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Abstract
In this paper, a new identification method is developed forWiener–Hammerstein systems that contain memory nonlinearity of
backlash type. The latter is flanked by two linear transfer functions that may be parametric or not. The proposed identification
method is carried out in two stages. Firstly, the parameters (the lateral borders) of memory operator are identified using a
set of constant inputs. In the second stage, an identification method based on Fourier analysis is developed to determine the
frequency responses of both transfer functions. The performances of the proposed identification method are highlighted by
simulation results. Finally, experimental application has been established to show the effectiveness of this method.

Keywords Nonlinear systems identification ·Wiener–Hammerstein models ·Backlash operator · Fourier analysis · Frequency
approaches

1 Introduction

Nonlinear system identification has been a hot research field
over the past two decades [1, 2]. A substantial portion of the
research works has been carried out on the basis of block-
structured models. The simplest structures are Hammerstein
model, consisting of a static nonlinear block followed in
series by a linear time invariant dynamic system, andWiener
model composed of a linear subsystem followed by a static
nonlinearity. Hammerstein (resp. Wiener) model structure
proved to be useful in the presence of actuator (resp. sensor)
nonlinearity. In the case of systems with strong nonlinear-
ities, these models might not be sufficient to provide an
accurate approximation of the system dynamics. Then, sys-
tem identification must be carried out using more complex
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structures, e.g., Hammerstein–Wiener andWiener–Hammer-
stein models. In this work, the identification problem of
Wiener–Hammerstein nonlinear system is addressed. The
latter consists of series connection of a linear block G1(s),
a static nonlinearity F[.], and another linear block G2(s)
(Fig. 1). This structure has proved to be suitable for modeling
a wide range of real systems [3]. In this study, the consid-
ered system nonlinearity F[.] is a backlash operator (Fig. 2).
Most of available works addressing the issue of backlash
effect focus onWiener or Hammerstein systems. Thesemod-
els can be viewed as special cases of Wiener–Hammerstein
nonlinear systems.

Various methods have been proposed to deal with sys-
tem identification based on Wiener–Hammerstein model,
see, e.g., [31, 35, 34, 35]. The identification issue of
Wiener–Hammerstein model having a memory operator
has not yet been studied. The available works considering
a memory operator in the case of Wiener or Hammer-
stein models that cannot be generalized to Wiener–Ham-
merstein systems. In [5], an identification method using
standard support vector machines (SVM) has been devel-
oped. The method only applies to nonlinear finite impulse
response (NFIR) systems. The aim is to estimate a func-
tion approximating the input–output relationship using
the input/output measurement data. Furthermore, this
method suffers from high computational time and mem-
ory usage, making it not suitable in the presence of large
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Fig. 1 Wiener–Hammerstein model having backlash nonlinearity H [.].
u is the input, y is the output, (v, w, x) are inaccessible inner signals,
and ξ is the noise. G1(s) is transfer function of the front block, and
G2(s) is transfer function of the back block

Fig. 2 Backlash having straight borders. SL and SU are the slope of
loading and unloading borders, respectively; DL (respectively, DU) is
the value of v(t) where the loading (respectively, unloading) border
crosses the x-axis. vm and vM are the minimum and maximum values
of v(t), respectively

amount of data. This solution is approximate and can be
considered in the case of smooth nonlinearity. An identi-
fication method was proposed, but it was only applicable
to case of FIR linear subsystems [6]. This solution is con-
sidered in the case of linear model and cannot be applied
to Wiener–Hammerstein models. Furthermore, the transfer
function is a ratio of coprime polynomials having known
degrees. The used input signal is a zero-mean stationary
ergodic random signal and is persistently exciting of suf-
ficiently high order.
In Falck et al. [7], an identification method involving model
overparameterization was proposed that combines least-
squares method and SVM (LS-SVM). The input linear block
G1(s) and the output linear block G2(s) (Fig. 1) are param-
eterized as a FIR and an ARX (autoregressive exogenous)
model, respectively. Then, the linear blocks are parametric
of known structure. In [8], the (discrete) impulse responses
of the linear elements are estimated using stochastic approx-
imation. Then, the numerators and denominators of the two
linear subsystems are polynomials with known orders.

In [9], a recursive identification method involving recur-
sive least-squares is proposed. In this work, the used system
nonlinearity is a dead-zone function, which can be viewed as
a special case of memory operator. This method is applied
in discrete time domain, and the linear dynamic subsystems
are parametric of known structure.

In [10], an identification method using the best linear
approximation (BLA) technique is developed. The main
identification challenge in the BLA techniques resides in
separating the linear subsystem parameters. The partition of

poles and zeros of resulting filter to form the input linear
block G1(s) and the output linear block G2(s) is unique.
Furthermore, the considered system nonlinearity is a static
and monotonic function. In [11], an identification method
of Wiener–Hammerstein systems is proposed. This method
is developed assuming the static nonlinearity is Lipschitz
function, and the linear blocks are FIR filters of known
orders. In [12], the problem of Wiener–Hammerstein iden-
tification is addressed making use of Volterra series and
�1-constrained least squares. The linear subsystem blocks
are characterized by the impulse responses. Then, the system
nonlinearity is assumed to be smooth, and all its derivatives
are bounded. Furthermore, the input signal {un} is a sequence
of bounded i.i.d. (independently and identically distributed)
random signal satisfying |un| ≤ 1. In [13], an identification
method is proposed that applies to the case the linear block
G2(s) is a FIR filter. In [14], an identification method using
the second-order Volterra kernel and reduced order linear
dynamic blocks was presented. A method based on the frac-
tional approach was proposed in [15] that applies to the case
of static nonlinearity.

In most of these works, the linear blocks are supposed of
FIR types (e.g., in [11]). Furthermore, some of the previous
papers have considered parametric linear blocks of known
order.

Quite a few existing works dealt with system identifica-
tion of systems with backlash. The works [16, 17, 22, 23,
28–30] are some exceptions, but none of them was focused
on Wiener–Hammerstein models. In [24], the identification
of Wiener–Hammerstein systems with backlash was consid-
ered in discrete time and dealt with using multi-innovation
stochastic gradient method. In the present study, we develop
a frequency identification method for Wiener–Hammerstein
systems that contain a backlash operator (Fig. 2) and contin-
uous time linear subsystems.

Note that backlash effect is widely present in practical
systems, especially in electric servomotors and mechanical
systems [16]. Analytically, backlash can be seen as a gap
(offset) between the input and output of the nonlinearity (e.g.,
Fig. 3). Examples ofmechanical systems containingbacklash
nonlinearity are given in [25, 26, 33]. The considered model
is representative of e.g., mechanical systems composed by
a DC motor (linear system), with a gear on its rotor shaft,
and a load (that might be a motor) coupled to the driven gear.
Such a system is well represented by aWiener–Hammerstein
model with backlash.

Presently, the system backlash operator may be symmet-
ric or not and the linear blocks, G1(s) and G2(s), may be
parametric or not. In this proposed solution, a step signal
and a sine signal are used to excite the Wiener–Hammer-
stein system, which constitutes one of the innovations of this
method. We present a two-stage identification method that
provides estimates of the various parts of the system. In the
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Fig. 3 The play between the teeth
of the driving gear and those of
the driven gear is a backlash; the
latter is symmetric, i.e.,
DL = DU = b and SL = SU

first stage, the system nonlinearity is identified using a set of
constant inputs. In the second stage, Fourier expansion-based
method is developed to obtain a set of points of the frequency
response of the system transfer functions. Of course, the
obtained points can be used to get parameter estimates of
the transfer functions in case these are parametric. Then, the
order of linear elements G1(s) and G2(s) is not necessarily
knownand the latter can be of unknown structure.Both stages
of the identification method involve deterministic input sig-
nals (step or sine signals) that can be easily generated, unlike
in several previous papers requiring complex input signals
that may be hard to realize practically (e.g., Gaussian or/ and
persistent excitation).

Recall that, the main issue in the identification problem of
Wiener–Hammerstein nonlinear system lies in the separation
of the dynamics over the linear blocks G1(s) and G2(s) [4].
Unlike several previous works, in this study, the separation
of the dynamics over the front and the back linear blocks can
be is easily accomplished without any further assumptions
or experiments.

