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Abstract
This paper is concerned with new approaches to the stability analysis of delayed neural networks. By modifying the non-
orthogonal polynomial-based integral inequality (NPII), a new delay-product functional (DPF) is formulated. On the basis of
the proposed DPF, a Lyapunov–Krasovskii functional (LKF) is constructed where a new state introduced in the second-order
Bessel–Legendre integral inequality (BLII) is included in augmented vectors of Lyapunov matrix. On account of this proposed
LKF, the delay-dependent criterion is introduced in terms of linear matrix inequalities (LMIs) for stability analysis of neural
networks time-varying delay. Two commonly used numerical examples are considered for demonstration purpose to test the
efficacy of the proposed stability criterion.

Keywords Delayed neural network · Improved reciprocally convex lemma · Bessel–Legendre-based inequality · Non-
orthogonal polynomial-based integral inequality

1 Introduction

From past few decades, neural networks (NN) have been
successfully used in many scientific and engineering systems
such as image processing, associative memory, pattern recog-
nition and optimization algorithms [1, 2]. Broadly, the neural
networks are realized by very large-scale integrated elec-
tronic circuits. In view of communicative speed between the
neurons and restricted switching speed of electronic devices,
time delay often exists in the neural networks which degrades
the performance and even destabilizes it. Therefore, delay-
dependent stability analysis of neural network (NN) with
delay becomes a key problem in the past decades, see in
[3–7].

The Lyapunov–Krasovskii (LK) approach for determin-
ing stability in its implementation is the most investigated
method in stability analysis of NN with time delay. A vari-
ety of delay-dependent conditions for stability analysis have
been proposed in the form of LMIs [8–13]. The main focus
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in these works is to develop new stability criteria such that
it provides largest upper bound (LUB) of the delay by estab-
lishing negative definite condition of derivative of the LK
functional (LKF). For obtaining LUB of time-varying delay
for NN, the two crucial issues are construction of appropri-
ate LKF and to find a precise bound of quadratic integral
function obtained in the time derivative of LKF.

In earlier works, Jensen-based integral inequality (JBII)
[14] has been used numerously to bound the integral func-
tion. To get less conservative stability condition, several other
integral inequalities have been used, like Wirtinger-based
integral inequality (WBII) [15], auxiliary function-based
integral inequality (AFII) [16], Bessel–Legendre-based inte-
gral inequality (BLII) [17] and free-matrix-based integral
inequality (FMII) [18], although these inequalities have
potential contribution to get improved stability criterion. A
careful look reveals that these inequality functions introduce
additional quadratic terms and each term includes a new state
vector. It was shown in [19] that LKF must be augmented by
the states involved in the inequality in order to reduce con-
servativeness.

The matrix-refined function in [20] has been formulated
in which slack variables are utilized to refine the Lya-
punov matrix to provide more flexibility. In [21–24], the
LKF proposed in which all the quadratic terms involved
was not necessarily required to be positive definite. It has
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been demonstrated that such a relaxed condition provides
improved results. To exploit the information of delays and
its derivative, a new type of LKF, known as delay-product
(DP) functional [25, 26], has been introduced, which con-
tains time-varying delay as the coefficients in the non-integral
quadratic terms. In similar fashion, new DP functionals have
been proposed by modifying WBII and FMII to exploit the
advantages of single integral state vectors in [22, 27, 28].

Motivated by these types of works to formulate new
form of LKF, this article is mainly based on the creation
of new delay-product LKF by modifying non-orthogonal
polynomial-based integral inequality (NPBI) of [29]. The
NPBI is designed on the basis of a non-orthogonal polyno-
mial sequence. The auxiliary sequel vector {1, g(s), g2(s)} is
non-orthogonal because

∫ b
a g2(s) �= 0. Hence, an additional

cross-term has been introduced in the NPBI as compared
to orthogonal polynomial type integral inequality. This
additional cross-term has been key to get less conserva-
tive stability condition. Then improved reciprocally convex
lemma of [19] and second-order BLII are jointly utilized to
derive, delay-dependent stability criteria for delayed NN. To
show the efficacy of the proposed stability conditions, two
numerical examples are considered.

