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Abstract The quality of a product is dependent on both

facilities/equipment and manufacturing processes. Any

error or disorder in facilities and processes can cause a

catastrophic failure. To avoid such failures, a zero- defect

manufacturing (ZDM) system is necessary in order to

increase the reliability and safety of manufacturing systems

and reach zero-defect quality of products. One of the major

challenges for ZDM is the analysis of massive raw datasets.

This type of analysis needs an automated and self-orga-

nized decision making system. Data mining (DM) is an

effective methodology for discovering interesting knowl-

edge within a huge datasets. It plays an important role in

developing a ZDM system. The paper presents a general

framework of ZDM and explains how to apply DM

approaches to manufacture the products with zero-defect.

This paper also discusses 3 ongoing projects demonstrating

the practice of using DM approaches for reaching the goal

of ZDM.

Keywords Data mining (DM) � Quality of product �
Zero- defect manufacturing (ZDM) � Knowledge discovery

1 Introduction

Modern manufacturing is driven by the rapid technological

changes. High-value manufacturing processes are increas-

ingly moving towards flexible, intelligent production

systems. These systems involve the inter- play of novel

technologies, advanced materials, in-line analysis and

information comminution technology (ICT), dual working

of people and automated systems, and precision engineered

products and systems, etc. The productivity, performance

and quality of products are affected by the conditions of

machines, manufacturing processes and manufacturing

decision making. In current competitive market, to achieve

zero-defect products in manufacturing becomes a necessity

to gain customers and market share. Most manufacturing

companies, regardless of sizes, usually operate in data-rich

environments. Powerful data acquisition systems are

implemented in all enterprises worldwide. Accurate and

complex datasets are stored in databases at various stages

of manufacturing. These datasets are related to products,

machines, materials, processes, inventories, sales, markets,

etc. Valuable information and knowledge can be extracted

from these datasets, including patterns, trends, associations,

dependencies and rules.

In manufacturing companies, the quality of a product is

characterised by the data of multiple geometric specifica-

tions of complex product’s shape (e.g., in machines,

automotive, white-goods and aerospace industries). How-

ever, the quality of a manufacturing process is associated

with process datasets. Therefore, moving the attention from

product data to process data allows the enterprise to extend

quality monitoring and optimizing strategies. Data collec-

tion, transferring, analysis and rule generating allow con-

tinuously monitoring the different conditions of processes

to handle the propagation of defects within processes and

increase the robustness of processes. Figure 1 shows how

the quality of products is affected and controlled.

Traditional ‘‘Six-Sigma’’ approaches do not achieve

zero-defect in manufacturing, given their limitation in deal

with complex and dynamic datasets. This can be improved

by controlling the process parameters in real time and by
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the use of intelligent processing diagnosis and prognosis,

and proactive controls on processes, production systems

and sub-systems integrated in the production lines/cells [1].

This includes the application of sensors for process moni-

toring, visualisation, diagnostics and prognostics. The

integration of intelligent systems will enable the develop-

ment of smart and self-optimising systems for zero-defect

in manufacturing. It needs to develop new strategies for

data-rich quality monitoring, control and optimization.

From the hardware viewpoint, data-gathering devices are

foreseen to integrate intelligence into the manufacturing

process after appropriate integration. Thus, new cost-effi-

cient tools for quality monitoring and optimization with

multi- resolution, multivariate and auto-correlated data

have to be developed.

The rest of the paper is arranged as the following.

Section 2 describes what the definition of ZDM is. Sec-

tion 3 presents the general view of a data mining (DM)

approach. The role of DM is explained in Sect. 4. A general

framework of ZDM: IFDAPS is introduced in Sect. 5. In

order to show how to reach ZDM using the DM approach,

some projects and a case study are described in Sect. 6.

Section 7 makes a summary of this paper.

2 Zero-defect manufacturing (ZDM)

The word of zero-defect was introduced in the early 1960s

in connection with the US Army Perishing Missile System

[2, 3]. It is now a common manufacturing practice to

reduce and minimize the number of defects and errors in a

process and to do things right in the first time. The ultimate

aim is to reduce the number of defected products to zero.

However, zero-defect means zero failures during operation

but not necessarily zero imperfections, blemishes, or non-

conformities [4, 5]. During the 1990s, large automotive

enterprises tried to cut costs by reducing their quality

inspection processes and demanding their suppliers to

dramatically improve the quality of their supplies. This

eventually results in demands for the zero-defect standard

and is then implemented all over the world.

The concept of zero-defect can be practically utilized in

any manufacturing environment to improve quality and

reduce cost. However, implementation of zero-defect

requires the right conditions. There are two reasons to

pursue zero-defect quality products and processes. The one

is safety. The other is customer expectation. To achieve

ZDM, new cost-efficient tools for quality monitoring and

optimization with multi-resolution, multivariate and auto-

correlated data have to be developed.

