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Abstract
Ordinary differential equations with time-periodic coefficients (so-called time-periodic systems) can be analyzed using
Lyapunov–Floquet (L–F) transformations. These transformations reduce the linear part of a time-periodic equation to the
time-invariant form and facilitate the application of well-established techniques tailored for time-invariant systems. In the
previous work, the construction of L–F transformations relied on Chebyshev polynomials and their properties, which may
often prove challenging to grasp and apply effectively. This paper endeavors to present a more intuitive and straightforward
approach for computing L–F transformations. The solution of a linear time-periodic system can be expressed as a product of
an exponential function and a vector-valued polynomial in time with time-periodic coefficients. Substitution of the solution
reduces a time-periodic equation to an eigenvalue problem, which can be solved to obtain the general solution. Rearranging
the solution yields the state transition matrix, which can be used in the Lyapunov–Floquet theorem to compute the L–F
transformation. The inverse of these transformations is important for the nonlinear analysis and control and can be determined
by defining the adjoint system to the time-periodic system. As examples, L–F transformations and their inverses are generated
for the Mathieu equation and a double inverted pendulum subjected to a time-periodic force. In the end, the usefulness of L–F
transformations is showcased by performing the bifurcation study of a nonlinear Mathieu equation using the center manifold
theorem.

Keywords Time-periodic systems · Floquet theory · Lyapunov–Floquet theorem · Lyapunov–Floquet transformation ·
Mathieu equation

1 Introduction

Ordinary differential equations with time-periodic coeffi-
cients (so-called time-periodic systems) are used to model
numerous physical systems in various fields of science and
engineering. The study of these systems dates back to 1868
when Mathieu [1] analyzed the vibration of an elliptic mem-
brane.

Shortly afterward, in 1883, M.G. Floquet developed a
complete mathematical theory (commonly known as Floquet
theory [2, 3]) to determine the stability and response of lin-
ear time-periodic systems. Since then, several numerical [4],
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analytical [5, 6], and symbolic [7, 8] techniques have been
developed to compute the stability and response of time-
periodic systems using the Floquet theory. Time-periodic
systems can also be investigated using theLyapunov–Floquet
(L–F) theorem [9], which allows the transformation of such
systems to a system of equations whose linear parts are time-
invariant. L–F transformations can be useful for studying
time-periodic systems as many existing techniques applica-
ble to time-invariant systems can be used for such problems.
For instance, bifurcation studies require nonlinear equations
of perturbed dynamics. If the linear part of the equations can
be made time-invariant via L–F transformation, the resulting
nonlinear equations can be simplified using local nonlinear
techniques such as time-dependent normal form theory and
center manifold reduction [10, 11]. Furthermore, controllers
can be designed using time-invariant methods [12, 13]. In
ref. [14], it is shown that analysis of time-periodic systems
using L–F transformations is free from limitations such as
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the existence of a small parameter and a generating solu-
tion, restrictions owned by classical techniques (method of
averaging and perturbation techniques).

L–F transformations can be computed in closed forms for
a special class of time-periodic systems, called the commuta-
tive systems [15]. Such a transformation can be constructed
for a general time-periodic system if the state transition
matrix (STM) is known as an explicit function of time. In
1991, Sinha and Wu [16] developed an efficient technique
for the computation of the STM of a general time-periodic
systemusing shiftedChebyshev polynomials of the first kind.
Using this work in 1996, Sinha et al. [17] presented a tech-
nique for the computation of L–F transformations for general
time-periodic systems. In 2009, Butcher et al. [18] proposed
a technique to determine L–F transformation in a symbolic
formusingMagnus expansion. Their approach seems towork
for general periodic systems and does not require the com-
putation of STM in a symbolic form. However, it does not
yield good results even for the Mathieu equation with rel-
atively smaller values of system parameters [8]. In 2016,
Kirkland and Sinha [8] first implemented Chebyshev expan-
sion and Picard iteration methods as suggested in ref. [7] to
compute the STM symbolically and then utilized a Gaussian
quadrature integral formula and matrix exponential summa-
tion method to determine L–F transformation in symbolic
form. Unlike ref. [18], their approach seems to work for a
wide range of system parameters.