Notations:-Rn and R
n×m mean n-dimensional Euclidean

space and set of all real matrices with dimension (n × m),
respectively. Col(·) and diag(·) stand for column and diago-
nal matrix, respectively. Q > 0 represents Q be a symmetric
positive definite matrix. Sym{N } = N+NT. 0 and I are zero
and identity matrix of appropriate dimensions. For a given
function x : [−�,+∞] → R

n , xt (s) represents x(t + s), for
all s ∈ [−�, 0] and all t ≥ 0.

2 System description and preliminaries

The NN with its equilibrium point shifted into origin can be
represented as:

ẋ(t) = −Ax(t) + B f (Wx(t)) + C f (Wx(t − dt )) (1)

where x(t) ∈ R
n is the state vector representing n number

of neurons; A = diag{a1, . . . , an−1, an} > 0, B, C and W ∈
R
n×n are the known interconnecting weight matrices of the

neurons. The time-delay function dt is otherwise expressed
as d(t). As per the real scalars ν1, ν2 and �, time delay dt has
following conditions.

0 ≤ dt ≤ �, −ν1 ≤ ḋt ≤ ν2 (2)

The activation function of neuron is denoted by f (x(t)) =
{ f (x1(t)), . . . , f (xn−1(t)), f (xn(t))} and satisfies

σ−
i ≤ fi (r1) − fi (r2)

r1 − r2
≤ σ+

i , r1 �= r2, i = 1, . . . , n (3)

where σ−
i and σ+

i are real scalars with known values.
For this paper, let Σ1 = diag{σ−

1 , . . . , σ−
n } and Σ2 =

diag{σ+
1 , . . . , σ+

n }. The aim of this paper is to construct new
functionals to obtain improved stability criteria for delayed
NN of (1). For this reason, some key lemmas are rewritten
as follows. First, the improved reciprocally convex lemma is
presented.

Lemma 1 [19] For matrices Xi > 0 and Si , i = 1, 2, using
positive scalars α, β related by α+β = 1, then the following
holds:

[
1
α
X1 0
0 1

β
X2

]

≥
[
(1 + β)X1 − T1 βS1 + αS2

∗ (1 + α)X2 − T2

]

(4)

where T1 = βS2R
−1
2 ST

2 and T2 = αST
1 R

−1
1 S1. The following

lemma presents the second-order BLII and JII.

Lemma 2 [14, 17, 30] For any continuously differentiable
function w ∈ [a, b] → R

n with a constant matrix 0 ≤ R,
then the following holds:

(i) Second-order BLII:

∫ b
a ẇT(s)Rẇ(s)ds ≥ 1

b−a [VT
1 RV1 + 3VT

2 RV2

+5VT
3 RV3] (5)

(ii) JII:

∫ b

a
wT(s)Rw(s)ds ≥ 1

b − a
ϑT

0 Rϑ0 (6)

whereV1 = w(b)−w(a),V2 = w(a)+w(b)− 2
(b−a)

ϑ0,V3 =
V1 + 6

(b−a)

∫ b
a δba(s)w(s)ds, ϑ0 = ∫ b

a w(s)ds and δba(s) =
−2

(
s−a
b−a

)
+ 1.

The next inequality to be recalled is used as bound of the
quadratic type integral function. It is derived based on a poly-
nomial sequence of non-orthogonal in nature.

Lemma 3 [29] For real scalars a and b having b > a, dif-
ferentiable function w : [a.b] → R

n, real matrix R > 0
with dimension n × n and matrices Z1, Z2, L1, L2 satisfies

Z =
⎡

⎣
Z1 Z2 L1

∗ Z3 L2

∗ ∗ R

⎤

⎦ ≥ 0, the following inequality holds
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∫ b

a
ẇT(s)Rẇ(s)ds ≥ 1

b − a
VT

1 RV1 + VT
2 (L1 + LT

1

− b − a

3
Z1)V2 + VT

4 [15(L2 + LT
2 ) − 20(b − a)Z3]V4

+ 20VT
4 L2V1 (7)

where V4 = 4
b−a

∫ b
a w(s)ds − 8

(b−a)2

∫ b
a

∫ b
θ

w(s)dsdθ

Remark 1 The right-hand side of NPII in (7) contains four
quadratic terms. The first three quadratic terms are similar
to the BLII. The last cross-term is the additional term uti-
lized in NPII. The cross-term VT

4 L2V1 evolves due to the
non-orthogonal polynomial function. This cross-term con-
tains the states 4

b−a

∫ b
a w(s)ds, 8

(b−a)2

∫ b
a

∫ b
θ

w(s)dsdθ , w(b)
and w(b). The additional interaction among these states in
cross-term improves the conservativeness.

