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Abstract With high acceleration and ultra-precision

requirements, the design of aerostatic bearings has been

gradually focused on their dynamic performances. In this

paper, the dynamic stiffness and damping coefficients of

aerostatic bearings are investigated. Due to compressibility

of the gas, the dynamic characteristics of aerostatic bear-

ings show nonlinear frequency dependence. Particularly,

their nonlinear dynamic behaviors are quite remarkable for

ultra-precision aerostatic bearings with small air gap

heights and high supply pressure.
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1 Introduction

Recently, aerostatic bearings are increasingly utilized in

ultra-precision machine tools and semiconductor manu-

facturing equipments. With increasing requirements such

as higher acceleration and smaller vibration, traditional

static characteristics, such as load carrying capacity and

static stiffness, are no longer sufficient in the design of

ultra-precision aerostatic bearings. Instead, dynamic per-

formances become increasingly critical and should be

considered in the design of ultra-precision aerostatic

bearings.

Due to squeeze film effects, aerostatic bearings show

complex dynamic behaviors when they are subjected to

dynamic impact loads. The dynamic instability of the air

bearing, e.g., self-excited vibration (‘‘pneumatic ham-

mer’’), was considered in early studies [1]. For high speed

moving applications, some new configuration designs were

proposed to improve dynamic stiffness and damping

coefficients of aerostatic bearings [2–4]. There were also

qualitative analyses of the compressible thin air films in gas

lubricated components, which indicated the dependence of

their dynamic characteristics on the excitation frequency

[5].

Generally, analytical solutions of the dynamic pressure

distribution in aerostatic bearings, especially those with

complex geometrical configurations, are impossible to

obtain. Numerical techniques, such as finite difference

method (FDM) [4] and finite element method (FEM) [6],

have been adopted in the study of dynamic characteristics

of aerostatic bearings. In this paper, a dynamic mesh

modeling technique using commercial CFD software is

proposed to investigate dynamic characteristics of multi-

restrictor aerostatic bearings with shallow recesses. The

focus of this work is on the influences of excitation mag-

nitude and frequency on the dynamic stiffness and damping

coefficients of aerostatic bearings with different air gap

heights and supply pressure values.

2 Aerostatic bearing and theoretical model

A circular pad aerostatic thrust bearing is studied, as shown

in Fig. 1. The bearing pad has an outer diameter

d2 = 77 mm and four supply orifice restrictors equally

spaced along a circumference of 50 mm diameter. All re-

strictors are identical, and each of them has a shallow

recess used to improve static performances of the bearing.

The orifice diameter is d0 = 0.3 mm. The diameter and the
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depth of each cylindrical recess are d1 = 5 mm and

D = 0.15 mm, respectively. The small air gap height on

the order of 10 lm is considered, so that high enough

stiffness of the bearing can be achieved in ultra precision

applications.

Pressure distribution of the air flowing in the bearing

gap can be determined from the Reynolds equation as

follows
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where p is the air pressure in the gap, q the air density, l
dynamic viscosity of the air, q the mass flow rate, and d
Kronecker delta (at orifice inlet, d = 1; otherwise, d = 0).

When the air gap height is excited with a small distur-

bance as h ¼ h0 þ Dh ¼ h0 þ h1ejxt (j ¼
ffiffiffiffiffiffiffi
�1
p

, h1 � h0),

the resulting pressure in the air film is also disturbed as

p ¼ p0 þ Dp ¼ p0 þ p1ejxt due to the well-known ‘‘squeeze

film effects’’. Based on the perturbation theory, the per-

turbed form of (1) can be written as
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Comparing (2) with its incompressible counterpart (3), it

is apparent that the pressure and gap height variation is

nonlinear due to the additional nonlinear term on the right

hand side of (2).
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Furthermore, the solution of (2) can be represented as

Dp

Dh
¼ Reðx; p0; h0Þ þ jImðx; p0; h0Þ; ð4Þ

where Re denotes the real part, and Im denotes the imaginary

part. Apparently, they are nonlinearly frequency-dependent

and can be influenced by the initial conditions, p0 and h0.

From (4), the complex stiffness of the aerostatic bearing

can be calculated as

K� ¼
Z

Reðx; p0; h0ÞdAþ j

Z
Imðx; p0; h0ÞdA; ð5Þ

where the real part denotes the stiffness coefficient K,

while the imaginary part is the product of the damping

coefficient C and excitation frequency x, i.e.

K ¼
Z

Reðx; p0; h0ÞdA; C ¼
Z

Imðx; p0; h0Þ=xdA:

ð6Þ

Accordingly, with the effects of air compressibility, the

dynamic coefficients K and C of aerostatic bearings are

also nonlinearly frequency-dependent. Moreover, they will

vary with different air gap heights and supply pressures.

3 Numerical simulation and validation

The commercial CFD software ANSYS-Fluent is adopted

to numerically study the dynamic characteristics of the

aerostatic bearing. According to symmetry of the geometry

and boundary conditions, only 1/8 of the 3D air flow field in

the aerostatic bearing is considered, and the computational

meshes are shown in Fig. 2. There are totally 135,510

hexahedral control volumes in the computational domain.

