.327 3.548

18 1.67 0.048 0.059 0.327 3.552

19 1.20 0.019 0.017 0.313 3.623

20 1.64 0.069 0.034 0.340 3.573

21 1.57 0.083 0.065 0.343 3.637

22 1.57 0.045 0.022 0.321 3.549

23 1.33 0.047 0.033 0.323 3.551

24 1.83 0.052 0.051 0.332 3.506

25 1.45 0.028 0.025 0.294 3.532

26 1.79 0.018 0.042 0.309 3.522

27 2.49 0.078 0.091 0.334 3.582
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with little damage. Figure 5 exhibits the continuous kerf

with little localized irregularities due to the unsterilized

spark and irregularly dropped SiC particle around the

cutting path. Figure 6 shows the white layer over the

machined surface and Fig. 7 shows the wire surface after

machining at the obtained optimal machining variables.

These figures show that the best possible output responses

are obtained through the proposed methodology. Hence,

the feasible result of validation experiment highlighting the

enrichment in quality characteristic at the optimal param-

eter setting.

8 Conclusions

In this article, a hybrid, integrated approach of PCA

weighted GRA based TM has been proposed to optimize

the multiple quality characteristics for machining Al7075/

SiCp MMCs in WEDM process. Five WEDM responses

were considered to represent the process performance. To

solve the problem of simultaneous optimization of five

process responses, grey relational analysis was employed

to transform into optimization of a single response prob-

lem, the GRG. The concept of PCA was introduced to

derive the appropriate weight of each response while cal-

culating the GRG. WGRG was derived by accumulating

the values of PCA weighted GRG values. Consequently the

WGRG was optimized based on the Taguchi’s signal-to-

noise, higher-the-better criterion.

The concluding remarks of this article can be summa-

rized as follows:

(i) Derived values of optimal WEDM combinations

from the proposed methodology are: 25 lm of

particulate size, 10% volume of SiCp, 6 ls of

pulse-on time, 45 ls of pulse-off time and 1 g of

wire tension for overall quality of the process.

(ii) The resulted values of the process responses for

optimum variables are Ra 0.75 lm, MRR

0.026 g�min-1, WRR 0.006, Kw 0.290 mm and

WLT 3.468 lm.

Table 5 Normalization of experimental data

S. No. Ra /lm MRR /(g�min-1) WWR Kw /mm WLT /lm

1 1.000 0.540 1.000 0.785 0.646

2 0.816 0.598 0.830 0.280 0.630

3 0.592 0.644 0.386 0.000 0.301

4 0.856 0.460 0.977 0.729 0.984

5 0.724 0.230 0.761 0.449 0.731

6 0.684 0.828 0.420 0.393 0.566

7 0.661 0.023 0.864 0.822 0.788

8 0.713 0.506 0.773 0.607 0.655

9 0.408 0.713 0.239 0.449 0.915

10 0.759 0.333 0.909 0.542 0.703

11 0.879 0.207 0.852 0.477 0.737

12 0.540 1.000 0.398 0.252 0.000

13 0.925 0.000 0.966 1.000 0.794

14 0.678 0.529 0.773 0.542 0.649

15 0.391 0.747 0.193 0.430 0.589

16 0.609 0.264 0.875 0.729 0.722

17 0.414 0.310 0.557 0.664 0.709

18 0.471 0.356 0.364 0.664 0.696

19 0.741 0.023 0.841 0.794 0.155

20 0.489 0.598 0.648 0.542 0.630

21 0.529 0.759 0.295 0.514 0.269

22 0.529 0.322 0.784 0.720 0.706

23 0.667 0.345 0.659 0.701 0.699

24 0.379 0.402 0.455 0.617 1.000

25 0.598 0.126 0.750 0.972 0.759

26 0.402 0.011 0.557 0.832 0.791

27 0.000 0.701 0.000 0.598 0.601

Table 6 Calculation of deviation sequences (D0i)