Thismethod can be applied to physical systemof feedback
loop structure and having stable linear block is in the forward
loop [27].

The nonlinear system to be identified is described by
Wiener–Hammerstein model, where the system nonlinear-
ity is a memory operator given in Fig. 2.

For convenience, the main contributions of this paper are
summarized as follows:

2 Summary of main contributions

Before describing the organization of the paper, let us sum-
marize the novelty of the contribution, in comparison with
existing works:

• Identification approach for Wiener–Hammerstein nonlin-
ear system is presented.

• Most previous works have been focused on Wiener or
Hammerstein systems.

• The linear blocks can be parametric or not. The blocks
G1(s) and G2(s) can be of unknown structure.

• The considered system nonlinearity is a backlash operator
which can be symmetric or not.

• The proposed identification approach is new based on
Fourier technique.

• Experimental test using electronic components has been
conducted.

• The separation of the dynamics over the front and the back
linear blocks is easily accomplished, without any further
assumptions or experiments.

Outline of the paper

The rest of the paper is organized as follows: The system
identification problem under study is formulated in Sect. 2;
Sect. 3 is devoted to identification method design; simulation
results are presented in Sect. 4; and concluding remarks end
the paper.

3 Problem formulation

Weconsider the identification problem forWiener–Hammer-
stein systems depicted in Fig. 1. Accordingly, the system
is a series connection of linear block with transfer function
G1(s), a nonlinear block F[·], and again a linear blockG2(s).
It turns out that theWiener–Hammerstein system can be ana-
lytically described as follows:

v(t) = g1(t) ∗ u(t) (1)

where * stands for the convolution product, gi (t) =
L−1(Gi (s)), i = 1 or 2, denotes the inverse Laplace trans-
form of the input linear block. Then, the inner signals v(t)
and w(t) are related by the following expression:

w(t) = F[v(t)] = F[g1(t) ∗ u(t)] (2)

where F[·] is a backlash nonlinearity having affine lateral
borders (Fig. 2). Accordingly, the undisturbed output x(t)
can be written as:

x(t) = g2(t)∗w(t) = g2(t)∗F[g1(t)∗u(t)] (3)
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Finally, the system output can be expressed as:

y(t) = g2(t) ∗ F[g1(t) ∗ u(t)] + ξ(t) (4)

The unmeasurable noise ξ(t) is presently supposed to be a
zero-mean ergodic stochastic process and is independent on
the system input. The noise zero-mean is denoted λξ = 0
and its variance σ 2

ξ < ∞.
Presently, we seek the development of a new identification

method that provides estimates of the system components
(G1(s), F[·], G2(s)).

Assumptions A1 Since the identification is carried out in
open loop, the dynamic linear blocks G1(s) and G2(s) are
assumed to be asymptotically stable. Further, both linear
elements are supposed to have a nonzero DC gain (i.e.,
G1(0) �= 0 and G2(0) �= 0).

A2. The nonlinearity F[·] is a backlash operator bordered
by straight lines.

In the sequel, except of assumptions A1–A2, no other
condition is required.

Remark 1

1. Let us consider the identification problem of
Wiener–Hammerstein system described by (1)–(4).
Clearly, this problem does not have a unique solution
[19]. Indeed, if the triplet (G1(s), F[v], G2(s)) is
solution of the above identification problem, then any
triplet of the form:

(
G1(s)

k1
, k2F[k1v],

G2(s)

k2

)
(5a)

is also a solution of this identification problem, for any
nonzero reals (k1, k2). Now the question is which par-
ticular model should we be focused on? This will be
discussed in the next remarks.

2. Let us consider the Heaviside function σ(t) defined as:

σ(t) =
{
0 for t < 0
1 for t ≥ 0

.

Let Vp denotes the peak (maximal) value of the step
response v(t) that results from a unitary step input signal,
i.e., when u(t) = σ(t) (Heaviside function). Note that the
maximum value Vp is either equal to the steady-state value
(i.e., the static gain Vp = G1(0)), for linear system without
overshoot, or Vp �= G1(0) for linear block with overshoot.

3. Let Vj denotes the peak of v(t) when an arbitrary step
input u(t) = u j (t) with u j (t) = Ujσ(t) is applied,
where Uj > 0 is arbitrary. It is readily seen that:

Vj = UjVp (5b)

4. In view of Parts 1 and 2 of this remark, it is judicious to
set the constants (k1, k2) in (5a) as follows:

k1 = Vp And k2 = G2(0) (5c)

Doing so, we make the model (5a) satisfy two key prop-
erties:

(P1) The peak value Vp of the intermediary signal v(t), in
response to a step input u j (t) = Ujσ(t), is known. Specifi-
cally, we have Vj = Uj .

(P2) The transfer function located at the output side has a
unitary static gain. �

From Remark 1, it follows that there is a unique model
of the form (5a) that enjoys properties (P1) and (P2) stated
in Part 3. In order to avoid multiple notations, the model to
be identified will be still noted (G1(s), F[·], G2(s)) and this
satisfies properties (P1)–(P2). Accordingly, we have:

G2(0) = 1 and Vj = Uj (5d)

where Vj denotes the peak value of the intermediary sig-
nal v(t), in response to a step input u j (t) = Ujσ(t). Using
the assumptions A1, an identification method is developed
in the first stage to determine the system nonlinearity F[·].
In the second stage, a sine signal u(t) of frequency ω is
applied to the input of the Wiener–Hammerstein nonlinear
system. Bearing in mind that u(t) is a periodic signal of the
period T = 2π/ω, the steady state of system output y(t) is
thus also T -periodic. Then, using the relationship between
the input and output system, the frequency gains G1(s) and
G2(s) can be estimated using Fourier analysis. It is interest-
ing to note in this respect that, when a linear block is excited
by a sine signal of frequency ω, its output (after the transient
response) becomes sine signal of the same frequency ω, but
the amplitude and the phase change according to the lin-
ear block parameters. Conversely, when a nonlinear block is
excited by a sine signal, it generates harmonic of frequencies
kω, k = 1,2, . . . [21, 22].

So far, the identification problem of nonlinear system hav-
ing backlash operator has been addressed only in the case
of Wiener or Hammerstein systems. Presently, the back-
lash operator is considered in the more general case of
Wiener–Hammerstein system. It turns out that the present
identification method is quite different from those developed
for Wiener or Hammerstein systems, which are particular
simpler cases of the Wiener–Hammerstein system.

Remark 2 Figure 4 shows example of mechanical system
where a backlash bordered by two straight line curves occurs.
After the establishment of the contact between the drive and
driven gears, the latter follows linearly the move of the input
(drive gear). If the contact between the drive and driven gears
is lost, the working point (v(t), w(t)) moves horizontally
between the lateral borders.
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Fig. 4 Example of static backlash
nonlinearity bordered by straight
line

Fig. 5 Example of cycle performed by the working point

Then, for a step input less than the minimal horizontal
distance between the lateral borders of backlash, the working
point moves horizontally (Fig. 5).

4 System nonlinearity identification

For convenience, we first introduce the following terminol-
ogy:

Definition 1

1. The lateral borders of backlash operator are called load-
ing and unloading curves, respectively [23, 28].

2. A signal u(t) is called loading signal in any time inter-

val
[
tm tM

]
, where tm < tM , if it is nondecreasing in[

tm tM
]
, i.e.,

its derivative u̇(t) ≥ 0∀t ∈
[
tm tM

]

3. Similarly, u(t) is called unloading signal in the time inter-

val
[
tm tM

]
if it is nonincreasing, i.e.,

Its derivative u̇(t) ≤ 0∀t ∈
[
tm tM

]

In the sequel, the abbreviations L and U stand for loading
and unloading, respectively. In this section, the problem at
hand is to identify the system nonlinearity F[·]. The latter
is a backlash nonlinearity having straight-line lateral borders
(Fig. 2). To this end, it is sufficient to determine a set of points
N of the nonlinearity F[·] borders. These lateral borders,
denoted ( fL , fU ), are represented by the equations:

fL(v(t)) = SL(v(t) − DL) (6a)

fU(v(t)) = SU(v(t) − DU) (6b)

where SL and SU are the slope of loading and unloading bor-
ders, respectively; DL (respectively, DU) is the value of v(t)
where the loading (respectively, unloading) border crosses
the x-axis.