While the L–F transformations-based approach offers
distinct advantages over classical techniques, its broader
adoption within the scientific community has been limited,
perhaps due to the intricacies associated with the incor-
poration of Chebyshev polynomials in constructing these
transformations. Recognizing this challenge, the present
paper introduces a novel, intuitive, and simplified methodol-
ogy for computing L–F transformations, aiming to enhance
accessibility and encouragewider application of this valuable
technique in scientific research and engineering domains.
The proposed approach differs from the previousmethods [8,
17] in determining the STM of a time-periodic system. First,
an assumed form of solution (Floquet form) is utilized to
reduce a linear time-periodic equation to an eigenvalue prob-
lem,which is then solved to compute the general solution and
construct the STM. Once the STM is known, L–F transfor-
mation is obtained using the L–F theorem. It is worth noting
that the Floquet form, initially used byHill to determine lunar
perigee [19], has been widely used to compute the stability
of linear time-periodic systems. The present work’s contri-
bution lies in demonstrating that, using the Floquet form, the
L–F transformations can be very easily generated for gen-
eral time-periodic systems. To the author’s best knowledge,
no one has attempted to use this type of approach to construct
L–F transformations, even for the trivial (stable and unstable)
cases of the Mathieu equation. This paper uses the proposed

method and computes L–F transformations and their inverses
for not only stable and unstable cases but also the critical case
of one and two degrees-of-freedom systems. Critical cases
are particularly important compared to trivial cases, as non-
linearities play an imperative role in describing the behavior
of systems. A bifurcation study is also presented to demon-
strate the effectiveness of L–F transformation.

The approach proposed in this paper is more intuitive and
straightforward because it is developed along the lines of
time-invariant systems where the general solution is deter-
mined by substituting an assumed solution in the differential
equation and then performing the eigenanalysis to calculate
eigenvalues and eigenvectors.

2 Mathematical background

A set of nonlinear ordinary differential equations with time-
periodic coefficients is given by

ẋ � A(t)x + w2(x, t)+ · · · + wχ(x, t)+O
(
|x|χ+1, t

)
, (1)

wherex ∈ R
n×1,A(t) is an×n time-periodicmatrix function

with the principal period T , wχ(x, t) are n × 1 nonlinear
vectors containing homogenous monomials in x (of order χ )
with time-periodic coefficients and t is the time. Equation (1)
can be rewritten in the compact form as

ẋ � A(t)x +W(x, t), (2)

whereW(•) is appropriately defined in terms of wχ(•). The
linear homogenous part of Eq. (2) is given by

ẋ � A(t)x, (3)

whose stability and response can be determined using the
well-known Floquet theory [2, 3]. Let �(t) be the STM such
that it satisfies Eq. (3) with �(0) � I; then, the solution of
Eq. (3) is given by

x(t) � �(t)x(0) ; 0 ≤ t ≤ T . (4)

According to theLyapunov–Floquet theorem [9], theSTM
can be factored as

�(t) � L(t) eC t ; L(t) ∈ C
n×n ; C ∈ C

n×n ∀ t ≥ 0, (5)

or,

�(t) � Q(t)eR t ; Q(t) ∈ R
n×n , R ∈ Rn×n ∀ t ≥ 0, (6)

where L(t) and Q(t) are T periodic and 2T periodic
L–F transformations, respectively. Using the transformation,
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x � L(t)z or x � Q(t)z, Eq. (3) can be reduced to

ż � Cz or ż � Rz, respectively, (7)

where C and R are time-invariant matrices and are defined
as

C � 1

T
ln�(T ) and R � 1

2T
ln�(2T ). (8)

Here,�(T ) is the Floquet transition matrix (FTM) or the
monodromy matrix.

The stability of linear time-periodic systems depends
upon the eigenvalues of �(T ), commonly known as
’Floquet multipliers’. In general, the Floquet multipliers,
ρ j ; j � 1, ..., n are complex and the system is stable
if
∣∣ρ j
∣∣ ≤ 1, i.e., all Floquet multipliers lie on or inside the

unit circle, otherwise it is unstable. In the case of
∣∣ρ j
∣∣ � 1, ρ j

should be a simple root of the FTM for the stability of the sys-
tem. The stability of linear time-periodic systems can also be
defined in terms of ‘characteristic exponents’ (eigenvalues
of the time-invariantmatrixC). The characteristic exponents,
λ j � α j + iβ j are defined as

α j � 1

T
ln
∣∣ρ j
∣∣ and β j � 1

T

(
arg ρ j + 2Nπ

)
; N ∈ Z. (9)

The system is stable if all α j ≤ 0, otherwise it is unstable.
In the case of zero or purely imaginary characteristic expo-
nents, the time-periodic system is stable if λ j is a simple
root of the time-invariant matrix C. It should be noted that
characteristic exponents are not unique and any λ j can be
replaced by λ j + 2Nπ i

/
T .

Application of the transformation, x � L(t)z or x � Q(t)z
to Eq. (2) yields

ż � Cz + L−1(t)W(L(t)z, t) or ż � Rz +Q−1(t)W(Q(t)z, t).
(10)

It is evident that Eq. (2) can be analyzed using Eq. (10);
however, the investigation requires the computation of L–F
transformation and its inverse.

Remark If one of the Floquet multipliers lies in the left half
of the complex plane, then, the real L–F transformation,Q(t),
is 2T periodic and has symmetry of Q(t + T ) � −Q(t).
However, if all the Floquet multipliers lie in the right half
of the complex plane, the real and complex transformations
coincide, both being T periodic and real.

