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Abstract
In the current era, renewable energy has emerged as a vital alternative to fossil fuels, driven by the repercussions of global
warming and the depleting supply of fossil fuels. Among these alternative energies, wind energy is particularly noteworthy
due to its minimal greenhouse gas emissions, cost-effectiveness, and widespread availability. Nonetheless, achieving efficient
extraction of wind energy requires precise control of wind turbine operations to optimize power generation. This involves the
utilization of different maximum power point tracking (MPPT) algorithms. This review paper extensively examines a variety
of MPPT algorithms, classifying them into four main categories: indirect power control (IPC) algorithm, direct power control
(DPC) algorithm, hybrid algorithm, and intelligent algorithm control techniques. The review explores the performance of
conventional IPC and DPC algorithms, discussing and comparing them with modified conventional methods. Additionally,
the hybrid approach, combining multiple MPPT algorithms to leverage benefits while mitigating drawbacks, is examined.
Intelligent MPPT algorithms are discussed both independently and in hybrid configurations. The paper introduces a hybrid
fractional-order intelligent MPPT algorithm, offering a detailed discussion and comparison with other intelligent algorithms.
A meticulous comparison is conducted based on key parameters such as adaptability, computational complexity, efficiency,
oscillation, overall expense, robustness, speed of convergence, storage, time response, wind speed measurement, and wind
turbine characteristics. Acknowledging the exponential growth in wind energy systems and their increasing significance, this
review paper aims to be an indispensable and technically advanced reference for future studies in the dynamic domain of
MPPT algorithm control techniques for wind energy systems.
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1 Introduction

The imperative shift toward renewable energy in the elec-
tric power generation sector is underscored by the gradual
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depletion of fossil fuels and the escalating threat of global
warming. Renewable energy plays a pivotal role in address-
ing one of the most pressing challenges of our time: global
warming. As societies worldwide confront the escalating
threats posed by climate change, the transition to renewable
energy sources emerges as a critical pathway toward sustain-
ability and environmental preservation.At its core, renewable
energy encompasses energy derived from naturally replen-
ishing sources, such as sunlight, wind, water, and geothermal
heat. Unlike fossil fuels, which emit greenhouse gases upon
combustion, renewable energy technologies offer cleaner and
more sustainable alternatives that significantly reduce carbon
emissions [1, 2]. Among these renewable energy sources,
wind energy stands out as a particularly promising solu-
tion for mitigating global warming. Wind power harnesses
the kinetic energy generated by the natural movement of air
masses, converting it into electricity through turbines. This
process is both environmental friendly and sustainable, as it
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produces no greenhouse gas emissions or air pollutants dur-
ing electricity generation. By displacing conventional fossil
fuel-based power generation, wind energy plays a crucial
role in reducing the carbon footprint of electricity produc-
tion and mitigating the adverse impacts of climate change.
The importance of wind energy in combating global warm-
ing lies in its ability to provide a scalable and cost-effective
solution for transitioning toward a low-carbon energy future.
Wind power offers several key advantages over traditional
energy sources: abundant resource, zero emissions, cost com-
petitiveness, job creation and economic growth, and grid
integration and energy storage [3, 4].

The production ofwind energyhas experienced significant
growth in the past two decades, propelled by the increasing
demand for electrical energy. During the 21st World Wind
Energy Conference (WWEC2023) held in Hobart, Australia,
on November 7, 2023, the World Wind Energy Association
(WWEA) unveiled its Semi-annual Report. This report offers
an in-depth summary of the present worldwide state of the
wind energy sector [5]. The report, based on a survey con-
ducted among WWEA’s member associations worldwide,
offers estimates of new wind power installations in the first
6 months of 2023 and predicts figures for the year’s end. As
of the report’s publication, there has been a remarkable 38%
increase in new installations in the first half of 2023 com-
pared to 2022, with an impressive addition of 100 Gigawatts
between June 2022 and June 2023, bringing the total to 976
GW. The annual growth rate is reported at 11.4%, and at least
an additional 100 Gigawatt of new installations is anticipated
by the end of 2023, aiming for a total capacity of 1 mil-
lionMegawatts [5–7]. Figure1 illustrates the global installed
wind power capacity inMegawatts on a yearly basis, project-
ing a value of approximately 1.7millionMegawatts by 2030.
According to calculations from [8], the wind turbine energy
sector is anticipated to contribute around 795.311 billion dol-
lars in the year 2030. Figure2 depicts the annual addition of
wind power from 2011 to 2023.