The general functional requirements of ZDM can be

summarized by the system having the following capabilities:

(i) automatic capture, cleaning and formatting of rele-

vant data using intelligent sensors system;

(ii) automatic signal processing, filtering and feature

extraction;

(iii) data mining and knowledge discovery for diagnosis

and prognosis;

(iv) provision of clear and consise defect information and

advice supplied to the user;

(v) self-adaption and optimization control.

Before we describe a complete framework of ZDM, a

general introduction of DM techniques is given in the

following section.

3 Data mining methodologies

DM is about analyzing data and finding hidden patterns

using automatic or semiautomatic means. Based on the

nature of the problems in forestry industries, some DM

tasks could be interesting: classification, clustering, asso-

ciation, regression, forecasting, sequence analysis and

deviation analysis, etc. RFID has been used in forestry

industries for some years and makes information data more

conception, more precision and more timeliness as an

advanced information gathering way. Thus the level of DM

is more open. The main purpose of DM is to extract pat-

terns from the data at hand, increase its intrinsic value and

transfer the data to knowledge.

3.1 Definition

DM is an integration of data analysis and modeling tech-

nologies developed over the last twenty years. DM is

often defined as the process of extracting valid, previous

unknown, comprehensible information from large data

bases in order to improve and optimize business decision-

making process [6].

Fig. 1 Quality of a product affected by the factors: equipment/

machines and processes making the product
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Many traditional reporting and query tools and statistical

analysis systems use the term ‘‘Data Mining’’ in their

product descriptions. It leads to the question: What is a DM

and what is not? Because the ultimate objective of DM is

knowledge discovery, DM methodology can be defined

narrowly as ‘‘a technique to extract predictive information

and knowledge from databases’’. With such a definition,

however, an on-line analytical processing (OLAP) product

or a statistical package could not be qualified as a DM tool.

In my opinion, a DM method should unearth knowledge

automatically. By this view, DM is data-driven, whereas by

contrast, traditional statistical, OLAP, reporting and query

tools are user-driven. It is best to define them as business

intelligence (BI) tools rather than DM tools.

Using the narrowed definition of DM mentioned above,

we would like to follow that DM techniques are at the core

of DM process, and can have different functions (tasks)

depending on the intended results of the process. In gen-

eral, DM functions can be divided into two broad catego-

ries: discovery DM and predictive DM.

(i) Discovery DM

Discovery DM is applied to a range of techniques,

which find patterns inside a dataset without any prior

knowledge of what patterns exist. The following are

examples of functions of discovery DM: i) clustering; ii)

link analysis; and iii) frequency analysis, etc.

(ii) Predictive DM

Predictive DM is applied to a range of techniques that

find relationships between a specific variable (called the

target variable) and the other variables in your data. The

following are examples of functions of predictive DM:

i) classification; ii) value prediction; and iii) association

rules, etc.

3.2 Techniques

A variety of techniques are available to enable the above

functions. The most commonly used techniques can be

categorized in the following groups: i) classical statistical

methods (e.g., linear, quadratic, and logistic discriminate

analyses), ii) modern statistical techniques (e.g., projection

pursuit classification, density estimation, k–nearest neigh-

bor, Bayes belief networks), iii) artificial neural networks

(ANNs), iv) support vector machines (SVM), v) decision

tree (DT) and rule induction (RI) algorithms, vi) associa-

tion rules (ARs), vii) case based reasoning (CBS), viii)

fuzzy logic systems (FLSs) and rough sets (RSs), ix)

sequential patterns (SPs), x) genetic algorithms (GAs), xi)

evolutionary programming (EP), xii) swarm intelligence

(SW), and xiii) visualization methods (VMs), etc.

Each class contains numerous algorithms, for example,

there are more than 100 different models of ANNs. With

increasing system complexity, it is clear that the DM

techniques should be used concurrently rather than sepa-

rately [7]. A hybrid DM system in which several tech-

niques with different functions can be integrated to achieve

a desired result is often more effective and efficient than a

single one. For example, in order to identify the attributes

that are significant in a manufacturing process, clustering

can be used first to segment the process database into a

given predefined number of categorical classes and then

classification can be used to determine to which group a

new datum belongs.

3.3 Procedures

The generic DM procedure from IBM viewpoint [8]

involves seven steps as the following: i) defining the

business issue in a precise statement; ii) defining the data

model and data requirements; iii) sourcing data from all

available repositories and preparing the data (The data

could be relational or in flat files, stored in a data ware-

house, computed, created on-site or bought from another

party. They should be selected and filtered from redundant

information.); iv) evaluating the data quality; v) choosing

the mining function and techniques; vi) interpreting the

results and detecting new information, and vii) deploying

the results and the new knowledge into your business.

To understand how DM can overcome a variety of

problems in manufacturing, we consider some activities in

a manufacturing company.