3 Computation of Lyapunov–Floquet
transformations

The solution of Eq. (3) has the form [3]

x � eλtp1(t), (11)

where λ is the characteristic exponent, and p1(t) �{
p11(t), p12(t), ..., p1n(t)

}T
is a periodic vector function

with period T . If p1r (t) �
s�+N∑
s�−N

c1rs eisωt ; r � 1, 2, ..., n,

substituting Eq. (11) in Eq. (3) and then equating the coeffi-
cients of eisωt leads to

(12)K (λ) c1 � 0; c1 �
{
c11−N , ..., c11N , ..., c1n−N , ..., c1nN

}
T ,

where K(λ) is a n(2N + 1) × n(2N + 1) and is commonly
known asHillmatrix. Equation (12) is an eigenvalue problem
where λ is the eigenvalue and c1 is the eigenvector. For the
non-trivial solution of c1, the determinant of K(λ) can be
set to zero to determine n(2N + 1)λ′s. Equation (3) is an
nth order system, and therefore, the number of λ′s should be
equal to n and they can be obtained by using the constraint
−π
/
T < Im

[
λ j
] ≤ π

/
T . The rest of the λ′s are dependent

on these n λ′s (see the non-uniqueness property of exponents
inSect. 2). Ifλ1 throughλn satisfies the constraint, they canbe
used to plot stability chart. Also, corresponding eigenvectors
can be determined using Eq. (12) to construct the general
solution of Eq. (3) as

x(t) � A1x1(t) + A2x2(t)+ · · ·+Anxn(t), (13)

where xj(t); j � 1, ..., n are the n linearly independent
solutions, and they have the form of Eq. (11) only when
eigenvalues λ1 through λn are distinct. Using the initial con-
dition, scalar constants A1 through An can be determined,
and then, Eq. (13) can be rearranged in the form of Eq. (4)
to yield �(t) for Eq. (3).

If eigenvalues λ j s that satisfy the constraint are not dis-
tinct, all linearly independent solutions of Eq. (3) cannot have
the form of Eq. (11). Suppose the eigenvalue λ j of Eq. (3) has
algebraic multiplicity 	 and geometric multiplicity
. Then,
there are 
 (< 	) linearly independent solutions of Eq. (3),
and each solution has the form of Eq. (11). To get the rest
(	 − 
) linearly independent solutions, the following form
solution must be assumed.

x � eλt
[
t p1(t) + p2(t)

]
, (14)

where p2(t) � {
p21(t), p22(t), ..., p2n(t)

}T
is a periodic

vector functionwith period T and p2r (t) �∑s�+N
s�−N c2rs eisωt .
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Substituting Eq. (14) in Eq. (3) and then equating the coeffi-
cients of eisωt yields

K(λ)c1� 0, (15a)

K (λ) c2 � c1; c2 �
{
c21−N , ..., c21N , ..., c2n−N , ..., c2nN

}
T .

(15b)

Equation (15a) andEq. (12) are the same and the eigenvec-
tor c1 obtained from Eq. (12) can be substituted in Eq. (15b)
to determine the generalized eigenvector c2. If there are ϒ

linearly independent generalized eigenvectors c2, then, there
are an additional ϒ linearly independent solutions of Eq. (3)
of the form of Eq. (14). In the case 
 + ϒ � 	, there is no
need to proceed further as there is a full quota of solutions
corresponding to eigenvalue λ j . However, if 
+ϒ < 	, the
following form of the solution must be assumed to increase
the number of independent solutions from (
 + ϒ) to 	.

x � eλt
[
t2

2
p1(t)+tp2(t) + p3(t)

]
, (16)

where p3(t) � {
p31(t), p32(t), ..., p3n(t)

}T
with p3r (t) �

s�+N∑
s�−N

c3rs eisωt . Substitution into Eq. (3) and then equating the

coefficients of eisωt leads to the following three equations.

K(λ)c1� 0, (17a)

K(λ)c2� c1, (17b)

K (λ) c3 � c2; c3 �
{
c31−N , . . . , c31N . . . , c3n−N , . . . , c3nN

}
T .

(17c)

Equations (17a) and (17b) have been solved previously,
and they can be used to compute generalized eigenvector c3.
More independent solutions are obtained, and this process
is continued until 	 independent solutions corresponding to
the eigenvalue λ j are generated. After determining solutions
corresponding to all eigenvalues, �(t) can be constructed
and then can be substituted in Eq. (8) to get a time-invariant
matrix C(or R) and subsequently, L–F transformations L(t)
(or Q(t)) can be computed using Eq. (5) (or 6).

From Eq. (10), it can be seen that the analysis of time-
periodic systems using L–F transformations require the
computation of their inverse. It can be computed by defining
the adjoint system to Eq. (3) as

ẋ � −AT(t)x. (18)

If �(t) is the STM of Eq. (18), which can be computed
using the process described above, according to ref. [9], the

following relationship holds.