Pressure inlet and pressure outlet boundary conditions are

specified at the orifice inlet and the bearing periphery,

respectively. The two radial boundaries are symmetric, and

adiabatic boundary conditions are used on the solid walls.

Since the Knudsen number based on the air film height is no

more than 0.01, slip effects can be ignored [7] and no-slip

boundary conditions are used on the solid walls. The

dynamic mesh modeling approach is employed to solve for

the time-dependent pressure field in the aerostatic bearing.

In this study, the bottom wall of the air gap is specified as a

sinusoidally moving boundary (displacement excitation),

and the adjacent control volumes can deform accordingly.

Fig. 1 Sketch of the aerostatic bearing

Fig. 2 Computational model of the aerostatic bearing
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In order to validate the CFD model of the aerostatic bear-

ing, a static load experiment was performed, and the test setup

is displayed in Fig. 3. Figure 4 shows the variation of the static

load with the air gap height, in which it can be seen that the

simulation results agree with the experimental data very well.

4 Results and discussion

From the theoretical analysis, the pressure variation in the

aerostatic bearing is related to the excitation frequency of

the air gap height, and so is the dynamic load. Figure 5

plots the numerically computed variations of the bearing

load in ten periods under three different excitations, whose

amplitudes are identical while frequencies are 10, 100 and

1,000 Hz. From Fig. 5, it can be seen that the amplitude of

the dynamic load increases significantly with increasing

excitation frequency, and the phase of the response curve

also shifts with the excitation frequency. This conclusion is

also consistent with that in the squeeze film damping

analysis.

Dynamic stiffness and damping coefficients of the

aerostatic bearing are plotted in Fig. 6 as functions of the

excitation frequency, where the air gap height is h equal to

10 lm and the air supply pressure is Ps = 0.4 MPa.

Frequency dependence of the dynamic coefficients are

clearly observed, i.e., with the increasing of excitation

frequency f, the dynamic stiffness K increases while the

damping coefficient C decreases, and this dependence is

especially stronger from 100 to 1,000 Hz. In addition, the

excitation amplitude has little influence on the dynamic

coefficients. Due to compressibility effects as mentioned in

Sect. 2, in particular, the relationship between dynamic

coefficients and excitation frequency is nonlinear. In the

lower frequency range (below 10 Hz), the dynamic stiff-

ness is asymptotically equal to the static stiffness. Other-

wise, effects of dynamic squeeze film become dominant

and the dynamic stiffness of the bearing increases with

increasing excitation frequency. This increase slows down

until an asymptotic value is reached above about

10,000 Hz, which is also due to air compressibility. Simi-

larly, the damping is relatively larger at lower frequencies

and is negligible beyond 1,000 Hz.

The influence of the air gap height on dynamic char-

acteristics of the aerostatic bearing is also quantitatively

investigated by numerical calculations. Three air gap

heights 10, 20 and 30 lm are considered, and the ratio

Fig. 3 Test setup

Fig. 4 Static load varies with air gap height

Fig. 5 Variations of dynamic load with different frequencies

Fig. 6 Dynamic coefficients versus frequency with different excita-

tion amplitudes (h = 10 lm, Ps = 0.4 MPa)
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h1/h is kept as a constant in each case. With different air

gap heights, dynamic stiffness and damping coefficients of

the bearing are plotted in Figs. 7 and 8, respectively. From

Fig. 7, the dynamic stiffness reaches a maximum value at a

certain air gap height in the low frequency range, which

corresponds to the static stiffness of the bearing, while it

becomes larger at smaller air gap heights in the high fre-

quency range. The dynamic stiffness also tends to be

independent of the excitation frequency at very small gap

heights. From Fig. 8, the damping coefficient at a small

excitation frequency (below 5 Hz) is larger at a 20 lm gap

height than that at the other heights, and it declines faster to

almost zero at larger air gap heights.

The influence of the air supply pressure is illustrated in

Figs. 9 and 10. With the increase of supply pressure,

dynamic stiffness and damping coefficients are increasing

in the whole excitation frequency range. Moreover, varia-

tion of these dynamic coefficients with the excitation fre-

quency is larger at higher supply pressure values.

5 Conclusions

This paper numerically investigates dynamic stiffness and

damping characteristics of an ultra-precision aerostatic

bearing under small air gap height perturbations. Nonlinear

frequency dependence of these dynamic characteristics is

revealed by a theoretical analysis, which is due to com-

pressibility of the air. Furthermore, the numerical results

demonstrate their behaviors, i.e., the dynamic stiffness

increases while the damping decreases with increasing

excitation frequency. At small bearing gap heights and high

supply pressure, stronger frequency-dependent behaviors

of dynamic characteristics of the bearing are observed.

From these results, it is further confirmed that the fre-

quency-dependent dynamic characteristics should be taken

into account in the design of ultra-precision aerostatic

bearings.
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