S. No. Ra /lm MRR /(g�min-1) WWR Kw /mm WLT /lm

1 0.000 0.460 0.000 0.215 0.354

2 0.184 0.402 0.170 0.720 0.370

3 0.408 0.356 0.614 1.000 0.699

4 0.144 0.540 0.023 0.271 0.016

5 0.276 0.770 0.239 0.551 0.269

6 0.316 0.172 0.580 0.607 0.434

7 0.339 0.977 0.136 0.178 0.212

8 0.287 0.494 0.227 0.393 0.345

9 0.592 0.287 0.761 0.551 0.085

10 0.241 0.667 0.091 0.458 0.297

11 0.121 0.793 0.148 0.523 0.263

12 0.460 0.000 0.602 0.748 1.000

13 0.075 1.000 0.034 0.000 0.206

14 0.322 0.471 0.227 0.458 0.351

15 0.609 0.253 0.807 0.570 0.411

16 0.391 0.736 0.125 0.271 0.278

17 0.586 0.690 0.443 0.336 0.291

18 0.529 0.644 0.636 0.336 0.304

19 0.259 0.977 0.159 0.206 0.845

20 0.511 0.402 0.352 0.458 0.370

21 0.471 0.241 0.705 0.486 0.731

22 0.471 0.678 0.216 0.280 0.294

23 0.333 0.655 0.341 0.299 0.301

24 0.621 0.598 0.545 0.383 0.000

25 0.402 0.874 0.250 0.028 0.241

26 0.598 0.989 0.443 0.168 0.209

27 1.000 0.299 1.000 0.402 0.399
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Table 7 Calculation of grey relational coefficients of individual

responses

S. No. Ra /lm MRR /(g�min-1) WWR Kw /mm WLT /lm

1 1.000 0.521 1.000 0.699 0.585

2 0.731 0.554 0.746 0.410 0.575

3 0.551 0.584 0.449 0.333 0.417

4 0.776 0.481 0.956 0.649 0.969

5 0.644 0.394 0.677 0.476 0.650

6 0.613 0.744 0.463 0.452 0.535

7 0.596 0.339 0.786 0.737 0.702

8 0.635 0.503 0.688 0.560 0.592

9 0.458 0.635 0.397 0.476 0.855

10 0.675 0.428 0.846 0.522 0.627

11 0.805 0.387 0.772 0.489 0.655

12 0.521 1.000 0.454 0.401 0.333

13 0.870 0.333 0.936 1.000 0.708

14 0.608 0.515 0.688 0.522 0.588

15 0.451 0.664 0.383 0.467 0.549

16 0.561 0.405 0.800 0.649 0.643

17 0.460 0.420 0.530 0.598 0.632

18 0.486 0.437 0.440 0.598 0.622

19 0.659 0.339 0.759 0.708 0.372

20 0.495 0.554 0.587 0.522 0.575

21 0.515 0.675 0.415 0.507 0.406

22 0.515 0.424 0.698 0.641 0.630

23 0.600 0.433 0.595 0.626 0.624

24 0.446 0.455 0.478 0.566 1.000

25 0.554 0.364 0.667 0.947 0.675

26 0.455 0.336 0.530 0.749 0.705

27 0.333 0.626 0.333 0.554 0.556

Table 8 Analysis of (covariance matrix) eigen values, eigenvectors, accountability proportion (AP) and cumulative accountability proportion