�−1(t) � �T(t). (19)

Using Eqs. (5) and (6), L−1(t) and Q−1(t) can be written
as

L−1(t) � eC t�−1(t) � eC t�T(t), (20)

Q−1(t) � eR t�−1(t) � eR t�T(t). (21)

4 Examples

Two time-periodic systems are examined in this paper.Math-
ieu equation representing one degree-of-freedom systems is
considered as a first example, whereas the second example
involves a higher order system: a double inverted pendulum
subjected to a time-periodic force. In both examples, the sta-
bility diagrams are first constructed to identify the system
parameters for stable, unstable and critical cases. Then, L–F
transformations and their inverses are generated for stable,
unstable and critical cases of the Mathieu equation and the
critical case of the double inverted pendulum. The second
example is investigated to show that the proposed approach
can be easily applied to higher order systems.

4.1 Mathieu equation

A dampedMathieu equation can be written in the state space
form as

ẋ �
[

0 1
−(a + b cosω t) −d

]
x; x(0) �

{
x0
ẋ0

}
, (22)

where {a, b, d} are the system parameters, ω is the paramet-
ric excitation frequency and the coefficient matrix A(t) is
periodic with principal period T � 2π

/
ω.

Substituting Eq. (11) with n � 2 in Eq. (22) and equating
the coefficients of eisωt leads to

c11s (λ + isω) � c12s , (23a)

c12s (λ + isω) � −ac11s − dc12s − (b/2)
(
c11s−1 + c11s+1

)
,

(23b)

which can be rearranged in the form of Eq. (12). Substituting
c12s from Eq. (23a) in Eq. (23b) halves the total number of
equations. Equation (23b) takes the form

[
(λ + isω)2 + d(λ + isω) + a

]
c11s +

(
b
/
2
)(
c11s−1 + c11s+1

)
� 0,

(24)
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and can rewritten in the matrix form as

K c1 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k−N
b
2

b
2

. . . b
2

. . . k0
. . .

b
2
. . . b

2
b
2 kN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c11−N
...
...

c110
...
...

c11N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
...
...
0
...
...
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (25)

where ks � [(λ + isω)2 + d(λ + isω) + a
]
and s varies from

−N to N . Equation (25) is a quadratic eigenvalue problem
where λ is the eigenvalue and c1 is the eigenvector.

It iswell-known that at stability boundaries, the solution of
one degree-of-freedom time-periodic system is either T peri-
odic or 2T periodic with 0 and iπ

/
T , respectively, as one of

the exponents. Substitution of these values in Det
[
K
] � 0

yields polynomial expressions for both T and 2T periodic
boundaries in terms of system parameters {a, b, d} and para-
metric excitation frequency, ω. Using ω � 1 and d � 0 in
these expressions, the stability diagram of Eq. (22) is plotted
in the a ∼ b plane defined by −1 ≤ a ≤ 10 and 0 ≤ b ≤ 10
and is shown in Fig. 1. It is found that the stability diagram
obtained using N � 10 in Det

[
K
] � 0 is in excellent agree-

ment with the numerically obtained stability diagram.
Stable and unstable regions are clearly visible in Fig. 1.

System parameters for stability and instability are identified
and shown in Table 1. For the critical case, system parameters
are determined using polynomial expressions for stability
boundaries and are also tabulated in Table 1.

4.1.1 L–F transformations and their inverses for stable
and unstable cases

The Mathieu equation is stable for a � 4 and b � 4. Setting
Det
[
K
] � 0 and using the constraint −0.5 < Im

[
λ j
] ≤

+0.5, eigenvalues are determined and are tabulated in col. 4
of Table 1. All the eigenvalues are distinct, and thus, all the
independent solutions are of the form of Eq. (11). Eigenvec-
tors corresponding to these λ j s can be determined with the
help of Eq. (25). In the case of distinct eigenvalues, eigen-
vectors are related. If the eigenvector corresponding to the
complex eigenvalue λ1 � λ is

c1 �
{
c11−10 · · · · · · c110 · · · · · · c1110

}T
, (26)

then, the eigenvector corresponding to the complex conjugate
λ2 � λ is

Fig. 1 Stability diagram of the Mathieu equation (Eq. (22)). Gray:
numerically computed unstable regions, black solid: 2T boundaries
using the proposed method, black dashes: T periodic boundaries using
the proposed method

c1 �
{
c1110 · · · · · · c110 · · · · · · c11−10

}T
. (27)