In order to obtain the simpler presentation, the notations have
been utilized as follows.

�d = � − dt , xd = x(t − dt ), x� = x(t − �), d̃ = 1 − ḋt ,

w1(t) = 1

dt

∫ 0

−dt
xt (s)ds, w2(t)

= 1

�d

∫ −dt

−�

xt (s)ds

w3(t) = 1

dt

∫ 0

−dt
δ0−dt (s)xt (s)ds, w4(t)

= 1

�d

∫ −dt

−�

δ
−dt
−�

(s)xt (s)ds


0(t) = col[x(t), xd , dtw1(t), �dw2(t), dtw3(t), �dw4(t)],

1(s) = col[x(s), ẋ(s), f (Wx(s)),

∫ t

s
ẋ(s)ds]

ζ(t) = col[x(t), xd , x�(t), ẋd , w1(t), w2(t), w3(t),

w4(t), ẋ�(t), f (Wx(t)), f (Wxd), f (Wx�(t)),
∫ t

t−dt
f (Wx(s))ds,

∫ t−dt

t−�

f (Wx(s))ds],
ep = Ae1 + Be10 + Ce11, e0 = 0n×14n

with e1, e2, . . . , e14 ∈ R
n×14n are basic block matrices, for

example e2 = [0n×n, In, 0n×12n].

3 Main Results

In this section, we construct a delay-product functional (DPF)
using the NPII in (7).

Proposition 1 If the matrices 0 < N3, N4 ∈ R
n×n, the sym-

metric matrices Zi , Yi , L j and M j ∈ R
n×n, i = 1, 2, 3 and

j = 1, 2 satisfy the following LMIs

⎡

⎣
Z1 Z2 L1

∗ Z3 L2

∗ ∗ N1

⎤

⎦ > 0,

⎡

⎣
Y1 Y2 M1

∗ Y3 M2

∗ ∗ N2

⎤

⎦ > 0; (8)

then, the following function can be a DPF candidate:

VN =
∫ t

t−dt
ẋT(s)N1 ẋ(s)ds + d(t)ϑT

4 (t)Zϑ4(t)

− 1

�
[dtϑT

3 (t)L(�)ϑ3(t) + �d(t)ϑ
T
5 (t)M(�)ϑ5(t)]

+
∫ t−dt

t−�

ẋT(s)N2 ẋ(s)ds + �d(t)ϑ
T
6 (t)Yϑ6(t) (9)

where

L(�) =
⎡

⎣

1
�
N1 0 10LT

2
∗ L1 + LT

1 0
∗ ∗ 15(L2 + LT

2 )

⎤

⎦ ,

M(�) =
⎡

⎣

1
�
N2 0 10MT

2
∗ M1 + MT

1 0
∗ ∗ 15(M2 + MT

2 )

⎤

⎦ ,

Y = diag

{
Y1

3
, 20Y3

}

,Z = diag

{
Z1

3
, 20Z3

}

,

ϑ3(t) = col{x(t) − xd(t), x(t) + xd(t) − 2w1(t), 4w3(t)},
ϑ4(t) = col{x(t) + xd(t) − 2w1(t), 4w3(t)}
ϑ5(t) = col{xd(t) − x�(t), xd(t) + x�(t) − 2w2(t), 4w4(t)},
ϑ6(t) = col{xd(t) + x�(t) − 2w2(t), 4w4(t)}

Proof By using the non-orthogonal polynomial-based inte-
gral inequality of [29], one can write

∫ t
t−dt

ẋT(s)N1 ẋ(s)ds

≥ 1
dt

[dtϑT
3 (t)L(dt )ϑ3(t)]−dtϑT

4 (t)Zϑ4(t), and
∫ t−dt
t−�

ẋT(s)

N2 ẋ(s)ds ≥ −�d(t)ϑT
6 (t)Yϑ6(t) + 1

�d (t) [�d(t)ϑT
5 (t)

M(�d(t))ϑ5(t)]
Since � ≥ dt ≥ 0, it is clear that VN (t) > 0. 	