The significant expansion highlighted here emphasizes the
growing importance of the wind energy market. The increas-
ing adoption of wind energy not only meets the pressing
demand for sustainable energy sources, but also indicates
a favorable shift toward a more environmentally aware and
robust energy landscape. As the world steadily moves toward
cleaner energy options, the role of wind energy in the global
power generation mix is anticipated to become even more
substantial in the future [5].

Wind turbine systems, ranging from simple designs to
more intricate configurations, face inherent challenges asso-
ciated with climate fluctuations and environmental factors.
This emphasizes the crucial role of integrated control sys-
tems, which are instrumental in ensuring the effective func-
tioning of wind turbines. These systems play an essential role
in providing stability for grid integration and optimizing the

utilization of wind energy for maximum power generation
[9]. The turbine rotor, gearbox, generator, transformer, and
power electronics form an interconnected system within a
wind power generation setup. Working collaboratively, these
components capture wind energy, initially converting it into
mechanical energy and then transforming it into electrical
energy through the generator. The resulting electrical energy
is then efficiently transmitted to the utility grid through the
transformer and network [4, 10].

Wind turbines are categorized into variable-speed wind
turbines (VSWT) and fixed-speed wind turbines (FSWT)
based on their rotational speed. FSWTposes significant chal-
lenges, including considerable mechanical stress, a restricted
operational speed range, and its requirement for multistage
gears. In contrast, VSWTs are engineered to address these
issues. By aligning with the natural variability of the wind,
VSWTs can optimize power harvesting at various wind
speeds, effectively reducing mechanical stress and limiting
power fluctuations. The exclusive capacity to extract maxi-
mum energy is a unique feature of VSWT [4, 7].

Various electrical generators are employed in wind energy
conversion systems (WECSs) designed for VSWT. Among
these options, a cost-effective and reliable choice is the
utilization of squirrel-cage induction generators (SCIGs),
suitable for applications featuring either fixed or vari-
able speeds. Despite their straightforward design, SCIGs
encounter limitations, including constrained grid fault toler-
ance (GFT), utility grid’s reactive power consumption, and
notwell-suited for gearless operationwithin amultiport setup
[11]. Conversely, doubly-fed induction generators (DFIGs)
and synchronous generators (SGs) find extensive use in
WECS configurations. DFIGs, equipped with partial-scale
power converters, remain economically viable but require
multiple-stage gearboxes and excitation currents, making
them well-suited for higher-power wind turbines [7, 12].
In contrast, the increasing favorability of permanent mag-
net synchronous generators (PMSGs) can be attributed to
their heightened efficiency, reliability, improved FRT capa-
bility, and higher power density. These features, coupledwith
superior performance, make PMSGs particularly attractive
for small- and medium-scale wind turbines [4].

The usage of variable-speed wind turbines is continually
expanding, driven by their capability to adapt the rotor speed
based on changes in wind speed. The adaptive mechanism
allows these turbines to operate at peak efficiency, optimizing
the power coefficient over a broad spectrum of wind speeds.
Among various electrical generators, DFIG distinguishes
itself as a top choice due to its favorable techno-economic
characteristics. Widely employed in wind energy systems,
DFIGs offer variable-speed operation, allowing for a consid-
erable range (approximately ± 30% of synchronous speed)
and facilitating the maximization of wind power extraction.
Notably, they provide reactive power compensation through
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Fig. 1 Global installed wind power capacity with projected growth for 2030

Fig. 2 Annually wind power
additions from 2011 and 2023
[5]

power converters that are sized to transmit only a fraction
of the nominal power (25–30%), effectively reducing losses
in power electronics. Moreover, DFIGs prove to be appli-
cable for high-power scenarios, solidifying their status as a
preferred generator in wind energy systems [13, 14].

A wind turbine achieves optimal energy extraction from
the wind when its rotor rotates at a speed corresponding to
the velocity of the wind. The rotor speed adjusts to match the
wind speed, allowing the system to operate at different fre-
quencies [15]. To enhance power extraction from the wind,
irrespective of the generator type employed, various varieties
of maximum power point tracking (MPPT) algorithms are
utilized. Several research studies have investigated a range
ofMPPTalgorithms using diverse controlmethods [16]. This
review of research explores multiple MPPT algorithms, tak-
ing into account different control strategies and conducting

varied comparisons to provide a comprehensive understand-
ing.