4 DM for ZDM

From 1964 to 1969, the staff of the Yuzhgidromash plant

(town of Berdyansk) had achieved serious advances through

implementing the system of ZDM of pumps [9]. During this

time, the pass rate of the pumps fabricated was considerable

increasing. It concluded that best results in improving product

quality are attained when requirements aimed at strengthen-

ing technological discipline and improving production

planning and organization are adhered to rigorously and

consistently. Alpernand his colleagues [10–12] attempted

zero-defect product of plastic-encapsulated electronic power

devices and concluded that the ambitious goal to reach the

zero-defect frontier is achievable.

They evaluated the influence of the major components

involved in the construction of an electronic power device

in three processes: ‘‘metallization’’, ‘‘molding compound’’

and ‘‘chip coating, passivation, and design’’. Finally, it can

be derived that applying simply one improvement step will

not lead to the desired goal of ‘‘zero-defects’’. The reason

64 K.-S. Wang

123



is the strong interaction between all components within an

electronic power design. Therefore, they argued that the

implementation of all improvement steps with their inter-

dependence is the key for the perfect overall system chip

and package.

Advanced failure analysis was applied in semiconductor

industry, which provides a major contribution to the

increased performance and functionality of car electronics

to achieve ZDM [13]. The authors argued that the tradi-

tional failure analysis which concentrates on non-function

chips was not enough to reach ZDM and thus, statistical bin

alarm (SBA) and part average testing (PAT) were used to

identify outliers of a given distribution. The conclusion is

that the new methods can improve the quality of the

product. Raina proposed a very comprehensive flow for

achieving zero-defect semiconductor chips in a cost-

effective manner [14]. The focus was on designed-in

quality achieved through harmonious deployment of defect

prevention and defect detection methods during the chip

design phases. Design for manufacturing (DFM) is the best

known defect prevention methodology while design for test

(DFT) is the best known cost-effective defect detection

methodology in practice today. The author recommended

applying both DFM and DFT in semiconductor manufac-

turing to achieve zero-defect production in a cost-effective

manner. Linger introduced a cleanroom software engi-

neering (CSE) for zero-defect software [15]. In the clean-

room process, correctness is built in by the development

team through formal specification, design, and verification

[16]. Team correctness verification takes the place of unit

testing and debugging, and software enters system testing

directly, with no execution by the development team. All

errors are accounted for from first execution on, with no

private debugging permitted. The cleanroom process is

being successfully applied in IBM and other organizations.

Experience shows that cleanroom software typically enters

system testing near zerodefects and occasionally at zero

defects.Westkamper and Warnecke realized ZDM in pro-

cess chains by means of knowledge and artificial neural

networks based learning system [17]. Firstly, the quality

data collected were evaluated and represented in mathe-

matical process models and then, logic patterns were

derived by means of cluster analyses of statistical analyses,

which provide information on the causes and the assess-

ment of nonconformities. Finally, based on this and with

the method of knowledge and artificial neural networks

based learning system, the ZDM can become possible. New

DFT/DFM/containment methodologies as well as sup-

porting data for delivering ‘‘zero-defects’’ quality and new

reliability methodologies and supporting data for guard

banding power (Vmin) and speed (Fmax) against wear-out

mechanisms are applied in the company of Freescale

Semiconductor [18]. Freescale showed the method of how

the company achieves zero-defect quality level and

improves its product quality continuously.

With the development of modern manufacturing tech-

nology, equipment has become more and more complex

and integrated. Such equipment in manufacturing is very

dependent upon the trouble-free operation of all its parts

[19]. When a fault occurs, it is critical to identify the

reasons and causes as rapidly as possible and to take

appropriate maintenance action. Typically, when a system

goes down, only a small fraction of the downtime is spent

repairing the machine that causes the fault. Up to 80 % of it

is spent locating the source of the fault [20]. For this rea-

son, there is great interest to study the corresponding

intelligent diagnostic techniques and system for wide-

spread applications in modern manufacturing systems and

processes [21].

In order to prevent a catastrophic event, many researchers

are interested in developing intelligent diagnostic and prog-

nostic systems which integrated sensors, and signal pro-

cessing units with data/information analyzing models to

detect faults and predict them as early as possible. Piewak

[22] presented a systematic approach to monitor and diag-

nose of machine tools and manufacturing processes. Fast

Fourier transformation (FFT) and feature extraction were

used in the study. Monostori [23] employed ANN with the

multi-sensor integration approach in monitoring machining

processes. He pointed out that ANN techniques were the

most viable solution for the lower level of intelligent, hier-

archical control and monitoring systems. Shinno and Hash-

izume [24] proposed a new multi-functional approach in

process monitoring based on multi-phenomenon sensing. The

sensor developed can detect both thermal and mechanical

behaviors during a machining process.

Computational intelligence (CI) and DM including

ANN, fuzzy logic system (FLS), GA hybrid CI systems, SI,

DT and AR have been applied in the research of fault

diagnosis and prognosis of mechanical systems at Knowl-

edge Discovery Laboratory, Norwegian University of Sci-

ence and Technology since 1993, especially a centrifugal

pump system was utilized as a case to show how the CI and

DT methods functions [25, 26]. Lee et al. [27] developed

an intelligent prognostics and e-maintenance system named

‘‘watchdog agent’’ where statistical matching, performance

signature and SVM were used.

