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Abstract
Bistable nonlinear energy sinks have been widely studied in energy harvesting and vibration absorption systems. The precise
identification of local bistable nonlinear stiffness force is of significance to predicting and controlling the dynamic responses.
Sparse identification is a very popular data-driven method that has been widely used in nonlinear dynamics identification.
However, the accuracy and efficiency of sparse identification of multi-degree-of-freedom bistable systems are still not yet
investigated. Besides, the significance of physical information of basis functions in sparse identification has not been numer-
ically validated. This paper established the model of Bistable Nonlinear Energy Sink Chains (BENSC) and the vibration
absorption characteristic is numerically analyzed. The Sparse Identification of Nonlinear Dynamics Systems (SINDy) and
physics-informed SINDy are conducted on two-degree-of-freedom to ten-degree-of-freedom BENSC systems. The results
show that with the increase in noise levels, the identification accuracy will be greatly decreased using SINDy with third-order
polynomial basis functions. Besides, the computing time is exponentially increased when the number of degrees of freedom
increases. However, the physics-informed sparse identification with basis functions a prior still keeps an accuracy of around
0.5% even under the noise level of 20 dB. The identification efficiency greatly improved compared with SINDy using third-
order polynomial basis functions. The results give new insights into the accuracy and efficiency issues of sparse identification
applied to BNESC systems under noise.
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1 Introduction

In the past decade, bistable nonlinear energy sinks have
received growing attention due to their wide applications
in the fields of energy harvesting and vibration absorption
[1, 2]. There are various types of bistable nonlinear energy
sinks havebeendeveloped, e.g.,well-designedbistable tracks
[3], local bistable beams [4] and oblique springs integra-
tion [5]. The precise identification of local bistable nonlinear
stiffness force plays an important role in designing and pre-
dicting the performance of vibration absorbers. However,
the introduction of bistability poses a huge challenge to the
identification of nonlinear stiffness forces in practical appli-
cations because of snap-through chaotic motions [6]. Many
data-driven identification methods have been developed for
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parameter identification of structural dynamics. However,
balancing the efficiency and accuracy of identification will
be a difficulty when it comes to high-degrees-of-freedom
systems.

For nonlinear restoring force identification of single-
degree-of-freedom bistable vibrating oscillators, many
approaches have been developed to address this issue. Liu
et al. comparatively studied the displacement and accel-
eration measurement restoring force surface method to
identify nonlinear bistable nonlinear stiffness force and linear
damping force [7]. Feldman proposed the Hilbert Vibration
Decomposition (HVD) combinedwith the “FREEVIB” algo-
rithm for the identification of the nonlinear stiffness force
of the Duffing-Holmes bistable oscillator [8, 9]. Anastasio
combined restoring force surface and nonlinear subspace
methods to identify the nonlinear stiffness force of an
asymmetric double-well Duffing oscillator and its nonlinear
damping characteristics [10, 11]. Liu et al. [12] developed a
two-stage nonlinear subspace method to identify the param-
eters of the nonlinear bistable piezoelectric energy harvester.
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Zhu et al. [13] integrated the Bayesian probability method
to select the best model in nonlinear subspace identifica-
tion which can improve the model reliability and accuracy of
bistable nonlinear identification.

For nonlinear stiffness force identification in nonlinear
energy sink structures, Wang et al. [14] employed the restor-
ing force surface method to identify the nonlinear stiffness
and damping of a piecewise linear nonlinear energy sink and
a hyperbolic tangent function is used for characterization.
Lund et al. [15] adopted an unscented Kalman filter to iden-
tify geometrically nonlinear stiffness and Coulomb damping
in a nonlinear energy sink device. Moore developed the char-
acteristic nonlinear system identification method which is
based on Hilbert transform and analytical approach to iden-
tify the dynamics of local piecewise linear attachments [16].
These methods have typically been found to be accurate and
reliable for their designed nonlinear energy sinks.