1.1 Modeling ofWECS

1.1.1 Wind turbine

Thewind turbine adeptly captures and transforms a portion of
the wind’s kinetic energy into mechanical power. The math-
ematical representation of wind kinetic energy is captured by
Eq.1, while the equations for mechanical power and torque
are articulated in Eqs. 2 and 3, respectively. These formu-
lations are in accordance with the insights presented in the
references [17, 18].

Pk = 1

2
ρAV 3 (1)
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Pm = Cp(λ, β)Pk = 1

2
Cp(λ, β)ρAV 3 (2)

Tt = Pm
ωt

= 1

2ωt
Cp(λ, β)ρAV 3 (3)

In the provided context, variables ρ, A, V , Cp(λ, β) and
ωt denote air density, turbine swept area, πR2, wind veloc-
ity, wind turbine power coefficient and wind turbine speed,
respectively.

The power coefficient for each wind turbine is individu-
alized, serving as a measure of its efficiency and expressed
as [18, 19]:

Cp(λ, β) = a1
(a2
A

− a3β − a4
)
exp−(

a5
A ) +a6λ (4)

where a1, a2, a3, a4a, a5 and a6 are constants which are
unique for each wind turbine blade and

1

A
= 1

λ + 0.08β
− 0.035

1 + β3 (5)

With

λ = ωtR

V
(6)

The coupling between the windmill’s turbine shaft and the
electrical generator shaft includes a gearbox, which incorpo-
rates a multiplication factor denoted as N. Equations7 and
8 express the correlations between mechanical torque and
generator torque, as well as wind turbine speed and genera-
tor speed, respectively [16, 20].

Tg = Tt
N

(7)

ωt = ωg

N
(8)

The combined inertia of a system, encompassing both the
wind turbine and the generator, can be represented according
to [19, 21, 22]:

J = Jt
N 2 + Jg (9)

Consequently, the mechanical shaft model is:

J
d

dt
ωg = Tg − Tem − f ωg (10)

where the symbols J , Jg, Jt , Tt , Tem, and f ω correspond to
total inertia, generator inertia, wind turbine inertia, mechan-
ical torque, electromagnetic torque, and viscous friction
torque, respectively.

1.1.2 Generator modeling

Considering a DFIG type, its mathematical modeling within
an arbitrary d-q reference frame can be expressed through
Eqs. (11) and (12) [14, 19, 23, 24].

⎧
⎪⎪⎨
⎪⎪⎩

vsd = rsisd + dψsd

dt − ωsψsq

vsq = rsisq + dψsq

dt + ωsψsd

(11)

⎧⎪⎪⎨
⎪⎪⎩

vrd = rr ird + dψrd

dt − (ωs − pωm)ψrq

vrq = rr irq + dψrq

dt + (ωs − pωm)ψrd

(12)

The expression for the electromagnetic torque in theDFIG
is formulated using the stator flux linkages and the rotor cur-
rents, as outlined in Eq. (13) [19, 23]:

Tem = 3

2
p
Lm

Ls
(ψsq ird − ψsd irq) (13)

Given the presumption that the flux is exclusively oriented
along the d-axis, Eq. (14) articulates the electromagnetic
torque within the dq coordinate system [24].

Tem = −3

2
p
Lm

Ls
ψsd irq (14)

The expression for the stator currents in the dq coordinate
system is conveyed through Eq. (15), as documented in the
reference [24].