Remark 2 The new delay-product LKF has been created
of modifying non-orthogonal polynomial-based integral
inequality (NPBI) introduced in [29]. The NPBI is designed
on the basis of a non-orthogonal polynomial sequence. The
auxiliary sequel vector {1, g(s), g2(s)} is non-orthogonal
because

∫ b
a g2(s) �= 0. Hence, an additional cross-term has

been introduced in the NPBI as compared to orthogonal poly-
nomial type integral inequality. This additional cross-term
has been key to get less conservative stability condition.

Remark 3 The DPF (9) consists of integral terms and delay
coefficient-based non-integral terms. These non-integral
terms are non-positive and play the role to provide relaxed
stability condition, and its derivative produces cross-terms
with product of delay and its derivative. Hence, both relaxed
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condition and delay-product properties make the DPF more
effective to reduce conservatism.

By considering DPF (9), we have the following stability cri-
terion.

Theorem 1 For matrices 0 < P ∈ R
6n×6n, 0 < Pi ∈

R
4n×4n, 0 < Ni , Ri ∈ R

n×n, diagonal matrices 0 < Πk ,
Ω j ,Λ j , any matrices Ui ∈ R

3n×3n and Ui+2 ∈ R
n×n,

i = 1, 2; j = 1, 2, 3; k = 1, 2, . . . , 6 with given scalars
�, ν1 and ν2, the delayed NN (1) is asymptotically stable, if
inequalities in (8) and following LMIs hold for ḋt ∈ [ν1, ν2].
⎡

⎣
ϒ̄(0, ḋt ) ET

1 U2 eT
13U4

∗ −R1 0
∗ ∗ −R2

⎤

⎦ < 0 (10)

⎡

⎣
ϒ̄(�, ḋt ) ET

2 U
T
1 eT

14U3

∗ −R1 0
∗ ∗ −R2

⎤

⎦ < 0 (11)

where, ϒ(ḋt , dt ) = Φ0(ḋt , dt ) + Φ1(ḋt ) + Φ4

+ Φ2(ḋt , dt ) + Φ3(dt ) (12)

�0(ḋt , dt ) = Sym{GT
0 (dt )PG1(ḋt )} − d̃t G

T
3 P1G3

+Sym{GT
4 (dt )P1G7} + d̃t G

T
3 P2G3 − GT

5 P2G5

+Sym{GT
6 (dt )P2G7} + GT

2 P1G2 (13)

�1(ḋt ) = Sym{[(e10 − Σ1We1)TΠ1

+(Σ2We1 − e10)TΠ2]Wep

+[d̃t (e11 − Σ1We2)TΠ3

+d̃t (Σ2We2 − e11)TΠ4]We5

+[(e12 − Σ1We3)TΠ5

+(Σ2We3 − e12)TΠ6]We6} (14)

Φ2(ḋt , dt ) = eT
pN1ep + d̃t e

T
4 (N2 − N1)e4

−eT
9 N2e9 − ḋt

�
ET

3 L(�)E3 + ḋt
�
ET

5 M(�)E5

− 1

�
Sym{ET

3 L(�)(dt D31 + D30)}
+ḋt E

T
4 ZE4 + Sym{ET

4 Z(dt D41 + D40)}
− 1

�
Sym{ET

5 M(�)(�d (t)D51 + D50)}
−ḋt E

T
6 YE6 + Sym{ET

6 Y(�d (t)D61 + D60)} (15)

�3(dt ) = �
2(eT

p R1ep + eT
10R2e10)

−(1 + β)(ET
1 R1E1 + eT

13R2e13)

−(1 + α)(ET
2 R1E2 + eT

14R2e14)

−2ET
1 [βU1 + αU2]E2 − 2eT

13[βU3 + αU4]e14 (16)

�4 =
3∑

i=1

Sym{(e9+i − Σ1Wei )
TΩi (Σ2Wei − e9+i )}

+
2∑

i=1

Sym{[(e9+i − e10+i ) − Σ1W (ei − e1+i )]TΛi

×[Σ2W (ei − e1+i ) − (e9+i − e10+i )]}
+Sym{[(e10 − e12)