4.1 Backlash operation principle

Let us suppose that the initial backlash working point (v(t),
w(t)) belongs to the increasing lateral border fL(.) (respec-
tively fU (.)). Then, the point (v(t), w(t)) keeps moving
along fL(.) (respectively, fU (.)) as long as v(t) is mono-
tonic. When the derivative v̇(t) changes sign, the backlash
working point (v(t), w(t)) leaves one border and starts mov-
ing horizontally toward the opposite border. When the point
(v(t), w(t)) intersects the lateral border, it keeps moving
along this one as long as v(t) is monotonic.

Then, the backlash nonlinearity can be analytically
described as:

w(t) =

⎧⎪⎨
⎪⎩

fL(v(t)) = SL(v(t) − DL) ifv(t) ≥ f −1
L (w(t − 1))

fU(v(t)) = SU(v(t) − DU) ifv(t) ≤ f −1
U (w(t − 1))

F[v(t − 1)] else

(7)

where f −1(.) stands for the inverse function, and
(v(t − 1), w(t − 1)) denote the last values of v andw before
time t .
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Remark 3 For convenience, an example of path carried out
by the working point (v(t), w(t)), for the studied backlash
nonlinearity, is shown inFig. 6.As given inFig. 4, let consider
the initial position of working point is placed between the
lateral borders of backlash, e.g., position ➀ in Fig. 6. For
increasing signal v(t), the working point (v(t), w(t)) moves
along a horizontal path, i.e., positions ➁ and ➂ (Fig. 6).

When the working point (v(t), w(t)) reaches the ascend-
ing lateral border fL(.) (position ➃ in Fig. 6), it moves along
this ascending border until v(t) changes monotonicity. For
instance, the working point (v(t), w(t)) takes the positions
➄ and ➅ in Fig. 6. Then, when v̇(t) changes sign, the work-
ing point (v(t), w(t)) leaves the ascending border andmoves
horizontally (positions ➆ and ➇ in Fig. 6).

When theworking point (v(t), w(t)) reaches the descend-
ing lateral border, it remainsmoving along this border as long
as v̇(t) does not change sign (position ➈ in Fig. 6).

4.2 Input signal design

The input signal used to identify F[·] should include an
ascending part, called loading stage, and a descending phase,
called unloading stage (Definition 1). Example of signal
having loading and unloading stages is shown in Fig. 7.
Therefore, we let the Wiener–Hammerstein nonlinear sys-
tem (Fig. 1) be excited by a signal u(t) featured by loading
and unloading stages. Presently, we use a piecewise constant
signal, i.e., u(t) steps from one constant value to another and

stay constant at each value (Fig. 7). Let dmax denote the max-
imal distance between the lateral borders of the backlash.
To ensure that all obtained points in loading (respectively,
unloading) stage belong to the same lateral border of the
backlash, an initialization step is used. This consists of apply-
ing an input UL0 before the first value UL1 in loading stage
such that UL1 − UL0 > dmax. Similarly, the difference
between the first value in unloading stage UU1 and UU0

should be less than −dmax. Figure 8a illustrates the initial-
ization step that can be used; the resulting backlash working
points is illustrated in Fig. 8b. In the case where this ini-
tialization step is not used, the backlash working points can
move along horizontal lines before following the later border
(Fig. 8c).

Let tr denote the settling time of the system. The design of
the input signal must meet two requirements. First, the dura-
tion of each constant stage of the input must be greater than
tr . This assumes that the estimation of system settling time
is obtained. Second, the step size (between two successive
constant values of the input signal) should be not too large so
that to prevent the operation point (v(t), w(t)) skipping from
one lateral border of the hysteresis operator F[·] to the other.
This problem arises in the case of oscillating systems (i.e.,
G1(s)). To keep simpler the presentation, the case of oscil-
lating block G1(s) is ruled out. Then, the backlash working
point either moves horizontally or moves along one lateral
border.

Let v1 and v2 denote arbitrary values within the domain

interval
[
vm vM

]
of the inner signal v(t) such that:

fL(v1) = fU(v2) or SL(v1 − DL) = SU(v2 − DU)

where (SL, DL) and (SU, DU) are the parameters of the
increasing and decreasing lateral borders (straight lines),
respectively. Referring to Fig. 9, this second requirement can
be expressed by the inequality D < dmin, where D denotes
the overshoot of step response of internal signal v(t) and
dmin is the minimal horizontal distance between the lateral
borders. From (6a–b), it follows that:

dmin = min
vm≤v1<v2≤vM

|v1 − v2|

Remark 4

1. For monotonic input, using the condition D < dmin and
Remark 1, the value of backlash output Wj , in steady
state, will remain equal to F

[
UjVp

] = F
[
Uj
]
regardless

the response type (oscillatory or not).
2. Step inputs with multiple excitation levels can be easily

generated using electronic or electrical equipment. An
example of mechanical system generating step inputs,
with multiple excitation levels, is shown in Fig. 10. The
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Fig. 8 aLoading stage of input signalwith initialization step,bExample
of obtained backlashworking points using initialization step, c Example
of obtained backlash working points without initialization step

corresponding relationship (backlash) between input and
output motions is given at the bottom of this figure.

3. The condition UL1 − UL0 > dmax (respectively, UU1 −
UU0 > dmax) considered in loading (respectively,
unloading) stage is not necessary in the identification
process. This condition is considered to ensure that all
obtained points in loading (respectively, unloading) stage
remain on the same lateral border. If this condition is not

Fig. 9 Shape of step response of subsystem G1(s)

satisfied, the backlash working point moves along a hor-
izontal path before reaching the lateral border.

4.3 Estimation of the lateral border of backlash
operator F[·]

Using an input signal u(t) as explained above results in
an internal signal v(t) that includes loading and unload-
ing stages. Furthermore, v(t) itself steps from a steady-state
value to another. Let N denotes the number of different con-
stant values in the input signal u(t). Using this (loading and
unloading) property, a set of points (≤ N/2) belonging to the
loading curve and other set of points (≤ N/2) belonging to
the unloading curve can be determined. Accordingly, an esti-
mate of the hysteresis (backlash) nonlinearity can be easily
obtained. In this respect, note that the number of points cor-
responding to the ascending and unloading curves should be
greater than 2. Let U1 < . . . < UN

2
be the selected abscis-

sas of the wave u(t) describing the increasing stage. The
input values referred to the unloading curve should satisfy
UN

2 +1 > . . . > UN . Let Vj and Wj , for j = 1 . . . N , denote
the steady-state values of v(t) and w(t), respectively, corre-
sponding to the input Uj .

The set of selected abscissasUj , for j = 1 . . . N
2 (respec-

tively, for j = N
2 +1, N

2 +2, . . . , N ), are chosen such that the
working point

(
Vj , F

[
Vj
])

belongs to the increasing stage
(resp. decreasing stage). The choice of the abscissas Uj can
be done practically [16, 17, 20, 28]. To make the explanation
of the hysteresis identification method easier, let us suppose
that the increasing stage of u(t) corresponds to the increasing
stage of the sequence

{
Vj ; j = 1, . . . , N

2

}
and the decreas-

ing stage of u(t) corresponds to the decreasing stage of the
sequence

{
Vj ; j = N

2 + 1, N
2 + 2, . . . , N

}
, i.e., the static

gain G1(0) is positive. Note that it will be no problem if
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Fig. 10 Example of backlash
operator in mechanical systems

G1(0) < 0, because of Remark 1 (in this case k1 < 0).
Let us suppose that Vj (for any j ∈ {1, . . . , N

2

}
), is the first

abscissa such that theworking point
(
Vj , F

[
Vj
])
reaches the

increasing lateral border. Accordingly, it follows from (6a)
that:

Wj = SL
(
Vj − DL

)
(8)