Recently, with the rapid development of the data-driven
regression method, sparse identification using the SINDy
algorithm has become a hot topic due to its robustness. Brun-
ton et al. originally proposed the nonlinear dynamic equation
discoverymethod based on sparse regression and applied it to
Lorenz and Navier Stokes’s equations [17]. Then, it has been
developed in the multi-degree-of-freedom system with local
polynomial and hysteretic nonlinear systems [18, 19]. The
reason is it has high efficiency and strong anti-noise ability
if proper basis function and numerical differentiation tech-
niques are used [20]. However, compared with the traditional
signal processing method, the selection of basis functions is
unclear. If the assumed candidate model basis functions are
inappropriate, the computing time will greatly increase and
the accuracy will be influenced. As we all know, the iden-

tification time is very important in control. Therefore, it is
necessary to investigate the accuracy and efficiency of sparse
identification of high degrees of freedom nonlinear systems.

This paper proposed the concept of BNESC which is
a strongly nonlinear multi-degree-of-freedom system with
many local bistable attachments. The dynamic model and
sparse identification using SINDy and the physics-informed
SINDy method are presented. The numerical simulations
of a two-degree-of-freedom and eight-degree-of-freedom
BENSC will show the vibration suspension ability. Besides,
the accuracy and efficiency of SINDy identification and
physics-informed SINDy identification of BNESC will be
illustrated on two to ten-degree-of-freedom BENSC under
noise levels of 40 dB, 30 dB and 20 dB. Finally, some dis-
cussions are given.

2 Modeling of BNESC

The system of Bistable Nonlinear Energy Sink Chains
(BNESC) considered in this paper is schematically depicted
in Fig. 1. It consists of n/2 linear primary structures with n/2
bistable nonlinear beams,wheren represents the total degrees
of freedom along the x-direction and also must be an even
number. Every primary structure is connected to each other
by a linear spring and linear damper. Besides, every primary
structure has a bistable attachment with a linear damper and
nonlinear magnetic coupled nonlinear stiffness force. When
the BNESC is under impact or based excitation, the bistable
nonlinear attachment will pump lots of energy from the pri-
mary mass and suppress the vibration of the main oscillator.
Besides, the nonlinear bistable attachment can be used for
energy harvesting.

The equations of motion of BNESC can be modeled as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1 ẍ1 + c1 ẋ1 + k1x1 + c2(ẋ1 − ẋ2) + α1(x1 − x2) + β1(x1 − x2)
3

+c3(ẋ1 − ẋ3) + k3(x1 − x3) = 0

m2 ẍ2 + c2(ẋ2 − ẋ1) + α1(x2 − x1) + β1(x2 − x1)
3 = 0

. . .

mq ẍq + cq−1(ẋq − ẋq−2) + kq−1(xq − xq−2) + cq+1(ẋq − ẋq+1)

+αq(xq − xq+1) + βq(xq − xq+1)
3 + cq(ẋq − ẋq+2) + kq(xq − xq+2) = 0

mq+1 ẍq+1 + cq+1(ẋq+1 − ẋq) + αq(xq+1 − xq) + βq(xq+1 − x1)
3 = 0

. . .

mn−1 ẍn−1 + cn−1(ẋn−1 − ẋn−3) + kn−1(xn−1 − xn−3) + cn(ẋn−1 − ẋn)

+αn−1(xn−1 − xn) + βn−1(xn−1 − xn)
3 = 0

mnẍn + cn(ẋn − ẋn−1) + αn−1(xn − xn−1) + βn−1(xn − xn−1)
3 = 0

(1)
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Fig. 1 Schematic view of
BNESC system
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wherem is the equivalent mass of each primary structure and
bistable nonlinear attachment. x is the displacement response
of each oscillator. The subscript n represents where the mass
is. The linear stiffness and damping are represented by k
and c. The bistable nonlinear stiffness forces are all assumed
third-order polynomials with coefficients of α, β with differ-
ent subscripts.

3 SINDy and physics-informed SINDy
of BNESC

When the BNESC is described by Eq. (1), the linear param-
eters of m, k, and c can be easily measured or identified
by linear parameter identification methods. However, the
bistable nonlinear stiffness force is always hard to measure
or identify due to snap-through characteristics. Besides, the
bistable nonlinear stiffness force is strongly sensitive to the
installation parameters of two rotatable magnets.

For modern data-driven methods, the sparse identification
of nonlinear dynamical systems has the following procedures
[17, 21]. Firstly, Eq. (1) is rewritten as the following forms:

dyk(t)

dt
= �(y)ξk+σ Zk (2)

where �(y) is the candidate function and ξ k contains the
coefficients of the sparse vector. The σ here is defined as the
Signal to Noise Ratio (SNR) and Zk is the root mean square
of the measured data yk(t).