−Σ1W (e1 − e3)]TΛ3

×[Σ2W (e1 − e3) − (e10 − e12)]} (17)

G0 = [eT
1 , eT

2 , dte
T
5 , �d(t)e

T
6 , dte

T
7 , �d(t)e

T
8 ]T,

G1 = [eT
p, d̃t e

T
4 , eT

1 − d̃t e
T
2 , d̃t e

T
2 − eT

3 ,

− eT
1 − d̃t e

T
2 + (1 + d̃t )e

T
5 − ḋt e

T
7 ,

− d̃t e
T
2 − eT

3 + (1 + d̃t )e
T
6 + ḋt e

T
8 ]T

G2 = [eT
p, e

T
1 , eT

10, e
T
0 ]T,G3 = [eT

4 , eT
2 , eT

11, (e1 − e2)
T]T,

G4 = [(e1 − e2)
T, dte

T
5 , eT

13, dt (e1 − e5)
T]T

G5 = [eT
9 , eT

3 , eT
12, (e1 − e3)

T]T,

G6 = [(e2 − e3)
T, �d(t)e

T
6 , eT

14, �d(t)(e1 − e6)
T]T,

G7 = [eT
0 , eT

0 , eT
0 , eT

p]T

E1 = Col{e1 − e2, e1 + e2 − 2e5, e1 − e2 + 6e7}
E2 = Col{e2 − e3, e2 + e3 − 2e6, e2 − e3 + 6e8}
E3 = [(e1 − e2)

T, (e1 + e2 − 2e5)
T, 4eT

7 ]T, E4

= [(e1 + e2 − 2e5)
T, 4eT

7 ]T,

E5 = [(e2 − e3)
T, (e2 + e3 − 2e6)

T, 4eT
8 ], E6

= [(e2 + e3 − 2e6)
T, 4eT

8 ]T,

D30 = [eT
0 ,−2(e1 − d̃t e2 − ḋt e5)

T, 4(−e1 − d̃t e2

+ (1 + d̃t )e5 − 2ḋt e7)
T]T,

D31 = [(ep − d̃t e4)
T, (ep + d̃t e4)

T, eT
0 ]T,

D40 = [−2(e1 − d̃t e2 − ḋt e5)
T, 4(−e1 − d̃t e2

+ (1 + d̃t )e5 − 2ḋt e7)
T]TD41 = [(ep + d̃t e4)

T, eT
0 ]T,

D50 = [eT
0 ,−2(d̃t e2 − e3 − ḋt e6)

T, 4(−d̃t e2 − e3

+ (1 + d̃t )e6 + 2ḋt e8)
T]T,D51

= [(d̃t e4 − e9)
T, (d̃t e4 + e9)

T, eT
0 ]T,

D60 = [−2(d̃t e2 − e3 + ḋt e6)
T, 4(−d̃t e2 − e3

+ (1 + d̃t )e6 + 2ḋt e8)
T]T, D61 = [(d̃t e4 + e9)

T, eT
0 ]T

Proof Consider the following LKF as:

V (t) = VN (t) +
3∑

i=1

Vi (t), (18)

where VN (t) is defined in Proposition 1 and V1(t) =

T

0 (t)P
0(t) + ∫ t
t−dt


T
1 (s)P1
1(s)ds + ∫ t−dt

t−�

T

1 (s)
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P2
1(s)ds, V2(t) = 2
∑n

i=1

∫ Wi x(t)
0 [π1i f

−
i (s)+π2i f

+
i (s)]

ds + 2
∑n

i=1

∫ Wi xd (t)
0 [π3i f

−
i (s) + π4i f

+
i (s)]ds+ +2

∑n
i=1∫ Wi xh(t)

0 [π5i f
−
i (s)+π6i f

+
i (s)]ds, V3(t) = �

∫ 0
−�

∫ t
t+u ẋ

T(s)

R1 ẋ(s)dsdu + �
∫ 0
−�

∫ t
t+u f T(Wx(s))R2 f (Wx(s))dsdu.