The case of distinct real eigenvalues is not very different
from the case of distinct complex eigenvalues because ifλ1 �
a1−√

b1 and λ2 � a1+
√
b1 are the distinct real eigenvalues,

they can be rewritten as λ1 � a1 + ib1 and λ2 � a1 − ib1
with b1 � i

√
b1. These relationships between eigenvectors

are valid for general time-periodic systems.
Once eigenvalues and eigenvectors are known, the gen-

eral solution of Eq. (22) is constructed using Eq. (13) and
rearranged in the following form

x(t) � �(t)

{
x0
ẋ0

}
, (28)

to obtain �(t). Using �(T ) and Eq. (8), the constant matrix
R is calculated and is given in Col. 6 of Table 1. Then, �(t)
and R are substituted in Eq. (6) to compute the L–F trans-
formation, Q(t). Application of L–F transformation reduces
Eq. (22) to Eq. (7)which can be solved easily and the solution
can be substituted in the transformation, x � Q(t)z to get x.
Figure 2 compares the x determined using L–F transforma-
tion with the x obtained by the direct numerical integration
of Eq. (22). It could be seen that both solutions match exactly
demonstrating the correctness of �(t),R and Q(t).

Figure 3 shows the L–F transformation where Quv(t) rep-
resents the element corresponding to uth row and vth column
of Q(t). The transformation is T periodic because the real
parts of the Floquet multipliers have positive real part (see
col. 5 of Table 1).
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Table 1 Different cases corresponding to the Mathieu equation

Case a b λ ρ R

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

Stable 4 4 λ1 � +0.167285 i

λ2 � −0.167285i

ρ1 � 0.496631 + 0.867962i

ρ2 � 0.496631 − 0.867962i

[
0 −0.0224983

1.24384 0

]

Unstable 2.5 2.5 λ1 � 0.112754 + 0.5i

λ2 � 0.112754 − 0.5i

ρ1 � −2.03085

ρ2 � −0.492404

[
0 −0.0989448

−0.128491 0

]

Critical 0.686720 2 λ1 � 0

λ2 � 0

ρ1 � +1

ρ2 � +1

[
0 0

4.37782 0

]

Fig. 2 Comparison of x obtained using x � Q(t)zwith x determined by
numerical integration of Eq. (22) for the stable case

To develop the inverse of L–F transformation, the adjoint
system of the damped Mathieu equation is defined as

ẋ �
[

0 (a + b cosω t)
−1 d

]
x. (29)

Using Eq. (11) in Eq. (29), the following two equations
are obtained.

c11s (λ + isω) � ac12s +
(
b
/
2
)(
c12s−1 + c12s+1

)
, (30a)

c12s (λ + isω) � −c11s + dc12s . (30b)

They can be reduced to

[
(λ + isω)2 − d(λ + isω) + a

]
c12s +

(
b
/
2
)(
c12s−1 + c12s+1

) � 0, (31)

and can be written in the matrix form as

K̂ĉ
1 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k−N
b
2

b
2

. . . b
2

. . . k0
. . .

b
2
. . . b

2
b
2 kN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c12−N
...
...

c120
...
...

c12N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
...
...
0
...
...
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (32)

where ks � [(λ + isω)2 − d(λ + isω) + a
]
.

Withω � 1, d � 0, N � 10, a � 4 and b � 4 in Eq. (32),
eigenvalues and eigenvectors are determined to construct the
STM, � (t) of the adjoint system, i.e., Eq. (29). Substitution
of � (t) in Eq. (21) yields the inverse of L–F transformation
whose all four elements are shown in Fig. 4. Q−1

uv (t) repre-
sents the element corresponding to uth row and vth column
of Q−1(t).

The solution of the Mathieu equation increases unbound-
edly for a � 2.5 and b � 2.5. Similar to the stable case,
the eigenvalues for the unstable case are distinct (see col. 4
Table 1). Therefore, the same process can be followed to con-
struct �(t),R andQ(t). x obtained using x � Q(t)zmatches
well with the one determined by the direct numerical integra-
tion of Eq. (22) and is shown in Fig. 5. The transformation
Q(t) is 2T periodic as the Floquet multipliers have negative
real parts. Q−1(t) is obtained using Eqs. (32) and (21). For
the sake of brevity figures showing Q(t) and Q−1(t) are not
included.

4.1.2 L–F transformation and its inverse for a critical case

The Mathieu equation is in a critical state for a � 0.686720
and b � 2. Eigenvalues are 0 and 0 (not distinct) with alge-
braic multiplicity 2. Equation (23) yields only one linearly
independent eigenvector, c1 and the corresponding solution
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Fig. 3 L–F transformation for the
stable case of the Mathieu
Equation

Fig. 4 The inverse of L–F
transformation for the stable case
of the Mathieu Equation
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Fig. 5 Comparison of x obtained using x � Q(t)zwith x determined by
numerical integration of Eq. (22) for the unstable case