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

isd = ψsd

Ls
− Lm

Ls
ird

isq = − Lm

Ls
irq

(15)

1.2 Overview of MPPT control methods inWECSs

Thewind turbine plays a key role in converting kinetic energy
into mechanical energy and subsequently transforming it
into electrical energy. This process requires various converter
types to seamlessly integrate the generated electrical energy
with the grid. Essential for comprehensive control, these
converters operate on both the generator side and grid side.
This dual control ensures that the WECS can precisely meet
power grid requirements, adapting to varying wind speeds.
To obtain the maximum possible power from WECS, a con-
troller is indispensable, incorporating an algorithm forMPPT
[21, 25].
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Fig. 3 Various operating sections in variable-speed wind systems [29]

The reliability ofwindpower is contingent upon the unpre-
dictable shifts in weather and the capricious nature of wind
velocities. Therefore, conducting a thorough analysis ofwind
characteristics is vital to establish operational parameters for
effective integration into the grid, particularly in response
to variable wind speeds [26]. This procedure allows for the
exact adjustment of wind turbines, enabling them to cap-
ture available wind energy within precisely defined wind
speed ranges. The range can be defined between minimum
speed (Vmin) and maximum speed (Vmax), as illustrated in
Fig. 3. The operational timeline of the flexible WECS is sub-
sequently categorized into four distinct sections, depending
onwind speed values. This classification is visually presented
in Fig. 3 [27, 28].

Each section of Fig. 3 is described below:

• Section 1: During the parking mode (Vw < Vmin), char-
acterized by low wind speeds, the machine is unable
to generate electric power and remains in a non-power-
producing state.

• Section 2: This section is denoted as the MPPT control
mode (Vmin < Vw < Vrated), employing MPPT algo-
rithms to effectively capture the utmost available power
from wind energy. The MPPT algorithm dynamically
adjusts to the optimal power point corresponding to var-
ious wind speeds, all the while keeping the blade pitch
angle consistently at zero.

• Section 3: During the pitch control mode (Vrated < Vw <

Vmax),Whenwind speed surpasses the designated thresh-
old, pitch control is engaged to manage the generated
electric power, maintaining it within the predetermined
nominal value.

• Section 4: In the parking mode, characterized by an
inability to maintain reliable performance, pitch angle
is optimized to its maximum, and a braking system is
utilized to securely stop the wind turbine’s operation.

The relationship between λopt and Cpmax is depicted in
Fig. 4, providing insights into the concept ofmaximumpower
point (MPP) forWECS [30]. This paper zeroes in on this par-
ticular domain where the MPPT control algorithm becomes
applicable.

To effectively track and harness the maximum power
possible from wind energy, the incorporation of an MPPT
algorithm method is indispensable. These MPPT control
algorithms can be classified into different groups depending
on the information required to design the control algorithm
[31, 32].

• MPPTalgorithms that fall into this category require a fun-
damental understandingofwind turbine characteristics or
rely on wind speed measurements. MPPT control tech-
niques like tip speed ratiomethod, power signal feedback
method, and optimal torque control method are included
in this group [33].

• In the second category, information about wind turbine
characteristics is considered unnecessary, and the system
operates independently of wind speed measurements.
MPPT control techniques, like Perturb and Observe
method, Optimal Relation-Basedmethod, and Incremen-
tal Conductancemethod, are categorizedwithin this class
[34].

• In the third category, a hybrid control technique is
applied, combining two or more MPPT control algo-
rithms. This hybrid approach utilizes the strengths of
each control algorithm while addressing their respec-
tive limitations [35]. Different hybrid techniques are
explored in this review paper, including hybrid conven-
tional algorithms, hybrid intelligent algorithms, hybrid
conventional-intelligent algorithms, andhybrid fractional-
order-intelligent algorithms.

• In the final category are intelligent MPPT algorithms,
which operate independently of wind turbine character-
istics. Depending on the specific algorithm, these may or
may not requirewind speedmeasurements. This category
encompasses control methods, including algorithms like
neural networks (NN), fuzzy logic controllers (FLCs),
and other intelligent algorithms [36].

Moreover, a diverse array of hybrid control algorithms
has been developed, seamlessly integrating MPPT algo-
rithms with optimization techniques to effectively extract the
maximum power possible fromWECS. Furthermore, a note-
worthy approach involves the application of fractional-order
intelligent algorithms, combining fractional-order control
techniques with advanced intelligent algorithms. This inno-
vative combination serves to elevate the MPPT capabilities
of a wind power system. By integrating fractional-order con-
trol techniques with intelligent algorithms, such as artificial
neural networks or evolutionary algorithms, this hybrid con-
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Fig. 4 MPP for different wind
speeds at optimal value of λopt
and Cpmax [30]

trol system excels in adaptively optimizing the extraction of
power from the wind resources. This dual-pronged strategy
not only enhances the overall performance of the system but
also ensures optimal power output in diverse environmental
conditions, establishing it as a resilient and efficient solution
for maximizing the conversion of wind energy [33].