With the derivative of (18) along the solution of delayed NN
(1), one can write

V̇ (t) = V̇N (t) +
3∑

i=1

V̇i (t) (19)

where

V̇1(t) = ζT(t)Φ0(ḋt , dt )ζ(t) (20)

V̇2(t) = ζT(t)Φ1(dt )ζ(t) (21)

V̇N (t) = ζT(t)Φ2(ḋt , dt )ζ(t) (22)

V̇3(t) = ζT(t)(�2(eT
p R1ep + eT

10R2e10)ζ(t)

− �

∫ t

t−�

ẋT(s)R1 ẋ(s)ds

− �

∫ t

t−�

f T(Wx(s))R2 f (Wx(s))ds (23)

where Φ0(ḋt , dt ),Φ1dt ) and Φ2(ḋt , dt ) are defined in (13),
(14) and (15), respectively. Now, one can approximate the
integral functions involving R1 and R2 in (23) by utilizing
Lemmas 1 and 2. Apply integral inequality (5) of Lemma 2;
on these integrals we have the following inequalities.

− �

∫ t

t−�

ẋT(s)R1 ẋ(s)ds

≤ −ζ(t)T
(

�

dt
ET

1 R1E1 + �

�d(t)
ET

2 R1E2

)

ζ(t) (24)

where R1 = diag{R1, 3R1, 5R1} and E1, E2 are defined
above. Similarly using (6), we have

− �

∫ t

t−�

f T(Wx(s))R2 f (Wx(s))ds

≤ −ζ(t)T
(

�

dt
eT

13R2e13 + �

�d(t)
eT

14R2e14

)

ζ(t) (25)

Now, one can estimate the right-hand side (RHS) of (24) and
(25) using Lemma 1 with dt

�
= α, dt

�d (t) = β, and finally,
substituting in (23) we have

V̇3(t) ≤ ζT(t)[Φ3(dt ) + �(dt )]ζ(t) (26)

where Φ3(dt ) is defined in (16) and

�(dt ) = βET
1 U2R−1

1 UT
2 E1 + αET

2 U
T
1 R−1

1 U1E2

+ βeT
13U4R

−1
2 UT

4 e13 + αeT
14U

T
3 R−1

2 U3e14. (27)

Now, from (3) with Ω = diag{ω1, ω2, . . . , ωn} ≥ 0 and
Λ = diag{λ1, λ2, . . . , λn} ≥ 0, the following inequalities
hold for s, s1, s2 ∈ R:

Θ(s,Ω) ≥ 0, Ψ (s1, s2,Λ) ≥ 0 (28)

where

Θ(s,Ω) = 2[ f (Wx(s)) − Σ2Wx(s)]T

× Ω[Σ1Wx(s) − f (Wx(s))]
Ψ (s1, s2,Λ) = 2[ f (Wx(s1)) − f (Wx(s2))

− Σ2W(x(s1) − x(s2))]T

× Λ[Σ1W(x(s1) − x(s2))

− f (Wx(s1)) + f (Wx(s2))]

Therefore, it follows from (27) that

Θ(t,Ω1) ≥ 0,Θ(t − dt ,Ω2) ≥ 0,Θ(t − h,Ω3) ≥ 0,

Ψ (t, t − dt ,Λ1) ≥ 0, Ψ (t − dt , t − h,Λ2) ≥ 0

Ψ (t, t − h,Λ3) ≥ 0

so, one can write

ζT(t)Φ4ζ(t) ≥ 0 (29)

where Φ4 is defined in (17). Using (20), (21), (22), (26), and
(29), the time derivative of V (t) along the solution of (1) as

V̇ (t) ≤ ζT(t)[ϒ(ḋt , dt ) + �]ζ(t) (30)

where ϒ(ḋt , dt ) and � are defined in (30) and (27), respec-
tively. The matrix ϒ(ḋt , dt ) + � is linear in ḋt and dt .
Therefore, if the matrix ϒ(ḋt , dt )+� is negative definite for
all dt ∈ [0, �] and ḋt ∈ [ν1, ν2], then V̇ (t) < 0. Finally, using
Schur complement one can transform matrix ϒ̄(ḋt , dt ) + �

into LMIs (10) and (11). 	


4 Numerical examples

In this section, we perform a comparison between the
proposed theorems and the existing ones in literature by con-
sidering two numerical examples.