It must be noted that numerical differentiation techniques
and robust noise removal methods in Eq. (2) may play an
important role in SINDy identification accuracy [22–24]. In
this paper, these advanced techniques will not be compared
in detail.

According to Eq. (2), the candidate function�(y) consists
of polynomial terms, therefore:

�(Y) =
[

θ1(Y) θ2(Y) · · · θP (Y)

]
=

⎡

⎢
⎢
⎣

...
...

...
...

YP1 YP2 · · · YPn

...
...

...
...

⎤

⎥
⎥
⎦

(3)

where YPn denotes the n-order polynomial nonlinearities in
the state space Y.

To explain the importance of candidate function �(y)
selection in SINDy, a two-degree-of-freedom BNES is taken
as an example:

m1 ẍ1 + c1(ẋ1 − ẋ2) + k1(x1 − x2) + c2(ẋ1 − ẋ2)

+ α(x1 − x2) + β(x1 − x2)
3 = 0

m2 ẍ2 + c2(ẋ2 − ẋ1) + α(x2 − x1) + β(x2 − x1)
3 = 0 (4)

Derive the first-order differential equation by reducing the
order in Eq. (4):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(1) = y(2)
dy(2) = − c1+c2

m1
[y(2) − y(4)]

− k1+α
m1

[y(1) − y(3)] − β
m1

[y(1) − y(3)]3

dy(3) = y(4)
dy(4) = − c2

m2
[y(4) − y(2)] − α

m2
[y(3) − y(1)]

− β
m2

[y(3) − y(1)]3

(5)

where y(1) is equal to x1 and y(3) is equal to x2.
Based onEq. (5), the basis function only has basis function

terms of

�prior =
{
y(2) y(2) − y(4) y(1) − y(2) [y(1) − y(3)]3

y(4) y(4) − y(2) y(3) − y(1) [y(3) − y(1)]3
}

(6)

where �prior represents physics-informed basis functions.
There are only 8 terms of basis functions in Eq. (6). How-

ever, the basis functions will contain 35 terms if a third-order
polynomial is chosen for identification in SINDy.The nonlin-
ear basis functions will greatly be increased with the increase
in degrees of freedom or polynomial order. The identifica-
tion efficiency will greatly decrease if the basis functions in
Eq. (3) are not physically informed.
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Table 1 Illustration of parameters of BNESC

BNESC Two-degree-
of-freedom

Eight-degree-
of-freedom

Primary mass m1 = 1 kg m1 = m3 = m5 =
m7 = 1 kg

NES mass m2 = 0.01 kg m2 = m4 = m6 =
m8 = 0.01 kg

Primary damping c1 = 1 N/(m/s) c1 = c3 = c5 = c7
= 1 N/(m/s)

NES damping c2 = 0.02 N/(m/s) c2 = c4 = c6 = c8
= 0.02 N/(m/s)

Linear stiffness k1=30,000 N/m k1 = k3 = k5 = k7
= 30,000 N/m

Nonlinear stiffness α = − 100 N/m and β = 106 N/m3

Once the basis function is established, the coefficients ξ

can be obtained by performing a standard regression. The L1

regularization term needs to be added to the regression:

ξ= argmin
ξ ′

∥
∥�ξ ′ − y

∥
∥
2 + λ

∥
∥ξ ′∥∥

1 (7)

where λ weights the sparsity constraint. The formula is
related to compressed sensing, which allows sparse vectors
to be determined from relatively few noncoherent random
measurements [25].

The specific identification processes of SINDy and
physics-informed SINDy for BNESC can be summarized as
follows:

1. Give the BNESC an impact or initial displacement at any
degree of freedom;

2. Collect the displacement responses of each-degree-of-
freedom;

3. Obtain the velocity and acceleration by numerical differ-
entiation;

4. Rearrange matrices of displacement, velocity and accel-
eration signals based on Eqs. (5) and (6);

5. Select an appropriate polynomial order based on Eqs. (3)
or (6) of nonlinear stiffness force and then construct the
candidate function matrix in sparse regression;

6. Use the sequential thresholded least-squares algorithm
to achieve sparse regression and the coefficients ξ can be
identified.