Several review articles provide in-depth insights into
MPPT control techniques specifically designed for WECS.
In this review paper, we examine diverse control algorithms,
spanning both historical and contemporary methods, used
to track and optimize power output in WECS. Additionally,
we explore intelligent and hybrid variants of these control
algorithms as documented in existing literature. These con-
trol techniques are categorized based on direct power control
and indirect power control, as well as hybrid and intelligent
MPPT control algorithms. We have conducted comparisons,
considering features such as adaptability, computational
complexity, efficiency, oscillation, overall expenses, robust-
ness, speed of convergence, storage, time response, as well
as factors like the requirement of wind speed measurement
and wind turbine’s characteristics.

The following sections in this review paper are structured
as: Section 2 provides an in-depth exploration of the classifi-
cation and detailed description of MPPT control algorithms,
along with a compilation of references related to these con-
trol methods. The discussion of our findings is presented in
Sect. 3, and Sect. 4 delves into current trends and future
prospects. Finally, Sect. 5 concludes the paper with a brief
summary of our findings.

2 MPPT control algorithms for WECSs

Wind energy availability experiences continuous fluctuations
due to varying wind speeds throughout the day. The effec-

tiveness of WECS relies heavily on the accuracy of MPPT
control techniques, which optimally traces maximum power
points, irrespective of the generator type used in the system.
The overarching objective of MPPT is to enhance WECS
efficiency by optimizing the extraction of maximum possi-
ble power from wind energy resources [37].

MPPT methods for WECS fall into two main cate-
gories: conventional and intelligent algorithms.Conventional
approaches comprise indirect power control (IPC) tech-
niques, involving the tracking of mechanical power, and
direct power control (DPC) techniques, concentrating on
maximizing electrical power output [30]. Intelligent algo-
rithms utilize artificial intelligence (AI) or computational
intelligence techniques [38]. MPPT methods are broadly
classified as DPC, IPC, hybrid and intelligent control algo-
rithms, as illustrated in Fig. 5. Algorithms employed by IPC
include: tip speed ratio (TSR)method, power signal feedback
(PSF) method, and optimal torque control (OTC) method,
whereas perturb and observe (P&O) method, incremen-
tal conductance (INC) method, and optimal relation-based
(ORB) method are included under DPC. The hybrid con-
trol scheme cleverly combines multiple MPPT algorithms to
overcome inherent limitations in individual categories. Intel-
ligent algorithms, crucial for addressing complex problems,
have become indispensable in WECS applications by elim-
inating the need for precise mathematical parameters in the
system [15].

Some control techniques necessitate accurate turbine
parameters and wind speed measurements, while others dis-
pense with the need for direct wind speed measurements, but
require the use of estimators. Recent advancements have led
to control techniques that no longer require the measurement
of any physical parameter. Instead, they rely on conventional
algorithms enhanced in performance through the integration
of intelligent control algorithms. This paradigm shift marks
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Fig. 5 Different MPPT control algorithm classifications

Fig. 6 TSR MPPT algorithm [38]

a progressive leap toward more efficient and adaptive wind
energy systems [37, 39].

2.1 Conventional indirect power control method

2.1.1 Tip speed ratio method

In the pursuit of optimizing power extraction, the tip speed
ratio (TSR) method, which represents the ratio of turbine
speed to wind speed, is specifically crafted to uphold this
value at its optimal level. This entails the quest for optimal
rotor speed (ω∗) by measuring or estimating both wind speed
and turbine speed [38, 40]. A profound comprehension of
system parameters is indispensable in this process, as illus-
trated in Fig. 6. The implementation of the TSR algorithm
significantly influences the effectiveness of regulating the
optimal rotor speed under various environmental conditions.
This effectiveness can be attributed to its characteristics of
simplicity, high efficiency, and swift responsiveness, as dis-
cussed in [36].

Wind speed can be determined either through direct mea-
surement using a wind speed sensor or an estimationmethod.
The former involves a mechanical sensor, but this method
is associated with drawbacks such as high initial costs,
increased maintenance expenses, and diminished perfor-

Fig. 7 OTC MPPT algorithm [30]

mance [10, 30]. The latter approach employs a wind speed
estimation algorithm, and depending on the application, the
estimation may be based on mathematical modeling or intel-
ligent controllers, offering improved efficiency, fast speed,
and simplicity [14, 41].