Example 1 Consider a delayed NN (1) having delay function
dt , activation function f (x(t)) satisfying (2) and (3), respec-
tively, and W = I with

A = diag(1.2769, 0.6231, 0.9230, 0.4480),

Σ1 = 0, Σ2 = diag(0.1137, 0.1279, 0.7994, 0.2368)
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Table 1 LUB of delay � for various values of ν

Methods ν = −ν1 = ν2 NLVs

0.1 0.5 0.9

Tm 3 [8] 3.9337 3.3507 3.2627 42n2 + 27n

Tm 3 [11] 4.4167 3.5986 3.3755 79n2 + 15n

Tm 2 [28] 4.5072 3.8984 3.4437 75n2 + 21n

Tm 1 [31] 4.5086 3.8091 3.2895 153n2 + 22n

Pr 1 [29] 4.5382 3.9313 3.4763 60n2 + 22n

Tm 1(N = 1) [32] 4.5426 3.9438 3.4688 83.5n2 + 26.5n

Pr 3 [33] 4.5432 3.9754 3.5791 131n2 + 24n

Tm 1 4.5441 3.9245 3.4273 60n2 + 26n

Tm → Theorem, Pr → Proposition

Table 2 LUB of delay � for various values of ν

Methods ν = −ν1 = ν2 NLVs

0.1 0.5 0.9

Tm 3 [11] 1.1135 0.4922 0.4701 79n2 + 15n

Tm 1 [35] 1.1240 0.5689 0.4737 79n2 + 15n

Pr 1 [29] 1.1488 0.5864 0.4899 60n2 + 22n

Pr 3(N = 2) [33] 1.1511 0.5835 – 131n2 + 24n

Tm 1(N = 1) [34] 1.1521 0.5961 – 83.5n2 + 26.5n

Tm 1 1.1551 0.5891 0.4906 60n2 + 26n

Tm → Theorem, Pr → Proposition

B =

⎡

⎢
⎢
⎣

−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785

−0.1311 0.3253 −0.9534 −0.5015

⎤

⎥
⎥
⎦ ,

C =

⎡

⎢
⎢
⎣

0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775

⎤

⎥
⎥
⎦

The LUB of time delay � for different ν = (0.1, 0.5, 0.9)

using the criteria proposed in this paper is listed in Table 1
along with the existing ones. Comparing proposed Theorem 1
and the criteria listed in Table 1, one can find that this method
is less conservative in comparison with all the approaches
listed in Table 1 for slow-varying delay (ν = 0.1). But for
fast-varying delay (ν = 0.5, 0.9), Theorem 1 is more con-
servative than Theorem 1 of [34], Proposition 1 of [29], and
Proposition 1 of [33]. However, the proposed criteria in Tm
1 contain less number of decision variables and it decreases
the complexity.

Example 2 Consider another delayed NN in the form of (1),
where

A = diag(7.3458, 6.9987, 5.5949), B = 0,C = I

W =
⎡

⎣
13.6014 −2.9616 −0.6936
7.4736 21.6810 3.2100
0.7920 −2.6334 −20.1300

⎤

⎦

with Σ1 = 0,Σ2 = diag(0.368, 0.1795, 0.2876). Also, the
time-varying delay and the activation function satisfy (2) and
(3), respectively.

The LUB of the time-varying delay � for various ν =
−ν1 = ν2 using the proposed criteria and existing ones is
listed in Table 2. The obtained results in Theorem 2 provide
better results as compared to all works listed in Table 2 except
Theorem 1(N=1) of [34] for ν = 0.5. It may be noted that the
proposed methods involve lesser number of LMI variables.
Therefore, the criteria introduced in this article reduce the
computational burden and complexity.