(CAP) computed for the five major quality indicators

w1 w2 w3 w4 w5

Eigenvectors 0.998 -0.031 0.02 0.017 -0.044

0.019 0.368 -0.509 -0.704 -0.331

0.054 0.181 -0.219 -0.187 0.939

0.009 0.362 -0.629 0.683 -0.081

0.013 0.837 0.544 0.055 -0.024

Eigenvalues 0.1349 0.00233 0.00044 0.00015 0.00008

AP 0.978 0.017 0.003 0.001 0.001

CAP 0.978 0.995 0.998 0.999 1

Table 9 Calculation of weight grey relational grade (overall quality

index) and corresponding S/N ratios

S. No. WGRG S/N ratio (higher-the-better)

1 0.620 -4.152

2 0.379 -8.427

3 0.226 -12.918

4 0.622 -4.124

5 0.336 -9.473

6 0.327 -9.709

7 0.425 -7.432

8 0.359 -8.898

9 0.346 -9.218

10 0.404 -7.872

11 0.412 -7.702

12 0.350 -9.119

13 0.649 -3.755

14 0.345 -9.244

15 0.262 -11.634

16 0.391 -8.156

17 0.285 -10.903

18 0.273 -11.277

19 0.353 -9.045

20 0.300 -10.458

21 0.263 -11.601

22 0.348 -9.168

23 0.337 -9.447

24 0.391 -8.156

25 0.447 -6.994

26 0.332 -9.577

27 0.246 -12.181
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Fig. 2 S/N ratio plot of weighted grey relational grade

Fig. 3 Percentage contribution of variables on WGRG

Table 10 ANOVA analysis for the composite quality indicator WGRG

Source DF Seq SS Adj SS Adj MS F P Rank

Regression 5 0.201241 0.201241 0.040248 8.290400 0.000187

Particulate size 1 0.021287 0.021287 0.021287 4.3847 0.048577 3

Volume fraction 1 0.002245 0.002245 0.002245 0.4623 0.503967 4

Pulse-on time 1 0.136590 0.136590 0.13659 28.135 0.000029 1

Pulse-off time 1 0.000697 0.000697 0.000697 0.1435 0.708585 5

Wire tension 1 0.040423 0.040423 0.040423 8.3263 0.008850 2

Error 21 0.101951 0.101951 0.004855

Total 26 0.303192

Table 11 Results of confirmatory experiment

Process variable Level Optimal settings

Prediction Experimental

Particulate size/lm -1 25 25

Volume fraction of SiCp/% 0 10 10

Pulse-on time/ls -1 6 6

Pulse-off time/ls 1 45 45

Wire tension/g -1 1 1

S/N ratio of WGRG -5.209 -5.211

Value of WGRG 0.543 0.540
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(iii) The results of ANOVA reveal that particulate size,

pulse-on time and wire tension has significant on

the overall quality WGRG of the process. The

percentage contribution of the process variables

on the overall performance is observed as partic-

ulate size: 10.58%, volume fraction of SiCp:

1.12%, pulse-on time: 67.87%, pulse-off time:

0.35% and wire tension: 20.09%.

(iv) The experimental validation test is conducted and

the results are found with good agreement based

on the obtained process conditions.

(v) In the determined optimal process response, the

analysis of SEM graphs of the machined MMCs

and wire is also presented to present the practical

possibility of the proposed approach and the

derived optimal results. On the whole, the SEM

examination results are also convincing the pre-

dicted results from the proposed method.

Hence the proposed methodology will help in deriving

the optimal process conditions to increase the quality

and productivity of the wire electrical discharge

machined components made of Al7075/SiCp MMCs.

This study can also be effectively applied to optimize the

Fig. 4 SEM micro-graph of the machined MMC surface at 25 lm of

particulate size, 10% volume of SiCp, 6 ls of pulse-on time, 45 ls of
pulse-off time and 1 g of wire tension

Fig. 5 Kerf of the machined MMC at 25 lm of particulate size, 10%

volume of SiCp, 6 ls of pulse-on time, 45 ls of pulse-off time and

1 g of wire tension

Fig. 6 White layer thickness of the machined MMC at 25 lm of

particulate size, 10% volume of SiCp, 6 ls of pulse-on time, 45 ls of
pulse-off time and 1 g of wire tension

Table 12 Optimal process responses of confirmatory experiment

Ra/lm MRR/(g�min-1) WWR Kw/mm WLT/lm

0.75 0.026 0.006 0.290 3.468

Fig. 7 SEM micro-graph of the wire used to machine the MMC at

25 lm of particulate size, 10% volume of SiCp, 6 ls of pulse-on time,

25 ls of pulse-off time and 1 g of wire tension
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problem of simultaneous optimization of multiple cor-

related performance characteristics in other manufac-

turing processes to promote manufacturing efficiency

and to automate the machining process based on the

chosen optimal values.
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