7. Select the identified parameters and then reconstruct the
nonlinear stiffness for comparison.

4 Numerical analysis of vibration absorption

To give specific views of vibration suppression abilities of
BNESC systems. Two numerical simulations on two-degree-
of-freedom BNESC and eight-degree-of-freedom BNESC
are illustrated. According to current studies of bistable non-
linear energy sink analysis, third-order polynomial functions
are adopted for nonlinear stiffness force characterization
[26–31]. In the following simulations, the four nonlinear
bistable beams all have the same nonlinear stiffness force
with a function of f = − 100x + 106x3. The selected param-
eters in Eq. (1) are all illustrated in Table 1.

For two-degree-of-freedom BNESC, the initial condition
of Eq. (1) is set as [0; 1 m/s; 0; 0]. The sampling frequency
of 1000 Hz in the time interval of t = 0 to t = 6 s is set. The
displacement responses of mass m1 and m2 are obtained by
conducting a Runge–Kutta ode45 simulation. Figure 2 shows
the displacement responses ofm1 andm2. It can be observed
that the nonlinear energy sink mass moves across two poten-
tial wells in the first 2.5 s and finally moves into the positive
equilibrium point of+ 0.01m. The primary structure’s vibra-
tion is suppressed and the amplitude quickly decays to zero.

To give a specific view of vibration suppression ability,
the dynamic response of the primary mass of BNESC is
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Fig. 2 The dynamic responses of two-degree-of-freedom BNESC. a primary mass response. b nonlinear energy sink mass response
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Fig. 3 Comparison of free vibration responses of primary structure with
BNES and without BNES

compared with no BNES primary structure, as shown in
Fig. 3. The dynamic response of the primary structure with-
out BENS is exponentially descending. However, the free

attenuation response with BNES has faster attenuation and
smaller amplitude characteristics.

For eight-degree-of-freedomBNESC, the initial condition
of Eq. (1) is set as [0; 3 m/s; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;
0]. The sampling frequency of 1000 Hz in the time interval
of t = 0 to t = 6 s is set. The displacement responses of mass
m1 to m8 are obtained by conducting a Runge–Kutta ode45
simulation. Figure 4 shows the displacement responses of
m1 to m8. It can be observed that four BNES masses move
across two potential energy wells at the beginning and then
fall into any two equilibrium points. The primary structures
of m1, m3, m5 and m7 exhibit irregular attenuation.

Figure 5 shows the nonlinear vibration suppression abil-
ity of eight-degree-of-freedomBNESC. The amplitude of the
primary structure in BENSC is always lower than the linear
four-degree-of-freedom system without BNES. It must be
noted that the BNESC is not optimized in this paper. There-
fore, the vibration absorption is not as good enough. The
optimization and design of a bistable nonlinear energy sink
structure can refer to these references [32–34]. It must be
noted that the selection of parameters in BNESC will not
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Fig. 4 Free vibration responses of eight-degree-of-freedom BNESC
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Fig. 5 Comparison of vibration suppression ability with and without BNES

affect the identification results due to that third-order poly-
nomial function was used to represent nonlinear stiffness
force of BNESC. Theoretically, the identification procedure
will not be affected if basis functions, noise interference and
sparse regression algorithm were determined, as described
in Eqs. (2), (3) and (7).

5 Identification accuracy and efficiency
of BNESC

The dynamic responses of a BNESC are sensitive to non-
linear stiffness force parameters and initial conditions due
to the strongly nonlinear coupling characteristics. Therefore,
the Normalized Mean Square Error (NMSE) of the nonlin-
ear stiffness force is defined here to evaluate identification
accuracy.

J = 100

Nσ 2
f

N∑

i=1

( f − f̂i )
2 (8)

where N denotes the total sampling points of nonlinear stiff-
ness force. The σ 2

f is the variance of theoretical nonlinear

stiffness force. The f̂ is the identified nonlinear stiffness
force sequence.