5 Conclusion

In this paper, stability analysis of generalized DNN is studied
utilizing LKF method. First a delay-product type functional
(DPF) is proposed using the cross-terms of NPII. In sec-
ond part, a LKF is introduced using newly developed DPF.
Finally, a stability criterion based on LMI is derived in which
the information on delay and its time derivative are consid-
erably utilized to get improved results. The effectiveness of
the developed stability criteria is demonstrated by consider-
ing two numerical examples.
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Poland. Springer, pp 372–383

14. Gu K, Chen J, Kharitonov VL (2003) Stability of time-delay sys-
tems. Springer, Berlin

15. Seuret A, Gouaisbaut F (2013) Wirtinger-based integral inequality:
application to time-delay systems. Automatica 49:2860–2866

16. Park P, Lee WI, Lee SY (2015) Auxiliary function-based integral
inequalities for quadratic functions and their applications to time-
delay systems. J Frankl Inst 352:1378–1396

17. Seuret A, Gouaisbaut F (2015) Hierarchy of lmi conditions for
stability analysis of time-delay systems. Syst Control Lett 81:1–7

18. Zeng HB, He Y, Wu M, She J (2015) Free-matrix-based integral
inequality for stability analysis of systems with time-varying delay.
IEEE Trans Autom Control 60:2768–2772

19. Zhang XM, Han QL, Seuret A, Gouaisbaut F (2017) An improved
reciprocally convex inequality and an augmented Lyapunov–
Krasovskii functional for stability of linear systems with time-
varying delay. Automatica 84:221–226

20. Lee TH, Park JH (2017) A novel Lyapunov functional for stability
of time-varying delay systems via matrix-refined-function. Auto-
matica 80:239-242

21. Xu S, Lam J, Zhang B, Zou Y (2015) New insight into delay-
dependent stability of time-delay systems. Int J Robust Nonlinear
Control 25:961–970

22. Lee TH, Park JH, Xu S (2017) Relaxed conditions for stability of
time-varying delay systems. Automatica 75:11–15

23. Zhang B, Lam J, Xu S (2014) Stability analysis of distributed delay
neural networks based on relaxed Lyapunov–Krasovskii function-
als. IEEE Trans Neural Netw Learn Syst 26:1480–1492

24. Zhang B, Lam J, Xu S (2016) Relaxed results on reachable set
estimation of time-delay systems with bounded peak inputs. Int J
Robust Nonlinear Control 26:1994–2007

25. Zhang CK, He Y, Jiang L, Wu M (2017) Notes on stability of time-
delay systems: bounding inequalities and augmented Lyapunov–
Krasovskii functionals. IEEE Trans Autom Control 62:5331–5336

26. Mahto SC, Ghosh S, Saket R, Nagar SK (2020) Stability analysis of
delayed neural network using new delay-product based functionals.
Neurocomputing 417:106–113

27. Lee TH, Park JH (2018) Improved stability conditions of time-
varying delay systems based on new Lyapunov functionals. J Frankl
Inst 355:1176–1191

28. Lee TH, Trinh HM, Park JH (2017) Stability analysis of neural
networks with time-varying delay by constructing novel Lyapunov
functionals. IEEE Trans Neural Netw Learn Syst 29:4238–4247

29. Zhang XM, Lin WJ, Han QL, He Y, Wu M (2017) Global
asymptotic stability for delayed neural networks using an integral
inequality based on nonorthogonal polynomials. IEEE Trans Neu-
ral Netw Learn Syst 29:4487–4493

30. Kim JH (2016) Further improvement of Jensen inequality and
application to stability of time-delayed systems. Automatica
64:121–125

31. Yang B, Wang R, Dimirovski GM (2016) Delay-dependent sta-
bility for neural networks with time-varying delays via a novel
partitioning method. Neurocomputing 173:1017–1027

32. Chen J, Park JH, Xu S (2018) Stability analysis for neural net-
works with time-varying delay via improved techniques. IEEE
Trans Cybern 49:4495–4500

33. Zhang XM, Han QL, Zeng Z (2017) Hierarchical type stability
criteria for delayed neural networks via canonical Bessel–Legendre
inequalities. IEEE Trans Cybern 48:1660–1671

34. Chen J, Park JH, Xu S (2019) Stability analysis for delayed neu-
ral networks with an improved general free-matrix-based integral
inequality. IEEE Trans Neural Netw Learn Syst 31:675–684

35. Yang B, Wang R, Shi P, Dimirovski GM (2015) New delay-
dependent stability criteria for recurrent neural networks with
time-varying delays. Neurocomputing 151:1414–1422

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	A new Lyapunov–Krasovskii functional for stability analysis of delayed neural network
	Abstract
	1 Introduction
	2 System description and preliminaries
	3 Main Results
	4 Numerical examples
	5 Conclusion
	Acknowledgements
	References