When u(t) steps fromUj to a greater valueUj+1 the inner
signal v(t) is increasing (because G1(0) > 0). Then, the
working point (v(t), w(t)) = (v(t), F[v(t)]) will remain in
the increasing lateral border, i.e.:

w(t) = SL(v(t) − DL)

for t > tr1 and u(t) = Uj+1 (where tr1 denotes the response
timeofG1(s)), until the inputu(t) steps again. For t > tr1 and
u(t) = Uj+1, the working point (v(t), F[v(t)]) moves hor-
izontally (i.e., w(t) remains constant). In the case where the
input linear block is not oscillatory nature, the working point
(v(t), F[v(t)])moves on the increasing lateral border all the
time after u(t) = Uj+1. In light of the above observations,
it turns out that letting u(t) = Uj+1 results in steady-state
values of the inner signals v(t) = Vj+1 and w(t) = Wj+1

that are related by the expression:

Wj+1 = F
[
Vj+1

] = SL
(
Uj+1G1(0) − DL

)
(9)

In this case, the maximum value Vp of v(t) for a step
response is G1(0). In the other case (i.e., the input linear
block presents oscillations for a step response), it is seen that
the working point (v(t), F[v(t)]) moves on the increasing
lateral border until the first maximum of v(t) (= VpUj+1)
will be achieved. At this moment, one has the working
point (v(t), F[v(t)]) = (

VpUj+1, F
[
VpUj+1

])
. Therefore,

(v(t), F[v(t)]) moves horizontally for the rest of time. This
means that w(t) remains constant during this time and takes
thus the following value:

w(t) = Wj+1 = F
[
VpUj+1

] = SL
(
VpUj+1 − DL

)
(10)

Note that in the case where G1(s) does not present oscil-
lations, Vp equals to the static gain G1(0). Then, (9) can be
viewed as a particular case of (10). Using (3) and (10), the
steady state of the undisturbed output x(t) corresponding to
the input Uj+1, noted X j+1, can be written as:

X j+1 = G2(0)F
[
VpUj+1

] = G2(0)SL
(
VpUj+1 − DL

)
(11)

By combining (11) and the properties (5c) (Remark 1) of
system to be identified, one immediately gets:

X j+1 = F
[
Uj+1

] = SL
(
Uj+1 − DL

)
(12)

Finally, it follows from (4) and (11), one has:

y(t) = X j+1 + ξ(t) = SL
(
Uj+1 − DL

)+ ξ(t) (13)

This result shows that the system output (for u(t) =
Uj+1)) is constant up to noise and the point of couple(
Uj+1, X j+1

)
belongs to the increasing lateral border fL(.).

Let X̂ j denotes the estimate of X j for j = 1 . . . N . Then, the
estimate f̂L

(
Uj+1

)
of fL

(
Uj+1

) = X j+1 can be obtained by
averaging a number M of measures of (steady-state) y(t),
where M is arbitrarily large just as suggested in [2] and
[17, 20]. Specifically, we suggest the following estimator of
fL
(
Uj+1

)
:

f̂L
(
Uj+1

) = X̂ j+1 = 1

M

M∑
t=1

y(t) (14)

with M 	 1.

Remark 5. 1

1. The present method can be generalized to other types
of nonlinearities, e.g., polynomial or smooth functions.
Specifically, in the case of polynomial function of degree
n, a set of at least n + 1 points belonging to the nonlin-
earity is required [21]. Using the same method described
in this section and choosing N ≥ n + 1, the nonlinearity
parameters can be determined.

123



Identification of Wiener–Hammerstein nonlinear systems…

2. The value of the number M can be chosen based on the
levels of noise amplitudes. For instance, in the case of free
noise system, the number M is not necessarily of large
value and can be set to 1 (for step input). Specifically,
one uniquemeasure of y(t), in steady state, is sufficient to
determine a point belonging to the backlash nonlinearity.

It is easily shown that the estimator (14) is consistent in
the sense that the nonlinearity parameters converge to their
true value. Indeed, it follows from (13) and (14) that:

f̂L
(
Uj+1

) = fL
(
Uj+1

)+ 1

M

M∑
t=1

ξ(t) (15)

Bearing inmind that the noise {ξ(t)} is presently supposed
to be a zero-mean ergodic stochastic process, which leads to
the following result:

1

M

M∑
t=1

ξ(t) →
M→∞ E[ξ(t)] = 0 (w.p.1) (16)

Accordingly, it follows from (15) and (16) that the follow-
ing convergence can be derived:

f̂L
(
Uj+1

) →
M→∞ fL

(
Uj+1

)
(w.p.1) (17)

Furthermore, the increasing lateral border fL(.) is featured
by the parameters (SL, DL). Then, using the same experi-
ment to estimate another point in f̂L(.), e.g., for Uj+2, the
parameters (SL, DL) can be determined. Therefore, using
(17) one immediately gets:

(
ŜL, D̂L

) →
M→∞ (SL, DL) (w.p.1) (18)

Let us show how the estimation accuracy depends on the
noise variance. In this respect, it follows (14) that, for any
constant input Uj :

E
[
X̂ j
] = X j + 1

M
E

[
M∑
t=1

ξ(t)

]
= X j + M

M
λξ = X j

Then, the variance or mean square error is given as:

E
[(
X̂ j − X j

)2] = E
[
X̂2

j

]
− 2X j E

[
X̂ j
]+ X j

2

where

X̂2
j = X j

2 + 2
X j

M

M∑
t=1

ξ(t) + 1

M2

(
M∑
t=1

ξ(t)

)2

For independent and identically distributed (i.i.d) vari-
ables of ξ(t) (i.e., [ξ(s)ξ(t)] = 0 ∀s �= t), one gets:

E
[
X̂2

j

]
= X j

2 + 1

M2

(
Mσξ

2
)

= X j
2 + σξ

2

M

Accordingly, the mean square error becomes:

E
[(
X̂ j − X j

)2] = X j
2 + σξ

2

M
− 2X j

2 + X j
2 = σξ

2

M

which is inversely proportional to M .
Similarly, (8)–(13) will be applied to a set of inputsUj in

the decreasing stage ( j = N
2 + 1, N

2 + 2, . . . , N ). Then, let
consider that Vj is the first abscissa such that the working
point

(
Vj , F

[
Vj
])

belongs to the decreasing lateral bor-
der, where j ∈ { N

2 + 1, N
2 + 2, . . . , N

}
. Accordingly, the

steady-state system output y(t) can written as:

y(t) = SU
(
Uj − DU

)+ ξ(t) (19)

Accordingly, the decreasing lateral border fU(.) can be
determined using at least two points in the decreasing stage
and the estimator (14). These results show that an accurate
estimate of hysteresis (backlash or backlash operators) non-
linearity F[·] can be obtained.

To ensure that the first point in loading stage belongs to
the increasing lateral border of the backlash, the initializa-
tion step like (Fig. 8a) is applied. Accordingly, an inputU0 is
applied, before the first valueU1 withU1−U0 > dmax (max-
imum distance between the lateral borders). Similarly, to
ensure that the valueUN

2 +1 belongs to the decreasing lateral
border of the backlash, the condition UN

2 +1 −UN
2
< −dmax

must be satisfied.
For convenience, the main steps of system nonlinearity

identification are summarized in Table 1.

Remark 6

1. As the value of dmax is not a priori known, the condition
U1 − U0 > 0 (respectively, UN

2 +1 − UN
2

< 0) must
be satisfied. If the system output remains constant (up
to noise), after U1 is applied (for t ≥ 0), the quantity
U1−U0 must be increased (by reducing the value ofU0).
A similar remark applies to the tuning of UN

2 +1 −UN
2
.

2. To estimate the increasing and decreasing lateral borders
( fL(.), fU(.)), the determination of two points in each
stage (increasing and decreasing) is sufficient. However,
to improve the estimate accuracy, it is better to use several
points in both (loading and unloading) stages.

3. To reduce the vibration effects in real mechanical sys-
tems, the difference between two successive inputs must
be small to ensure that the working point

(
Vj , F

[
Vj
])
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Table 1 Identification of
backlash nonlinearity

Initialization: Set an integer and any integer (preferably of large value). Take = 1.

Choose the set values { 1, … , } of ( ) such that:

{
1 < 2 < ⋯ <

2

2
+1
>

2
+2
> ⋯ >

where 
2

−
2
+1

is sufficiently large (should be > ).

Initialization Input: Choose any value 0 such that 1 − 0 > . Initialize the input system 

with 0 (for < 0).

Step 1 (data acquisition): Excite the system with the input ( ) = and record the 

measurement of output ( ).

Step 2: Give the estimate ̂ using the estimator (14).