The keys to achieve ZDM are monitoring of the states of

the manufacturing equipment and processes and decision-

making for adopting suitable maintenance policies to

ensure the products manufactured non-failures. Some

technologies containing data acquisition, signal processing,

fault diagnosis, fault prognosis and maintenance decision

should be integrated into one system.

There are several challenges in enabling the seamless

integration of data/information (condition monitoring) and
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knowledge (decision making and feedback controlling) for

ZDM. The first challenge is how to collect all necessary

and huge amount of datasets from equipment and pro-

cesses. In addition, many kinds of data which involved in

the system should be carefully selected, classified and

optimized because of the complexity of systems and pro-

cesses. Mechanical and structural sensor systems have been

studied extensively, and a large number of such devices are

currently in use to monitor system performance for oper-

ational state assessment and tracking of fault indicators. A

number of mechanical quantities (position, speed, accel-

eration, torque, strain, temperature, etc.) are commonly

employed in dynamic systems. Most of devices for mea-

suring these quantities are available commercially, and

their operations have been amply described in textbooks

and publications.

The second challenge is signal processing which

involves two steps generally. The first step usually is called

signal pre-processing and is intended to enhance the signal

characteristics that eventually may facilitate the efficient

extraction of useful information, that is, the indicators of

the condition of a failing component or subsystem. The

methods in this category include filtering, amplification,

data compression, data validation, and de-noising and

generally aim at improving the signal-to-noise ratio. The

second step aims to extract the features or condition indi-

cators from the pre-processed data that are characteristic of

an incipient failure or fault [28].

The third challenge is knowledge discovery and decision

making. The fault diagnosis and failure prognosis are

crucial components in the whole integrated system. Zhao

et al. [29] implemented DM in fault diagnosis and they

concluded that DM can be effectively applied to diagnosis

of rotating machinery by giving useful rules to interpret the

data. Lian et al. [30] diagnosed dimensional variation of

sheet metal assembly applying DM and knowledge dis-

covery techniques. The practical implement proved that it

was effective and efficient. Wang et al. [31] made condi-

tion diagnosis using static feature and information diver-

gence and finally the fault can be effectively identified. Ray

and Tangirala [32] presented a physics-based method for

detecting cracks in metallic materials and predicting their

remaining life. Their models used extended Kalman filters

and stochastic differential equations. They validate their

models using induced faults from a laboratory setting.

Schwabacher [33] has made a survey of artificial intelli-

gence (AI) for failure prognosis and concluded that for

realistic systems ‘‘fully implementing prognosis is very

difficult’’. Several researchers have stated their intention to

do prognostics, and have described the progress they have

made in fault detection, but have left estimation of useful

life remaining to future work. Much research has been done

in the area of structural prognostics using data from

vibration sensors, but we are not aware of any fielded

systems in that area. There has been much more progress

made in fault detection and diagnosis than in prognosis.

New algorithms for fault diagnosis, failure prognosis and

decision making are needed to be developed and imple-

mented. Statistic matching, data mining and knowledge

discovery algorithms could be useful for reaching zero-

defect manufacturing in the future.

CI [34] or soft computer is a rapidly growing area of

fundamental and applied research in advanced information

processing technologies. Some main CI methods can be used

for maintenance optimization (or maintenance scheduling).

SI [35], such as ant colony optimization (ACO) [36, 37] and

particle swarm optimization (PSO) [38, 39] are proposed and

the two methods are employed to manage the vast decision

space. There are many literatures implementing GA and

other traditional methods in maintenance optimization. The

application of ACO and PSO to predictive maintenance

optimization is still a challenge.

5 Framework of a ZDM: IFDAPS

Most of methodologies mentioned above are concentrated

on the quality of finished product and the product condition

in the manufacturing process. However, with these meth-

ods, it may not achieve ZDM. If there is a failure in the

manufacturing process, some defects of the product might

be generated and the cost may increase significantly. Thus,

the condition of the equipment should be considered and

the degradation of performance should be predicted.

A frame work called intelligent fault diagnosis and

prognosis systems (IFDAPS) for manufacturing systems

and process has been developed in Knowledge Discovery

Laboratory at NTNU [40]. Figure 2 shows the general

structure of IFDAPS which presents from the equipment

and processes, sensors, signal processing, fault diagnosis

and failure prognosis, operation/plan optimization and

feedback control. The principal functions performed by

IFDAPS are the following:

(i) Continuous collection of data coming from different

sensors includes the information of status of equip-

ment, processes and products.

(ii) Continuous processing of the data collected from

sensors in order to get useful information to evaluate

on-line the condition of the equipment and processes.

(iii) According to the useful information mentioned

above, the condition or the fault can be identified.