Fig. 6 Comparison of x obtained using x � Q(t)zwith x determined by
numerical integration of Eq. (22) for the critical case

is of the form of Eq. (11). Thus, the geometric multiplic-
ity of the eigenvalue is 1. To determine the second linearly
independent solution,

x � eλt

{
tp11(t) + p21(t)
tp12(t) + p22(t)

}
, (33)

is substituted in Eq. (22). Equating the coefficients of t and
then eisωt leads to Eq. (15a) whereas Eq. (15b) is obtained by
matching the coefficients of t0 and then eisωt . Equation (15a)
is the same as Eq. (23) and has already been solved for c1

above. c1 obtained is then substituted in Eq. (15b) to cal-
culate c2. With c1 and c2 known, the general solution is
constructed and then �(t),R and Q(t) are determined. As
shown inFig. 6, x calculated using x � Q(t)z shows an excel-
lent agreement with the solution obtained by numerically
integrating Eq. (22). The similar process can be followed to
compute the STM of the adjoint system and subsequently,
Q−1(t) can be calculated.

4.2 Double inverted pendulum

Consider a double inverted pendulum subjected to a time-
periodic force as shown in Fig. 7. Linearized equations of
motion around the equilibrium point (φ1, φ2) � (0, 0) can

Fig. 7 A double inverted pendulum

be written in the state space form as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1
ẋ2
ẋ3
ẋ4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1

(−3k + p(t))
/
2 k − p(t)

/
2 0 0

(5k − p(t))
/
2 −2k + 1.5p(t) 0 0

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1
x2
x3
x4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

(34)

where k � k
/
ml2,p(t) � p(t)

/
ml and p(t) � p1 +

p2 cosωt . Here, m � mass of the link, l � length of
the link, k � stiffness parameter, p1 � static load, p2 �
amplitude of the parametric excitation term, φ1 and φ2 are
the displacement angles and the state vector is defined as
{x1, x2, x3, x4}T � {φ1, φ2, φ′

1, φ′
2

}T .
Substitution of Eq. (11) with n � 4 in Eq. (34) and equat-

ing the coefficients of eisωt yields

c11s (λ + isω) � c13s , (35a)

c12s (λ + isω) � c14s , (35b)

c13s (λ + isω) � As + Bs−1 + Bs+1, (35c)

c14s (λ + isω) � Cs + Ds−1 + Ds+1, (35d)

where As � [
c11s (−3k + p1)

/
2
]
+
[(
k − p1

/
2
)
c12s
]
,

Bs � [(
c11s − c12s

)
p2
/
4
]
, Cs � [

c11s (5k − p1)
/
2
]
+[(−2k + 3p1

/
2
)
c12s
]
and Ds � [(

3c12s − c11s
)
p2
/
4
]
. Sub-

stitution of c13s from Eq. (35a) and c14s from Eq. (35b) in Eqs.
(35c) and (35d), respectively, leads to

c11s (λ + isω)2 � As + Bs−1 + Bs+1, (36a)
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Fig. 8 Stability diagramof the double inverted pendulum. Large dashes:
2T periodic boundaries, Small dashes: T periodic boundaries, Solid
black: Unstable regions due to combination resonances and S denotes
stable regions

c12s (λ + isω)2 � Cs + Ds−1 + Ds+1, (36b)

which can be expressed in matrix form K c1� 0 with c1 �{
c11−N · · · c11N c12−N · · · c12N

}T
.

Equation (34) can become unstable due to parametric and
combination resonances. With k � 1 and ω � 2,Det

[
K
]
is

set to zero to obtain the polynomial expressions for the sta-
bility boundaries of T and 2T periodic unstable regions by
substituting λ as 0 and iπ

/
T , respectively. Unstable regions

due to combination resonances can be only found by cal-
culating exponents at sample points. They cannot overlap
T and 2T periodic unstable regions as four eigenvalues are
required for combination resonances. Figure 8 shows the sta-
bility diagramof Eq. (34) in p1 ∼ p2 plane for N � 10 and is
in good agreement with the numerically computed diagram
(not shown).

4.2.1 L–F transformation and its inverse for a critical case

Equation (34) is in a critical state for (p1, p2) � (0.570366,
2). The point lies on the boundary of the combination
resonance region that is in the upper right half plane of
the stability diagram, and the corresponding eigenvalues
are 0.455552i, 0.455552i, −0.455552i and −0.455552i.
Eigenvalues 0.455552i and −0.455552i are repeated twice
(algebraic multiplicity 2) and each of them only yields one
linearly independent eigenvector (geometric multiplicity 1)

Fig. 9 Comparison of x obtained using x � Q(t)zwith x determined by
numerical integration of Eq. (34) for the critical case

which can be obtained using the matrix form of Eq. (36). To
construct the general solution, onemore linearly independent
eigenvector is needed for both 0.455552i and −0.455552i
and thus, the following form of solution must be assumed
and substituted in Eq. (34) for each eigenvalue.