Step 3: If = go to Step 4, else update = + 1 and go to Step 1.

Step 4: Record the estimates of /2 points belonging to ̂ (. ) and ̂ (. ):

{( 1, ̂ 1), … , (
2

, ̂
2

)} and {(
2
+1
, ̂

2
+1
) , … , ( , ̂ )}, respectively. End of algorithm.

moves along the lateral border of the hysteresis operator
F[·].

4. In this study, the frequency band of the measurement
noise is not necessarily bounded and not necessarily of
high frequencies, i.e., a low pass filter cannot be used.
Presently, the frequency decomposition of the measure-
ment noise can spread over the entire frequency space,
e.g., a white noise.

5 Identification of linear blocks

In this section, we aim to develop an identification method
that provides the estimates of the frequency gains G1(ωi )

and G2(ωi ) (i = 1,2, . . . ), where the set of frequencies
ωi is arbitrarily chosen by the designer. Accordingly, the
objective is to estimate the gain module and phase of the
frequency gains G1(ωi ) and G2(ωi ). Interestingly, the linear
blocksG1(s) andG2(s) can be parametric or nonparametric.
It is worth mentioning that, if v(t) is of small amplitude, the
backlashworking pointwillmove horizontally. The proposed
frequency identification method relies on Fourier analysis of
signals. Then, it involves system excitation with sine signal:

u(t) = Ucos(ωi t) (20)

Let
∣∣Gl
(
jωi
)∣∣ and ϕl(ωi ) = arg

(
Gl
(
jωi
))

(l = 1,2)
denote, respectively, the gain module and the phase of the
linear element l for the frequencyωi .Accordingly, one imme-
diately gets using (1) and (20) that the inner signal v(t) (in

the steady state) can be expressed as:

v(t) = U
∣∣G1

(
jωi
)∣∣cos(ωi t + ϕ1(ωi )) (21)

Let dmax denote the maximal horizontal distance between
the lateral borders fL(.) and fU(.) of the backlash, i.e.

dmax = max
vm≤v1<v2≤vM

|v1 − v2| (22)

where fL(v1) = fU(v2). Let the input amplitude U be
sufficiently large so that U

∣∣G1
(
jωi
)∣∣ > dmax. Then, the

resulting signal w(t) is periodic (but not necessarily sine
wave signal) of period T = 2π/ωi . For small input ampli-
tudes, the inequalityU

∣∣G1
(
jωi
)∣∣ > dmax is not satisfied and

the backlash output becomes constant in steady state. This
phenomenon can also be observed when the linear block
G1(s) is a selective filter and the input frequency of u(t)
is outside its passband. Practically, the system output y(t)
becomes (in steady state) constant up to noise [17, 20, 28].

The requirement U
∣∣G1

(
jωi
)∣∣ > dmax makes the hys-

teresis output w(t) changing in time. Then, any interval
[ t1 t1 + T ) (in steady state) can be divided into four subin-

tervals as shown in Fig. 11a. For t ∈ [ t2 t3 ), the working
point (v(t), F[v(t)]) moves along one lateral border. For
t ∈ [ t4 t1 + T ), the working point (v(t), F[v(t)]) moves

along the opposite lateral border. For t ∈ [ t1 t2 ) ∪ [ t3 t4 ),
the working point (v(t), F[v(t)]) takes a horizontal path
(the curves linking the lateral border ( fL(.), fU(.))). Accord-
ingly, the working point (v(t), F[v(t)]), for t ∈ [ t1 t1 + T ),
describes a backlash cycle (Fig. 11b).
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The time t1 is related to ϕ1(ωi ) by the expression:

t1 = −ϕ1(ωi )/ωi (23a)

Also, it is readily seen that:

t3 = t1 + T

2
= (π − ϕ1(ωi ))/ωi (23b)

Time

In
ne
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ig

na
ls

v(
t)

(b
lu

e)
an

d
w

(t)
(r

ed
)

v(t)

2 3 41 1

w(t)

t t +Tttt

v

w

Obtained (backlash) cycle for sine input of sufficient amplitude

t3

t2 t1

t4

a

b

Fig. 11 a Shapes of inner signals v(t) and w(t), b example of obtained
cycle for sufficient large U

In the case of symmetrical hysteresis nonlinearity, the
times t2 and t4 are related as follows:

t4 = t2 + T

2
(23c)

Then, the inner signal w(t) can be analytically described
by the following equation system:

w(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fL(U |G1( jωi )|) = SL(U |G1( jωi )| − DL), for t ∈ [ t1 t2 )

SU(U |G1( jωi )|cos(ωi t + ϕ1(ωi )) − DU), for t ∈ [ t2 t3 )

fU(−U |G1( jωi )|) = SU(−U |G1( jωi )| − DU), t ∈ [ t3 t4 )

SL(U |G1( jωi )|cos(ωi t + ϕ1(ωi )) − DL), t ∈ [ t4 t1 + T )

(24)

Furthermore, note that this signal is periodicwith the same
period T = 2π/ωi as the input u(t). Fourier series expansion
of w(t) writes as follows:

w(t) =
∞∑
n=0

sncos(nωi t + ψn(ωi )) (25)

It is readily shown from Equation (24) that the param-
eters (sn , ψn(ωi )) of Fourier series expansion in (25)
depend only on the complex gain of the input linear block
(|G1( jωi )|, ϕ1(ωi )) and the times (t1, t2, t3, t4). These
times also depend on the parameters (|G1( jωi )|, ϕ1(ωi ))

(using (23a–c)).

At this stage, the parameters of the hysteresis nonlinearity
(SL, DL, SU, DU) are available. Then, the only unknown
parameters in Fourier expansion of w(t) are the parameters
of linear block (|G1( jωi )|, ϕ1(ωi )). Combining (3) and (25),
the undistubed systemoutput x(t) can be expressed (in steady
state) as follows:

x(t) =
∞∑
n=0

sn
∣∣G2

(
jnωi

)∣∣cos(nωi t + ψn(ωi ) + ϕ2(nωi ))

(26)

Finally, it follows from (4) and (26) that the system output
y(t) can be written as:

y(t) =
∞∑
n=0

sn
∣∣G2

(
jnωi

)∣∣cos(nωi t + ψn(ωi ) + ϕ2(nωi )) + ξ(t)

(27)

One the other hand, bearing in mind that the signal x(t) is
also periodic of the same period T = 2π/ωi as u(t), then
x(t) can also be described by Fourier expansion series:

x(t) =
∞∑
n=0

Xncos(nωi t + θn) (28)
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where the parameters (Xn , θn) in (28) can be determined
using the following expressions:

Xn =
√
an2 + bn2 (29a)

θn = −tan−1(bn/an) (29b)

where

an = 2

T

∫ T

0
x(t)cos(nωi t)dt (29c)

bn = 2

T

∫ T

0
x(t)sin(nωi t)dt (29d)

At this stage, the problem is how to get the estimate of the
inner (not accessible) signal x(t). This difficulty can be over-
come by getting benefit from the periodicity property of x(t).
Then, an accurate estimate for the signal x(t) can be obtained
using the following estimator [18–21]:

⎧⎨
⎩
x̂M (t) = 1

M

M−1∑
l=0

x(t + lT ), for t ∈
[
0 T

)

x̂M (t + T ) = x̂M (t), else
(30)

where M is any integer preferably of large value. Practi-
cally, one can check whether the values of M are suitable
by comparing the output of the true system with the esti-
mated model. Specifically, by combining (4) and (30), one
immediately gets:

x̂M (t) = 1

M

M−1∑
l=0

x(t + lT ) + 1

M

M−1∑
l=0

ξ(t + lT ) (31)

Bearing in mind that x(t) is T -periodic, this implies that
the first term in the right side of (31) can be reduced to:

1

M

M−1∑
l=0

x(t + lT ) = x(t) (32)

On the other hand, the external noise {ξ(t)} is presently
supposed to be a zero-mean stochastic process and ergodic.
The stationarity property of {ξ(t)} means that:

E[ξ(t + lT )] = E[ξ(t)] for all (t , l) (33)

Accordingly, the last term in the right side of (31) vanishes
with probability 1:

1

M

M−1∑
l=0

ξ(t + lT ) →M→∞ 0 (34)