If there are any degradation becoming unaccepted,

the system can tell operators and managers about

which components of machines or which parameters

in processes to take actions.
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(iv) According to the condition of the component or

machine, the remaining useful life or possible faults

can be predicted.

(v) According to the results of diagnosis and prognosis,

operation and plan can be optimized by some

intelligent optimization algorithm.

(vi) The performance indicators and results can be used

for self-adjustment of the control system to cor-

rect or compensate the faults ensuring zero-defect

manufacturing.

CI and DM have been applied to optimize the solution.

It can monitor plant floor assets, link the production and

maintenance operations systems, acquire data, collect

feedback from remote customer site, and integrate it into

upper level enterprise applications, discovery and generate

manufacturing knowledge. In addition, it can monitor the

state of manufacturing process and predict the condition of

the equipment.

IFDAPS using CI and DM techniques can make better

manufacturing decisions to prevent occurrence and devel-

opment of failures effectively, ensure the safety of equip-

ment and personnel, and reduce economic lost caused by

failure. It can use fault diagnosis, performance assessment

of level of degrading, fault prognosis models to reach ZDM

performance and improve productivity for a company.

IFDAPS concept is a key to achieve ZDM.

The main benefits of ANNs are fault tolerance, gener-

alization and adaptability. But the limitation is the lack of

explanation function. GA is a robust, general-purpose

search procedure; it can quickly explore huge search spaces

and find those regions that have above-average fitness.

However, when it comes to finding global optima, the

convergence time will be very long. Fuzzy logic systems

can be applied where accurate mathematical models are

unavailable or difficult to be established, but empirical

knowledge about the problem is needed to develop accu-

racy model of the subsystem.

Furthermore, the current methods are generally focused on

solving the failure diagnosis problem and several prediction

algorithms developed have been demonstrated in the labo-

ratory, rather than real industrial validations. Therefore,

intelligent fault diagnosis and prognosis system based on DM

and industrial validation needs to be researched further.

There are several projects that have been running in the

Labortory. Next section presents three important ongoing

projects: IFaCOM, WINDSENSE and 3D IQIS.

6 Ongoing projects related to ZDM using DM

To build a ZDM system, a systematic approach for moni-

toring and data processing of dimensional fluctuations is

needed. The ZDM system should have a capability to diag-

nose and predict the behavior and performance of manu-

facturing equipment and processes automatically, self-

adaptively and flexibly. The new advanced information

Fig. 2 Framework of zero-defect manufacturing system: IFDAPS
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processing techniques, such as computational intelligence,

data mining, knowledge discovery, and swarm intelligence

should be applied for developing the IFDAPS system.

6.1 IFaCOM

Based on the concept IFDAPS, Department of Production

and Quality Engineering, NTNU, as an EU project coor-

dinator, has launched a ZDM practice: IFaCOM (Intelli-

gent Fault Correction and self Optimising Manufacturing

systems, FoF NMP-285489). The vision of IFaCOM is to

achieve zero-defect manufacturing for different manufac-

turing branches, with emphasis on production of high value

parts, on large variety custom design manufacturing and

high performance products.

A concept of IFaCOM is being developed (see Fig. 2),

which can become a general framework for diagnosing,

prognosing and controlling faults in manufacturing equip-

ment and processes for different industrial branches. This

framework proposes to use closed control loop to all real-

time vital parameters related to equipment, products and

processes. In today’s manufacturing it is still the case that

many vital parameters are controlled indirectly, thus cre-

ating a larger variability in the output than acceptable

within the zero-defect paradigm. The project will create a

basic understanding of the method of direct closed loop

control and apply it to manufacturing process in order to

eliminate the propagation of defects along the process

stages.

The principles can be extended to processes with highly

varied input, which causes high defect rates in manufac-

turing. This involves both the development of suitable

measurement and monitoring techniques.

The control models must be upgraded in accordance

with the increased insight in the operations, which can be

obtained by the analysis of datasets available from multiple

sensors. Furthermore, intelligent simulation-based optimi-

zation methods will be developed to extend the direct

control over the entire process chain.

6.2 Windsense

Department of Production and Quality Engineering,

NTNU, also use the concept of IFDAPS to participate a

national research project called WINDSENSE-Add-on

instrumentation system for wind turbines, which is sup-

ported by Norwegian Research Council (NRC). WIND-

SENSE is a collaboration project between some of the

strongest wind power and instrumentation companies

within Wind Cluster Mid-Norway, mainly located in the

Trøndelag region of Norway. The project, which amounts

to 22 MillionNOK, has been initiated through collaboration

with the Norwegian Centers of Expertise Instrumentation

(NCEI). It has been awarded a total of 10 MillionNOK

from the Norwegian Research Council’s RENERGI pro-

grammer. The aim of WINDSENSE project is to develop a

new and flexible instrumentation system for wind turbines,

which makes wind turbines more effective by reducing

unplanned shout downs, thus achieving high reliability of

the powerplant. It also makes it possible to temporarily run

the turbines at a lower capacity in anticipation of required

maintenance.