x � eλt

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tp11(t) + p21(t)
tp12(t) + p22(t)
tp13(t) + p23(t)
tp14(t) + p24(t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (37)

As observed in Sec 4.1.2, equating the coefficients of t and
then eisωt yields Eq. (35), which has been solved before for
c11s , c12s ,c13s and c14s to get the solution of the form of Eq. (11).
Comparing the coefficients of t0 and then eisωt leads to

c11s + c21s (λ + isω) � c23s , (38a)

c12s + c22s (λ + isω) � c24s , (38b)

c13s + c23s (λ + isω) � As + Bs−1 + Bs+1, (38c)

c14s + c24s (λ + isω) � Cs + Ds−1 + Ds+1, (38d)

where As � [
c21s (−3k + p1)

/
2
]
+
[(
k − p1

/
2
)
c22s
]
,

Bs � [(
c21s − c22s

)
p2
/
4
]
, Cs � [

c21s (5k − p1)
/
2
]
+[(−2k + 3p1

/
2
)
c22s
]
and Ds � [(

3c22s − c21s
)
p2
/
4
]
. c23s

from Eq. (38a) and c24s from Eq. (38b) are substituted in
Eqs. (38c) and (38d) which are then solved to determine
the second independent eigenvector for each eigenvalue
(0.455552i and −0.455552i). Subsequently, the STM and
the L–F transformation can be constructed. Once again, an
excellent agreement between x computed using x � Q(t)z
and x obtained by direct numerical integration of Eq. (34) is
observed and shown in Fig. 9. The STM for the adjoint sys-
tem to Eq. (34) can be determined following a similar process
and Q−1(t) can be computed. Figure 10 shows the elements
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Fig. 10 The elements corresponding to the first column of L–F trans-
formation and its inverse for the critical case

corresponding to the first column L–F transformation and its
inverse.

5 Application: bifurcation study

The present section demonstrates one of the applications of
L–F transformation by performing the bifurcation analysis of
a nonlinear time-periodic system using the center manifold
reduction theory [20]. As an example, a damped Mathieu
equation with cubic nonlinearity is considered.

{
ẋ1
ẋ2

}
�
[

0 1
−(a + b cosω t) −d

]{
x1
x2

}
+

{
0

−εx31

}
, (39)

For a � 3.9177873446, b � 4, d � 0.31623 and
ω � 2, Floquet multipliers are found to be 0.37029109302
and 0.99999999991, implying that the systemundergoes fold
bifurcation and gives rise to a T periodic solution. Following
the process given in Sect. 3, first �(t),R, Q(t) and Q−1(t)
are computed and then using the transformation x � Q(t)z,
Eq. (39) is reduced to

(40)

{
ż1
ż2

}
�
[

−0.155676 0.0154273
1.62014 −0.160554

]

︸ ︷︷ ︸
R

{
z1
z2

}

+Q−1(t)

{
0

−ε (Q11z1 + Q12z2)3

}
.

An application of modal transformation, z � My to the
above system yields,

(41)
{
ẏ1
ẏ2

}
�
[−0.31623 0

0 0

]{
y1
y2

}

+M−1Q−1(t)

{
0

−ε (Q11 (M11y1 + M12y2) + Q12 (M21y1 + M22y2))
3

}
.

Due to the periodic nature of Q(t) and Q−1(t), the coef-
ficients of the nonlinear part of the above equation can be
expanded using the Fourier expansion. Thus, Eq. (41) can be
rewritten as
{
ẏ1
ẏ2

}

�
[

−0.31623 0
0 0

]{
y1
y2

}

+

{
f11(t)y31 + f12(t)y21 y2 + f13(t)y1y22 + f14(t)y32
f21(t)y31 + f22(t)y21 y2 + f23(t)y1y22 + f24(t)y32

}
,

(42)

where fi j (t) � fi j (t + T ); i � 1, 2 and j � 1, ..., 4.
One of the eigenvalues is critical (λ2 � 0) and thus, the
center manifold theorem [20] can be applied to reduce the
dimension of Eq. (42) to one.

According to the theorem, the centermanifold relation has
the form

y1 � h(t)y32 , (43)

where h(t) is a periodic coefficient with period T . Substitu-
tion of Eq. (43) into ẏ1 equation of Eq. (42) leads to

dh(t)

dt
+ 0.31623h(t) � f14(t). (44)

h(t) can be determinedby solving the above differential equa-
tion. Substituting the finite Fourier expansion of the form

h(t) � a0
2

+
N1∑
n�1

anCos nωt + bnSin nωt , (45)

in Eq. (44) and then equating like terms on both sides of
the equation yields a set of algebraic equations in terms of
unknown constants a0, an and bn of the center manifold rela-
tion. Once constants are known, substitution of relation (43)
in Eq. (42) decouples the critical state from the stable one and
the bifurcation analysis can be performed by investigating the
one-dimension system in the center manifold. Keeping only
the cubic terms leads to

ẏ2 � f24(t)y
3
2 . (46)
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Fig. 11 Phase plane plot for the nonlinear Mathieu equation given by
Eq. (39)

According to the center manifold theory, the reduced
equation, Eq. (46) is dynamically equivalent to the orig-
inal system, Eq. (39). Therefore, if the above equation is
asymptotically stable (unstable), the original system is also
asymptotically stable (unstable). Since the coefficient of the
right-hand side of Eq. (46) is periodic, the constant term,(
a0
/
2
)
in the Fourier series of f24(t) determines the stability.