Then, it readily follows by combining (31), (32) and (34)
that the estimated signal x̂M (t) in (30) converges with prob-
ability 1 to x(t):

x̂M (t) →M→∞ x(t) (35)

This result is a quite interesting achievement as it shows
that, the frequency parameters of the linear blocks can be
determined, for any frequency ωi , using the estimate x̂M (t)
of x(t) and capturing the Fourier transform spectra of x(t).
Specifically, the linear block identification can be carried as
follows:

Firstly, the estimate
(
X̂n(M), θ̂n(M)

)
of Fourier expan-

sion parameters (Xn , θn) in (28) can be obtained by replacing
x(t) in (29c–d) by its estimate x̂M (t), given by (30).
Accordingly, by referencing the correspondence between(
X̂n(M), θ̂n(M)

)
with the analytical expression of x(t) given

by (26), one immediately gets:

{
sn(ωi )|G2( jnωi )| = X̂n(M)

ψn(ωi ) + ϕ2(nωi ) = θ̂n(M)
n = 0, 1, 2, . . . ; (36)

where (sn , ψn) depend on the parameters of the input linear
block (|G1( jωi )|, ϕ1(ωi )). For any n frequency compo-
nents and using the properties (5c) (Remark 1), one has the
2n+ 2 following unknown parameters: (|G1( jωi )|, ϕ1(ωi ))

and {(|G2( jkωi )|, ϕ2(kωi )); k = 1 . . . n}. It follows from
these n frequency components, 2n+1 equations are involved,
i.e., the amplitude X̂k(M), the phase θ̂k(M) of the frequency
component k (for k = 1 . . . n) and theDC component. At this
stage, the number of unknowns is large compared to the num-
ber of equations. Then, the last experiment is repeated for a
frequency 2ωi . It follows from (20)–(31) and by capturing
the frequency components belonging to the band

[
0 nωi

]
that 2n+1 equations can be involved and two new unknown
parameters: (|G1( j2ωi )|, ϕ1(2ωi )). It is readily seen that the
number of equations is sufficient to obtain all the involved
parameters. This experiment can be repeated for other fre-
quencies kωi , e.g., k = 3,4, . . . if necessarily. This result
is quite interesting, for convenience let us summarize this
identification method:

By capturing the spectrum of the estimate of x(t), the
values of the amplitudes sn(ωi )

∣∣G2
(
jnωi

)∣∣ and the phases
ψk(ϕ1(ωi )) + ϕ2(kωi ), for k = 0 . . . n, can be obtained.
By repeating this experiment for the frequency 2ωi , all the
frequency parameters of linear blocks can be determined.

The main steps of the identification of linear blocks are
summarized in Table 2.

Remark 7 Following the previously described method, the
identification of the Wiener–Hammerstein system can be
performed using one-step method, i.e., the parameters of lin-
ear blocks and those of the hysteresis nonlinearity can be
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Table 2 Identification of linear
blocks

Initialization Step: Choose any frequency and set an integer , preferably of large value.

Set the frequency band [0 ], where is any integer.

Step 1 (data acquisition): Excite the system with the input signal ( ) = ( ) and collect 

the output ( ) for ∈ [0 2 / ). 

Step 2: Using the estimator (30), give the estimate ̂ ( ) of the signal ( ).

Step 3: Using (23a)-(26), give the analytical expression of ( ) in the form:

( ) = ∑

∞

=0

| 2( )| ( + ( ) + 2( )) = ∑

∞

=0

( + )

Step 4: Using (29a-d), give the estimate ( ̂ ( ), ̂ ( )) of Fourier expansion parameters of 

the signal ( ).

Step 5: Using Steps 3 and 4, deduce the involved equations, i.e.,

{
( )| 2( )| = ̂ ( )

( ) + 2( ) = ̂ ( )
;   = 0,1,2, …

Step 6: If the number of involved equations in Step 5 is sufficient (i.e., is greater than the number 

of unknowns), give the estimates of linear block parameters (| 1( )|, 1( )) and 

(| 2( )|, 2( )), for = 0,1,2, … . Else, repeat Steps 1 to 5 for other frequencies 

k , e.g., = 2,3, ….

determined simultaneously. To make easy the identification
method, we have proposed to separate the identification of
the linear blocks from that of the nonlinearity (two-step iden-
tification method).

Remark 8

1. So far, the complex gainsG1( jω) andG2( jω) have been
assumed to be nonparametric. Then, making use of the
method presented in this section, one obtains accurate
estimates of G1

(
jωi
)
and G2

(
jkωi

)
, for k = 1 . . . n

and for a set of frequencies ωi ∈ {ω1, ω2, . . . } arbi-
trarily chosen by the designer. It may happen that one
of the linear subsystems is parametric, i.e., Gl

(
jωi
) =

Gl
(
jωi , θ

)
(l = 1, 2) for some vector θ including the

unknown coefficients of the transfer function Gl
(
jωi
)

(l = 1, 2). Then, one can get estimates of θ using vari-
ouswell-known techniques [1, 2], including theweighted
nonlinear least squares technique. Then, the estimate is
given by:

θ̂ = argmin
θ

⎡
⎣ 1

P

P∑
i=1

∣∣Ĝl
(
jωi
)− Gl

(
jωi , θ

)∣∣
2

δP

⎤
⎦ (37)

where Ĝl
(
jωi
)
denotes the estimate of transfer function

Gl
(
jωi , θ

)
(l = 1, 2), provided by the above method, and

δP is the weighting function. The number P in (37) should

be greater than the dimension of θ . The optimization prob-
lem can be carried out using iterative search techniques, e.g.,
Gauss–Newton, Levenberg–Marquardt, and others [1, 2].

2. The backlash identification stage requires an input signal
satisfying the loading and unloading properties, but not
necessarily periodic.

6 Simulation

To highlight the applicability and robustness of the pro-
posed identification method, the system transfer functions of
the considered system (Fig. 1) are subjected to higher-order
dynamics errors. Specifically, the input transfer function is
of the form:

G1(s) = 1

(s + 1)(s + 0.5)
(1 + μ�(s)) (38a)

where�(s) = 1
(s+5) andμ is a scaling parameter that is let to

be μ = 0.01. To make the system more complex, the output
transfer function contains a delay time:

G2(s) = 0.1

(s + 0.2)(s + 0.4)(s + 1)
e−5s (38b)
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Fig. 12 System nonlinearity F[·] considered in simulation

The system nonlinearity F[·] is a backlash operator fea-
tured by the following loading and unloading functions:

fL(v) = SL(v − DL) = 0.75(v − 0.75) (39a)

fU(v) = SU(v − DU) = 0.75(v + 3.57) (39b)

Figure 12 shows the complete backlash cycle of operator
F[·] when applying to the letter a periodic input belonging
to the interval [−44]. The stochastic process noise {ξ(t)} is
zero-mean ergodic, with normally random numbers belong-

ing to
[
−0.2 0.2

]
and standard deviation σ = 0.07. Getting

benefit from model multiplicity (Remark 1), the linear block
transfer functions of the system to be identified are G1(s)

G1(0)
and

G2(s)
G2(0)

, respectively. To avoid excessive notation, this system
will still be noted (G1(s), F[·], G2(s)) and is defined by the
following blocks:

G1(s) = 0.499

(s + 1)(s + 0.5)

(
1 + 0.01

s + 5

)
(40a)

G2(s) = 0.08

(s + 0.2)(s + 0.4)(s + 1)
e−5s (40b)

fL(v) = 1.76(v − 0.36); fU (v) = 1.76(v + 1.78) (40c)

It readily seen from (40a–b) that the linear subsystems of
the system to be identified satisfy the properties: G1(0) =
G2(0) = 1.

Following the nonlinearity identification method
described in Sect. 3, the Wiener–Hammerstein nonlin-
ear system is excited by an input signal u(t), of loading and
unloading nature (Fig. 13). In the proposed simulation, the

0 500 1000 1500 2000 2500

Time (s)

-3

-2

-1

0

1

2

3

u

Input sequence having loading and unloading stages

Fig. 13 The loading and unloading input u(t)

system is excited by an enough number of constant inputs
{Uk ; k = 1 . . . N }, with N = 26. In this experiment, the
signal-to-noise ratio (SNR) for the chosen ergodic additive
noise is:

SNR = 10log

(
Px
Pξ

)
≈ 32dB (41)

where Px is the signal power (of x(t)), and Pξ is the noise
power.