A key challenge for the future is the adaptation of

equipment and methods for maintenance from the maritime

and oil and gas industry, for use on offshore wind turbines.

Cost-effective operation of offshore wind turbines will

require new technology that enables a greater degree of

remote control and remote monitoring of the turbines. It

also requires durable and reliable instruments to monitor

the operation and components in harsh environments at sea.

This system will primarily be an instrument for monitoring

the technical condition of the wind turbine and the life

cycle of the components used. It will make it possible to

more accurately predict when the equipment must be

replaced. Today, such assessments are usually done by

operators using handheld inspection equipment.

Future maintenance, modification and repair of wind

turbines will be based on measured technical condition of

systems and components. There is a need to further develop

the sensing and analytical capabilities to better perfor-

mance in detection of faults and anomalies. There is a

substantial R&D challenge in developing sensor technol-

ogies for increased on-line monitoring and processing

capabilities. Another challenge is how to use intelligent

DM methodology to make a better decision for diagnosis

and prognosis of wind turbines based on massive datasets

from the fields.

The project will be carried out according to accepted

methods for R&D projects with a strong industrial

anchoring. The main steps are: GAP analysis, requirement

specification, evaluation, detailed specifications, imple-

mentation, laboratory testing, field testing, refinement and

verification of methods, and dissemination. Industrialisa-

tion and marketing of the products will be performed by the

industry partners subsequent to the R&D project.

The add-on instrumentation system in this project will

be tested both in the laboratory and on real turbines. Pos-

sible test sites are the Statoil turbines: Hywind Demo SWP

2.3 MW, Havøygavlen SWP 3.0 MW and two turbines

SWP 3.6 MW at Sheringham Shoal. In addition, one of

NTE’s turbines at Hundhammerfjellet, and FLEXWT (part

of the NOWERI research infrastructure project funded by

the Research Council of Norway) are also relevant for

testing. The various components of the system will also be

tested at SINTEF Energy Research’s renewal energy lab-

oratory, as well as at each participating company’s test
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infrastructure where relevant. Simulations and model test-

ing are also possible approaches.

6.3 Pilot study: 3D IQIS

A pilot study for ZDM is 3D intelligent quality inspection

system (3D IQIS). Product quality inspections are impor-

tant to protect a company’s brand and reputation by min-

imizing defective merchandise. Automated, smart quality

inspection is developed to meet the need for accurate, fast

and objective quality inspection. Automated vision

inspection (AVI) is the automation of quality control of

manufactured products, normally achieved using a camera

system with a computer. In quality inspection, the AVI

system is not only to be required to recognize the objects,

but also to qualify them.

With the advantages of non-contact and cost-effective,

vision technique is commonly used to obtain the informa-

tion such as the geometry dimension of parts in production

line, which indicates the quality of the product [41]. Tra-

ditional 2D vision is not applicable to inspect the object

with free surface such as the turbine blade. 3D vision

provides an alternative for these problems with more

flexibility while little cost added, including various tech-

nologies [42], which is a powerful tool in industrial quality

inspection [43], welding [44], lens quality inspection [45],

thin-walled components inspection [46] and suitable for

sorts of working conditions [47–49].

Data mining is applied to accomplish the inspection on

the basis of vision based data in many areas such as

medical [50] and quality inspection [51]. In this paper,

three data mining methods are tested, including ANN, DT

and SVM.

6.3.1 Quality inspection problem

To verify the proposed 3D vision based quality inspection,

LEGO� wheel assembly detection is taken as the example

in this paper. The purpose is to check the quality of wheel

assembly. A wheel is constituted of 2 components, the

wheel and the tire. Five errors occur during the assembly

process according to the relative position of the wheel and

tire as shown in Fig. 3: i) Wheel assembly without errors;

ii) Tire is compressed; iii) There exists an offset for one

side; vi) Wheel is detached from the tire; v) Wheel is tilted.

Traditional 2D vision is not applicable to distinguish

some cases due to the similarity of pictures, as shown in

Fig. 4. It is noticed that there is no much difference for the

two wheels from the top view in the image; however, the

height is different if seen from the side view. Structured

light system (SLS) is effective to acquire 3D point coor-

dinates of the inspected part, such as the real height value

of the parts. The section views show the inner layout of

each class in Fig. 5.

6.3.2 3d SLS

SLS acquired the point cloud by projecting specific pattern

with a project or onto the measured object and capturing

the images with a camera. The point cloud of object surface

Fig. 3 Classification of the wheel assembly error

Fig. 4 Inspection difficulties from different point of view

Fig. 5 Inner layout of each class from the section view
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can be acquired with the images analysis [52]. Figure 6

shows the working process of a typical SLS, which can be

divided into 4 steps.

Step 1 is the pattern projection. A single light pattern or

pattern series are projected onto the scene following some

specific coding rules.

Step 2 is the image recording. The captured images are

stored in sequence if pattern series are used. The scene is

captured previously as references without the presence of

the object.