The sparse identification algorithm is conducted on
two-degree-of-freedom to ten-degree-of-freedom systems.
Besides, the 40 dB, 30 dB and 20 dB Gaussian White Noise
are added to the displacement responses of each degree of
freedom. Figure 6a shows the comparison between the iden-
tified nonlinear stiffness force and theory. It has a good
agreement with the theory even under the noise level of 20
dB. Besides, it can be seen in Fig. 6b that with the increase in
noise levels, the relative error between identified and theory
greatly increased.

For eight-degree-of-freedom BNESC, the identified non-
linear stiffness force has a good agreement with the theory
when the noise level is under 30 dB, as shown in Fig. 7a.
There is an unreasonable error if the noise level increases to
20 dB. Figure 7b gives a comparison of identified relative
errors under different noise levels. It demonstrates that with
the increase in noise levels, a sharp increase in identification
NMSE.

Table 2 lists the identified NMSE error from two to ten-
degree-of-freedom BNESC. With the increase in the degrees
of freedom, the identified nonlinear stiffness force error is
increased. The same is true for the influence of noise levels
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Fig. 7 Identified nonlinear stiffness force and relative error of an eight-degree-of-freedom BNESC. a comparison between the identified (40 dB, 30
dB, 20 dB) and theory. b relative error

Table 2 Identification results of
BNESC under different noise
levels

Noise levels (dB) Degrees of freedom

Two (%) Four (%) Six (%) Eight (%) Ten (%)

40 0.0018 0.0027 0.0039 0.0358 0.6450

30 0.0331 0.1128 0.4716 2.3555 9.7115

20 2.1564 5.8351 9.0256 30.3485 63.0856

on the accuracy of nonlinear stiffness force identification.
Under the noise level of 20 dB, the identified results in
eight and ten-degree-of-freedom BNESC are 30.3485% and
63.0856%, respectively. The results demonstrate that if the
noise level and degrees of freedom are simultaneously very
high, the sparse identification may fail to identify the nonlin-
ear stiffness force. However, under the noise level of 40 dB,
the identified nonlinear stiffness has good accuracy with the
highest NMSE of only 0.6450%. Even under the noise level
of 30 dB, the identified results are also relatively good with
NMSE of 0.0331% to 9.7115%.

To give a specific view of identification accuracy and
efficiency of sparse identification with third-order polyno-
mial basis functions for BNESC, 100 cycles on BNESC
systems with different degrees of freedom are performed.
Figure 8a–c show the relationship between NMSE and
degrees of freedom under noise levels of 40 dB, 30 dB and
20 dB, respectively. The noise levels and degrees of freedom
all have a great impact on identification accuracy. Figure 8d
gives the relationship between computing time and degrees
of freedom. It can be observed that the identification effi-
ciency is greatly decreased with the increase in degrees of
freedom.
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Fig. 9 Identification accuracy and computing time using physics-informed SINDy. a Identification accuracy versus degrees of freedom (20 dB).
b computing time versus degrees of freedom (20 dB)
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To give a comparison, 100 cycles using physics-informed
SINDy on a BNESC system with different degrees of free-
dom are performed. The identified accuracy keeps around
0.5% even under the noise of 20 dB, as depicted in Fig. 9a.
Besides, the computing times are 0.9 s, 1.7 s, 2.9 s, 5.1 s
and 12.3 s for two degrees of freedom to ten degrees of
freedom BNESC, respectively. The identification accuracy
greatly improved compared to SINDy identification with
third-order polynomial basis functions, as shown in Fig. 9b.

6 Conclusions

This paper gives a new investigation on the efficiency
and accuracy of sparse identification and physics-informed
sparse identification of bistable nonlinear energy sink chains
(BNESC). The numerical simulations of a two-degree-of-
freedom and eight-degree-of-freedom BNESC have shown
the vibration suppression ability. The relationship between
the identified NMSE of nonlinear stiffness force and degrees
of freedomofBNESC is illustrated.Besides, the 40dB, 30dB
and 20 dB noise are added to test the anti-noise robustness.
With the increase in degrees of freedom and noise levels,
the identification accuracy will be greatly decreased using
SINDy with third-order polynomial functions. However, the
identification accuracy remains around 0.5% if the prior basis
function of BNESC is known. Besides, the identification
efficiency will greatly improve compared with SINDy. The
investigated results give special views of the significance of
basis function information for the identification of BNESC
system. However, the acquisition of prior information of
basis functions in SINDy is still challenging in the future.
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