The used input signal is composed by a set of constant
value Uk , for k = 1 . . . 26 (Fig. 13), where the duration of
each constant (here 100s) is greater than tr . It is shown from
Fig. 13 that:

• For t ∈
[
0 1300s

]
, the input u(t) satisfies the loading

property, i.e., u̇(t) ≥ 0∀t .
• For t ∈

[
1300s 2600s

]
, the input u(t) satisfies the

unloading property, i.e., u̇(t) ≤ 0∀t .

The corresponding system output y(t) is plotted in
Fig. 14. Using the estimator (14), we get the estimates
F̂[Uk], for k = 1 . . . 26, providing the set of points{(
Uk , F̂[Uk]

)
; k = 1 . . . 26

}
. For convenience, these points

are plotted in Fig. 15. To appreciate the estimation quality,
the estimated points

{(
Uk , F̂[Uk]

)
; k = 1 . . . 26

}
are plot-

ted together with those of the true backlash F[·] in Fig. 16.
Clearly, the estimated points are close to their true values.
Furthermore, examples of input valuesUk , the true values Xk ,
and the corresponding estimates X̂k for SNR1 ≈ 32dB and
M = 200, are given in Table 3. To better evaluate the identi-
fication accuracy, the relative errors ek = (

X̂k − Xk
)
/Xk are

estimated and are given in Table 3. To show the robustness of
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Fig. 14 The system output y(t)

Fig. 15 Set of estimated points
(
Uk , F̂[Uk ]

)
, for k = 1 . . . 26

Fig. 16 True F[·] and the identified points
(
Uk , F̂[Uk ]

)
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3

4

5

y

System output y(t) corresponding to sine input

Fig. 17 The output y(t) for U = 3.5 and ω1 = 0.01(rad/s)

the method, a comparison for different values of the SNR is
performed. Specifically, for the same value ofM (M = 200),
the estimates X̂k and the relative errors ek are determined for
SNR2 = 64.6dB and SNR3 ≈ 11 dB. The results of this
comparison are summarized in Table 3.

For a fixed value of M in the estimator (14), it is shown
that the estimation accuracy can be degraded for low values
of SNR. To improve the estimation accuracy, the number M
should be increased. For convenience, these simulations have
been done for low SNR. The latter is set to SNR4 = 10dB.
The obtained estimate results are given in Table 3.
To estimate the quantified measure of accuracy, the best fit
rate (BFR) defined by:

BFR(%) := max

⎛
⎜⎜⎝1 −

∥∥∥∥F(Uk) − 


Xk

∥∥∥∥
2∥∥F(Uk) − F

(
Ūk
)∥∥

2

, 0

⎞
⎟⎟⎠ (42)

is determined in loading and unloading stages, noted BFRL

and BFRU, respectively. Here, we have Uk = 0. One gets:

BFRL = 99%andBFRL = 97.8% (43)

On the other hand, the frequency identification of the lin-
ear block is performed following Stage 2 of Sect. 4. First,
the Wiener–Hammerstein system is excited by the sine input
u(t) = Ucos(ω1t) with U = 3.5 and ω1 = 0.01(rad/s).
Then, the value of signal-to-noise ratio in this experiment is:

SNR1 ≈ 34.45dB (44)

The steady-state output signal y(t) is plotted in Fig. 17.
The measurements of y(t) are collected on the interval 0 ≤
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Table 3 The inputs Uk and the

estimates F̂[Uk ] = X̂k
k 4 8 12 16 20 26

Uk − 1.5 0.5 2.5 1.5 − 0.5 − 3.5

Xk − 2.135 0.252 3.762 4.635 2.24 − 3.016

SNR1 X̂k − 2.14 0.251 3.755 4.65 2.25 − 3.01

ek(%) 0.23 − 0.4 − 0.2 0.3 0.5 − 0.2

SNR2 X̂k − 2.144 0.25 3.774 4.623 2.246 − 3.02

ek(%) 0.42 − 0.79 0.32 − 0.26 0.27 0.13

SNR3 X̂k − 1.65 0.34 3.01 5.4 2.52 − 2.43

ek(%) − 22.7 34.9 − 19.99 16.5 12.5 − 19.43

SNR4 X̂k − 1.03 0.06 1.62 2 3.77 − 5.15

ek(%) − 51.7 − 77.8 − 56.9 62.9 68.4 70.8

Fig. 18 The inner signal estimate x̂M (t) over one period

t ≤ M2π/ω1 (here M = 100). The collected sample is used
to generate the estimate of the inner signal x(t) using (30).
The obtained estimate x̂M (t) is plotted in Fig. 18 over one
period.

The spectrum corresponding to the estimate x̂M (t), for
T = 2π/ω1, is given in Fig. 19. This result shows that the
system power is concentrated on frequencies ω1, 2ω1, 3ω1,
. . . . Estimates of the coefficients (Xn , θn) (of Fourier expan-
sion) are determined by replacing x(t) by x̂M (t) in (29a–d).

Let
[
0 ωMax

[
denotes the chosen frequency band

(the measurement band). Using the spectrum of the
estimate x̂M (t) and (36), a set of equations involving
(|G1( jω1)|, ϕ1(ω1)) and

{
(|G2( jkω1)|, ϕ2(kω1)); k =

1 . . . n
}
can be obtained, where nω1 < ωMax . If necessary,

this experiment can be repeated for other frequencies kω1

(e.g., k = 2,3, . . . ), until we get enough equations. Exam-
ples of obtained results (spectrum of the estimate x̂M (t))
are given in Fig. 20 and Fig. 21, where the input signal
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Spectrum of filtered output x (t)M^

Fig. 19 Magnitude spectrum of inner signal estimate x̂M (t)
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Fig. 20 Magnitude spectrum of inner signal estimate x̂M (t)
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Fig. 21 Magnitude spectrum of inner signal estimate x̂M (t)

is of frequency 5ω1 and 10ω1, respectively. Finally, for
p experiments (of frequency lω1, l = 1 . . . p), the esti-
mates

(∣∣Ĝ1(lω1)
∣∣, ϕ̂1(lω1)

)
and

(∣∣Ĝ2
(
jklω1

)∣∣, ϕ̂2(klω1)
)
,

for l = 1 . . . p and k = 1,2, . . . such as klω1 < ωMax, can
be determined.

Presently, three experiments have been carried
out. Then, the estimates

(∣∣Ĝ1(lω1)
∣∣, ϕ̂1(lω1)

)
and(∣∣Ĝ2

(
jklω1

)∣∣, ϕ̂2(klω1)
)
, for l = 1 . . . 3 and k = 1,2,

. . . can be easily obtained. Samples of estimate results
corresponding to (|G1(lω1)|, ϕ1(lω1)), where l = 1, 5,
and 10, are shown in Table 4. Similarly, samples of the
estimates of

(∣∣G2
(
jkω1

)∣∣, ϕ2(kω1)
)
are given in Table 5.

These results are obtained for SNR1 = 34.45dB.
To show the influence of noise on the simu-

lation results, the estimates
(∣∣Ĝ1(lω1)

∣∣, ϕ̂1(lω1)
)

and(∣∣Ĝ2
(
jkω1

)∣∣, ϕ̂2(kω1)
)
, for l = 1 . . . 3 and k = 1 . . . 5,

are given for two other values of SNR: SNR2 = 71.6 dB,
and SNR3 = 9.9 dB, where the number M is set to 100. The
obtained estimate results are summarized in Tables 4 and 5.
For convenience, these simulations have been carried out for
low value of SNR. Then, for SNR4 = 9 dB, one gets:(∣∣Ĝ1(ω1)

∣∣, ϕ̂1(ω1)
) = (1.31, −0.16) and

(∣∣Ĝ1(5ω1)
∣∣,

ϕ̂1(5ω1)
) = (0.43, −0.36). The estimates of

(∣∣Ĝ2
(
jkω1

)∣∣,
ϕ̂2(kω1)

)
, for k = 1 . . . 5, are given in Table 5.