Step 3 is the phase map generating. Recorded images are

analyzed according to the pattern encoding rules. The

wrapped phase maps are obtained, and to be unwrapped to

obtain a continuous phase distribution.

Step 4 is the transformation from phase to height. The

height value of each image pixel is derived from its phase

calibration or phase-height mapping.

In this case, the gray code and phase shifting (GCPS)

technique is used. The pattern series consists of nGray

Code patterns and 4 phase shifting patterns, where n is the

bit number of the Gray Code. Each Gray Code pattern is

generated according to the Gray Code respectively con-

stituted of 2n stripes. If given n = 4, the Gray Code pattern

series are generated as shown in Table 1.

A typical phase shifting method is 4-step phase shift-

ing algorithm, which takes a total number of 4 projec-

tion patterns constructed as gray scale bitmaps, with the

intensity distributions respectively following the rule

defined by equation

INðx; yÞ ¼ I0ðx; yÞ 1þ Rðx; yÞ cos
2p
p

xþ ðN � 1Þ p
2

� �� �
;

N 2 f1; 2; 3; 4g;
ð1Þ

where x and y are coordinates on the horizontal and the

vertical axes of the bitmaps respectively, N the phase

shifting step, IN (x, y) the intensity distribution of the N-th

pattern, I0 (x, y) the background illumination, R (x, y) the

Fig. 6 Working process of a typical SLS

Table 1 Gray Code rule

Pattern number Stripe number and corresponding Gray Code

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

2 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

3 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

4 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

Fig. 7 3D structured light system
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object reflectance in each point, and p the fringe pitch

which equals WP/2n where WP is the length of the pattern in

fringe stepping direction.

In the phase shifting procedure, a sequence of images is

projected onto the inspected object, one ‘‘original’’ sinu-

soidal fringe pattern with N = 1 and three phase-shifted

versions of the ‘‘original’’ with step of p/2. If set the phase

of point (x,y) to u(x, y), where u(x, y) = 2px/p, consider-

ing (1),

uðx; yÞ ¼ arctan
I4ðx; yÞ � I2ðx; yÞ
I1ðx; yÞ � I3ðx; yÞ

� �
; ð2Þ

where u(x, y) should be in the interval [0, 2p]. The phase

shifting value PS(x, y) is obtained from u(x, y) by

P
S
ðx; yÞ ¼ uðx; yÞ

2p
: ð3Þ

Thus it is possible to obtain the accurate phase value of

each point on the surface being measured according to the

equation below

GCPSðx; yÞ ¼ GCðx; yÞ þ PSðx; yÞ: ð4Þ

The hardware configuration is shown in Fig. 7. A SONY

XCG-U100E industrial camera is used with UXGA reso-

lution (1,600 9 1,200 pixels) and Gigabit Ethernet (GigE)

interface, and together with a Fujinon 9 mm lens. A BenQ

MP525 digital projector is employed to project the patterns.

The hardware controlling and the image processing are

performed with commercial software Scorpion�. Using this

setup, acquired point cloud of the wheel part is presented in

Fig. 8, which can be used for further analysis.

6.3.3 Feature extraction from the point cloud

Geometry features are extracted as the input attributes on

the basis of the 3D points and regression analysis.

Regarding the lower reflectivity of tire compared with the

wheel, to get a cleaner point cloud, the tire part is disre-

garded by lowering the contrast value. Thus, only the

wheel part is kept for the further analysis. 6 line profiles are

extracted from the point cloud of the wheel part for feature

extraction in the next step, with 3 horizontals and 3 verti-

cals. Only the end sections of each line profile are kept to

do the analysis (see Fig. 9).

As is shown in Fig. 10, two sections of profile are used

to define the attributes of the wheel. Only the beginning

and ending sections of the profile are kept while other

sections are ignored. It is possible to use statistics to esti-

mate the regression line of the values corresponding to the

profile section [53]. Taking into account the slope of the

regression line, it is possible to estimate the height and the

pose of the wheel part.

The least squares linear regression is used to acquire the

regression line. With the numerical data of a profile and the

regression line corresponding to a wheel, 5 values are

obtained, which are respectively x1 slope of the regression

line, x2 bias of the regression line, x3 mean height value of

points in the beginning section, x4 mean height value of

points in the ending section, x5 width between the starting

point and the ending point.

With all the values extracted from a line profile and the

regression line, a data vector is constructed for each of the

six profiles of the wheel:

X ¼ fx1; x2; � � � ; x5g:

Thus, a vector XS is used to denote a wheel where

XS = {X1, X2, …, X6} as the inputs of data mining

approaches.

Fig. 8 Acquired point cloud of the wheel part

Fig. 9 Line profile of the wheel part

Fig. 10 Attributes corresponding to the extracted profile
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6.3.4 Data mining approaches for quality inspection

Data mining methods are often used to ascertain the

product quality. In this paper, three typical data mining

approaches are used: ANN, DT and SVM.