If
(
a0
/
2
)
is negative, the periodic solution is asymptoti-

cally stable, otherwise unstable. It is found that in Eq. (46),(
a0
/
2
) � 0.0109 and therefore, the resulting T periodic

solution is unstable. Figure 11 shows the phase plane plot
and the Poincaré map of Eq. (39). It can be observed that
the Poincaré points corresponding to the T periodic orbit
are drifting away, representing the unstable behavior of the
solution.

6 Discussion and conclusions

The paper presents a simple approach for the computation
of Lyapunov–Floquet (L–F) transformations. These transfor-
mations replace a set of ordinary differential equations with
time-periodic coefficients (so-called time-periodic systems)
with dynamically equivalent systems whose linear parts are
time-invariant. As a result, the reduced equations can be ana-
lyzed using techniques used for time-invariant systems.

In the proposed approach, the solution of a time-periodic
system, ẋ � A(t)x ; A(t + T )� A(t) is assumed as x �
eλtp1(t) where λ is the characteristic exponent, and p1(t) is a

periodic vector function with principal period T . With p1(t)
expressed in the complex form of finite Fourier series, the
substitution of the assumed solution in the time-periodic sys-
tem leads to an eigenvalue problem K(•)c1� 0 where K(•)

consist of system parameters, λ and the parametric excita-
tion frequency and c1 is a vector containing the unknown
coefficients of the Fourier series of p1(t). Eigenvalues can
be found by setting Det[K(•)] � 0 and their number depend
upon the dimension of the system, ẋ � A(t)x and the number
of terms in the Fourier series of p1(t). The number of eigen-
values should be same as the dimension of the time-periodic
system and can be determined using the constraint−π

/
T <

Im[λ] ≤ π
/
T . Once eigenvalues are known, correspond-

ing eigenvectors, c1 can be determined from K(•)c1� 0
and the general solution and subsequently, the state tran-
sition matrix, �(t) can be constructed. It must be noted
that all linearly independent solutions forming the general
solution have the form x � eλtp1(t) only when the eigen-
values are distinct. If eigenvalue λ has algebraic multiplicity
	, geometric multiplicity 
 and 	 > 
, then, there are 


linearly independent solutions of the form x � eλtp1(t). To
get the remaining (	 − 
) linearly independent solutions,
x � eλt

[
tp1(t) + p2(t)

]
must be assumed and substituted in

the system to yield K(•)c1� 0 and K(•)c2� c1. With c1

already known, c2 can be obtained from the second equation
and subsequently, an additionalϒ linearly independent solu-
tions of the form x � eλt

[
tp1(t) + p2(t)

]
can be generated.

This process continues until there are 	 linearly independent
solutions corresponding to eigenvalue, λ. After determining
the solutions for all eigenvalues, the general solution can be
found and subsequently rearranged in the form of Eq. (4)
to obtain �(t). Then, Lyapunov–Floquet theorem [9] can be
applied to compute time-invariant matrix C(or R) and L–F
transformations L(t) (or Q(t)). The inverse of L–F transfor-
mations required for the analysis of nonlinear time-periodic
systems can be determined by defining the adjoint system to
ẋ � A(t)x.

The proposed approach is utilized to investigate Math-
ieu equation and a double inverted pendulum subjected to a
time-periodic force. Stability diagrams are plotted for large
values of system parameters and are found to be in excellent
agreement with the numerically obtained diagrams. These
diagrams were constructed to determine the values of system
parameters for stable, unstable and critical cases. In the case
of Mathieu equation, L–F transformations and their inverses
are generated for stable, unstable and critical cases whereas,
for the double inverted pendulum, L–F transformation and
its inverse are constructed only for the critical case. The
solutions obtained through L–F transformations matched the
numerically obtained solutions for both time-periodic sys-
tems. A bifurcation study is also performed for a nonlinear
Mathieu equation using L–F transformation and center man-
ifold theory to show the efficacy of L–F transformations. The
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behavior predicted by the reduced scalar equation matched
with that of the original system.

In summary, a simple technique for the computation of
L–F transformations is presented in the paper. The approach
is applicable to general time-periodic systems and through
the application of L–F transformations, techniques used
for time-invariant systems can be applied to general time-
periodic systems.
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