Finally, it is seen that the linear blocks parameter esti-
mates are close to their true values, a result confirmed by
several simulations. Furthermore, the estimate results given
in Tables 4 and 5 show that the estimation quality deteri-
orates for small values of the signal-to-noise ratio (SNR),
while keeping the same number M (in the estimator (30)).
To complete the simulation study, a comparison is per-
formed between the actual system output and simulated
output of identified model. Firstly, using the estimated points
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y(t) of true system
Simulated output

Fig. 22 Comparison between the simulated and actual system outputs

(
Uk , F̂[Uk]

)
(k = 1 . . . N ) (Fig. 15), the estimates of

backlash lateral borders are determined. Furthermore, using
Remark 8, the estimates Ĝ1(s) and Ĝ2(s) of transfer func-
tions G1(s) and G2(s), respectively, are obtained. To this
end, the following multisine is applied as input signal:

u(t) =
3∑

k=1

Ukcos(ωk t) (45)

where ω1 = 0.01 rad/s, ω2 = 0.05rad/s, ω3 = 0.5rad/s,
and U1 = U2 = U3 = 1. The actual system output and its
estimate are plotted and are given in Fig. 22. Clearly, the two
signals are close to each other.

7 Experimental application

To highlight the applicability and robustness of the proposed
identification approach, an experimental evaluation is estab-
lished by applying the method to a real system (Fig. 23). The
latter is built up with electronic components. Referring to
Fig. 1, the linear blocks are defined by the following transfer
functions:

G1(s) = 1000

1000 + 20s + 10−4s
2 (46a)

G2(s) = 1000

1000 + 2s + 10−6s
2 (46b)

The loading and unloading functions ( fL(.), fU (.)) of the
backlash operator are as follows:

fL(v) = SL(v − DL) = 8(v − 1.25) (47a)

fU(v) = SU(v − DU) = 8(v + 1.25) (47b)
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Table 4 Estimates of G1
(
jlω1

)
,

for l = 1, 5 and 10, and their true
values for 3 values of SNR

SNR1 SNR2 SNR3

l
∣∣G1

(
jlω1

)∣∣ ϕ1(lω1)
∣∣Ĝ1

(
jlω1

)∣∣ ϕ̂1(lω1)
∣∣Ĝ1

(
jlω1

)∣∣ ϕ̂1(lω1)
∣∣Ĝ1

(
jlω1

)∣∣ ϕ̂1(lω1)

1 0.997 − 0.030 0.97 − 0.038 1.02 − 0.033 1.35 − 0.046

5 0.993 − 0.149 1.01 − 0.153 1.004 − 0.142 0.71 − 0.24

10 0.975 − 0.297 0.96 − 0.32 0.92 − 0.26 1.28 − 0.21

Table 5 Estimates of G2
(
jkω1

)
(k = 1 . . . 5) and their true values
for 4 values of SNR

k 1 2 3 4 5

∣∣G2
(
jkω1

)∣∣ 0.998 0.993 0.98 0.97 0.96

ϕ2(kω1) − 0.135 − 0.27 − 0.4 − 0.54 − 0.67

SNR1
∣∣Ĝ2

(
jkω1

)∣∣ 1.01 1.02 0.97 0.94 0.98

ϕ̂2(kω1) − 0.14 − 0.29 − 0.44 − 0.59 − 0.64

SNR2
∣∣Ĝ2

(
jkω1

)∣∣ 0.994 0.998 1.01 0.983 0.93

ϕ̂2(kω1) − 0.131 − 0.26 − 0.41 − 0.52 − 0.7

SNR3
∣∣Ĝ2

(
jkω1

)∣∣ 1.10 0.87 0.82 1.08 0.84

ϕ̂2(kω1) − 0.15 − 0.38 − 0.55 − 0.64 − 0.48

SNR4
∣∣Ĝ2

(
jkω1

)∣∣ 1.92 2.01 0.33 0.15 1.78

ϕ̂2(kω1) 0.44 − 0.51 − 0.17 − 0.83 − 1.01

Fig. 23 Photo of the experimental setup

A saturation effect is added to the backlash by using
operational amplifiers of ±Vsat = ±10V saturation value.
Simulation of the theoretical backlash operator F[.] leads
to the backlash cycle shown in Fig. 24a. The experimental
backlash cycle provided by the real backlash is shown in
Fig. 24b.

The input wave u(t), given in Fig. 13, is experimentally
generated. Samples of the resulting system output y(t), in
loading and unloading stages, are shown in Fig. 25a–b. The
experimentally collected points

{(
Uk , F̂[Uk]

)
; k = 1 . . . N

}
are plotted in Fig. 26, together with the true nonlinearity F[.].

The linear block identification is performed using a sine
signal u(t) = Ucos(ωi t). For instance, for U = 10 and
ωi = ω1 = 100π(rad/s), the experimentally obtained sys-
tem output y(t) in steady-state is given in Fig. 27.

The spectrum of system output y(t), for T = 2π/ω1, is
plotted in Fig. 28. This shows that the spectral power is

concentrated on frequencies ω1, 2ω1, 3ω1, . . . . Then, using
(29a–d), the estimate

(
X̂n(M), θ̂n(M)

)
of Fourier expansion

parameters can be obtained (Step 4 of Table 2).
Then, the estimates

(∣∣Ĝ1(lω1)
∣∣, ϕ̂1(lω1)

)
of
(|G1(lω1)|,

ϕ1(lω1)
)
, for l = 1, 2, and 5 are given in Table 6. Similarly,

the estimates
(∣∣Ĝ2

(
jklω1

)∣∣, ϕ̂2(klω1)
)
, for k = 1 . . . 4, are

shown in Table 7. Finally, it is observed that the estimates of
linear block parameters are close to the true parameters.

8 Conclusion

In this paper, the identification problem of Wiener–Ham-
merstein systems is addressed in the case of a memory
nonlinearity of backlash type. The identification method pre-
sented in Sects. 3 and 4 provides estimates of the backlash
operator and the system transfer functions, which can be
parametric or not. It involves Fourier series expansion and
makes use of simple input signals, specifically step-like load-
ing/unloading signal and sine signals. The simulation study
shows that the estimated values are close to their true values.
In this study, the influence of noise (SNR) and the quantity of
data acquisition on the simulation results has been addressed.
It is seen that, for a fixed quantity of data acquisition, the
quality of the estimation can deteriorate for small values of
SNR.

This work can be pursued inmany directions. One of them
is to investigate the possibility of estimating extra values of
the transfer functionG1 without repeating thewholemethod,
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Fig. 27 Input u(t) and the experimental measured output y(t) for U =
10 and ω1 = 100π(rad/s)

Fig. 25 a System output y(t) in loading stage, b system output y(t) in descending stage
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Fig. 28 Magnitude spectrum of the experimentally measured output
y(t)

Table 6 Estimates of G1
(
jlω1

)
for l = 1, 2, and 5

l
∣∣G1

(
jlω1

)∣∣ ϕ1(lω1)
∣∣Ĝ1

(
jlω1

)∣∣ ϕ̂1(lω1)

1 0.16 − 1.41 0.17 − 1.43

2 0.079 − 1.49 0.071 − 1.53

5 0.032 − 1.54 0.026 − 1.59

Table 7 Estimates of G2
(
jkω1

)
(k = 1 . . . 4)

k 1 2 3 4

∣∣G2
(
jkω1

)∣∣ 0.85 0.62 0.47 0.37

ϕ2(kω1) − 0.56 − 0.9 − 1.08 − 1.19∣∣Ĝ2
(
jkω1

)∣∣ 0.87 0.59 0.51 0.32

ϕ̂2(kω1) − 0.52 − 0.83 − 1.11 − 1.26

presented in this paper, with different input frequencies ωi .
One interesting idea would be to get benefit from the fact that
f (.) and (several points of the function) G2 become avail-
able (after one experiment involving the u(t) = Ucos(ωi t)).
Then, one seeks only the identification of G1 considering a
multisine input u(t) = ∑m

i=1Uicos(ωi t), making use of the
estimates of f andG2, applying some nonlinear least squares
iterative method. Another possible perspective of this work
is to investigate the case of backlash of arbitrarily nonlinear
borders.

The identification problem of this nonlinear system using
only harmonic signals and decomposition can be considered
as perspective of this work.
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