(i) DT

A decision tree is a flowchart-like tree structure, where

each internal node denotes a test on an attribute, each

branch represents an outcome of the test, and each leaf

node holds a class label. The construction of DT classifiers

does not require any domain knowledge or parameter set-

ting, and therefore is appropriate for exploratory knowl-

edge discovery. C4.5 is a classic algorithm for DT

induction. In this case, the succedent algorithm C5.0 is

implemented in IBM SPSS Modeler� to accomplish the

DT induction and test.

(ii) ANN

As another effective data mining approach, an ANN

consists of layers and neurons on each of them. Parameters

are adjustable in an ANN such as the number of the hidden

layers and neurons, the transfer functions between layers

and the training method etc. In the case study, the structure

of ANN is set to be 1 hidden layer of 20 nodes. The net-

work training function is set to be transact, which updates

weight and bias values according to the scaled conjugate

gradient method.

(iii) SVM

The standard SVM is designed for binary classification.

SVM training algorithms are available to build a model

that assigns examples into corresponding category. New

examples are then predicted based on the constructed

model [54]. For multi-classification problem, a commonly

used approach is to construct K separate SVMs [55], where

K equals the number of classes. The polynomial kernel

type is used in the paper.

(iv) Cross validation

Tenfold cross validation is used to evaluate the perfor-

mance of three different modelling approaches such as DT,

ANN and SVM. The acquired examples are randomly

partitioned into 10 subgroups. The validation process is

repeated 10 times, with each of the 10 subgroups used as

the test data while other 9 subgroups as the training data

alternately. 1,000 samples are used in the case study. Thus

in each validation, 900 samples are used as the training sets

while 100 samples as the test sets. Regarding each vali-

dation, 6 measures are obtained for each classifier on the

basis of 4 outcomes: true positive (TP), true negative (TN),

false positive (FP) and false negative (FN), and the 6

measures are defined as following:

i) Correctly classified

instances (CCI):

Percentage of samples correctly

classified.

ii) Incorrectly classified

instances (ICI):

100 %–CCI.

iii) True positive rate (TPR): TP/(TP ? FN). Also called

Recall measure.

iv) False positive rate (FPR): FP/(FP ? TN)

v) Precision (P): TP/(TP ? FP)

vi) F-measure (FM): Defined as (2*Precision*Recall)/

(Precision ? Recall)

Table 2 shows the performance of the ANN, DT and

SVM classifiers previously cited. The tenfold cross vali-

dation ensures the test results more of generality. It shows

in Table 2 that, among the three approaches, the SVM

classifier has the highest CCI value of 95.8 % and the

lowest FPR value of 0.011. Thus the SVM is the most

robust classifier for this case.

6.3.5 Discussion

In the process of quality inspection, the vision system is

necessary to be smart to accomplish the inspection, that is,

it should be self-adaptive, more flexible and less human

interferential. The integration of DM techniques and a

vision system can improve the inspection performance and

efficiency. SLS provides more possibilities to the quality

inspection task with height information of inspected

objects. Regarding the supposed wheel assembly problem,

a 2D vision system is not applicable due to the similarity of

the objects with different errors. However, SLS is able to

solve this problem effectively.

By acquiring 3D point cloud of the wheel, the geo-

metrical attributes of the wheel are extracted from the

section profiles and the regression analysis as the repre-

sentation of the wheel assembly quality. Without loss of

generality, tenfold cross validation and 6 measures are

applied to evaluate three classifiers of ANN, DT and SVM

respectively. The test result shows that the DM methods

are applicable to the supposed classification problem.

Table 2 Results of different approaches

Approach ANN DT SVM

CCI 90.30 % 91.60 % 95.80 %

ICI 9.70 % 8.40 % 4.20 %

TPR 0.703 0.739 0.853

FPR 0.026 0.023 0.011

Precision 0.903 0.916 0.958

F-measure 0.790 0.816 0.902
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Especially, the SVM classifier has the best performance,

such as the CCI value of 95.8 % and FPR value of 0.011,

which is the most suitable approach to this case. The

combination of SLS and feature extraction on the basis of

the section profile is applicable for the objects with sim-

ilar geometric specifics with the wheel, especially for the

symmetrical inspected objects.

7 Conclusions

This paper presents the new concept of ZDM, which is the

next generation of manufacturing systems. The general

framework of ZDM developed describes the basic com-

ponents of a ZDM system, which include intelligent sensor

and data collection, signal processing and feature extrac-

tion, DM for diagnosis and prognosis, decision-making and

feedback control. The most important component is DM.

The main role of DM in ZDM is to discover the useful

information and knowledge from a massive amount of

manufacturing datasets measured. Then, models, rules and

patters extracted by DM techniques are used for fault

diagnosis and failure prognosis. These information and

knowledge are used to help managers to make better and

right decisions.

Three ongoing projects: IFaCOM, WINDSENSE and

3D IQIS have shown the interests of ZDM and demon-

strated how to use DM technology to develop ZDM

systems.
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