2.1.2 Optimal torque control method

The optimized torque graph is intricately linked to the con-
trol of generator torque within the optimal torque control
(OTC)method, visually demonstrated across a range of wind
speeds in Fig. 7 [30]. The implementation of this methodol-
ogy not only yields significant benefits, including heightened
efficiency, increased flexibility, and simplified processes, but
also ensures a consistent regulation of torque [42]. How-
ever, despite these advantages, its susceptibility to climatic
fluctuations emphasizes the importance of thoroughly under-
standing the specific attributes of the wind turbine. This
encompasses assessing its adaptability to changing envi-
ronmental conditions, ensuring a resilient and dependable
performance in various circumstances. Therefore, the effec-
tive application of the OTC control technique requires a
detailed understanding of wind turbine characteristics and
adept management of external factors that could influence
its performance [32, 38, 43].

2.1.3 Power signal feedback method

The power signal feedback (PSF) method necessitates both
the data for themaximum power curve and a power reference
to function optimally. Typically, determining the maximum
power curve for each wind turbine involves offline experi-
ments or software simulations [44]. To establish the reference
power, one can either use recorded maximum power data
or apply the mathematical calculation of mechanical power,
with wind speed or rotor speed as input parameters [37].
Despite their robustness and cost-effectiveness, both theOTC
and PSF control methods encounter challenges in effectively
tracing the MPP when the wind speed is low, particularly in
large-inertia wind turbines.While the PSF andOTCmethods
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Fig. 8 PSF MPPT algorithm [30]

eliminate the need for mechanical sensors, they still require
precise knowledge of thewind turbine’s parameters. The con-
trol strategy for thePSF is depicted inFig. 8 [30, 43] (Table 1).

2.2 Conventional direct power control method

2.2.1 Perturb and observe method

The perturb and observe (P&O) utilizes mathematical opti-
mization to search theMPPof a system.Theprinciple ofP&O
control techniques involves perturbing the control variable in
fixed step-sizes, which is the rotational speed of the genera-
tor in case of WECS, and observing the expected electrical
output power [47]. The current operating point determines
the direction of the perturbation, regardless of whether it is
situated on the left or right side of the graph of mechanical
power versus generator speed. If the current working point
is to the left of optimal value, the search direction is to the
right, moving closer to the MPP until the slope of the power-
speed curve is zero, vice versa if the current working point
is on the opposite side as illustrated in Fig. 9 [30, 37, 39].
As this method does not require wind turbine characteris-

Fig. 9 Operation concept of P&O [38]

tics and wind speed measurements, it offers advantages over
other control techniques [48].

The conventional perturb and observe (CPO) control tech-
nique employs a fixed step size to perturb the control variable
and observe the electrical power result. Consequently, CPO
struggles to attain the MPP when wind speed fluctuates, as
depicted in Fig. 10 [49]. When the chosen step size is large,
the algorithm quickly tracks the MPP, but oscillations occur
when it reaches the MPP. Conversely, using a small step size
improves the system’s effectiveness, but reaching the MPP
takes a considerable amount of time. This indicates that the
control method could face challenges when attempting to
track the MPP in the presence of rapidly fluctuating wind
conditions [33].

Moreover, selecting optimal step size presents a primary
challenge in the P&O method. An incorrect step size may
lead to inaccurate tracking directions, potentially causing
the algorithm to diverge from the peak power. Therefore,
if the algorithm’s step size is not chosen correctly, conse-
quences such as power loss, oscillations, reduced efficiency,
and delayed control response may ensue [15, 38]. Figures11

Table 1 Comparison of the
characteristics of conventional
indirect power control MPPT
algorithms [30, 38, 42, 44–46]

MPPT algorithm features TSR OTC PSF

Adaptability Average Average Average

Computational complexity Minimal Minimal Minimal

Efficiency Superior Intermediate Superior

Oscillation Not Present Not Present Not Present

Overall expense Expensive Average Average

Robustness Not robust Relatively robust Relatively robust

Speed of convergence Fast Fast Fast

Storage Not available Available Not available

Time response Intermediate Intermediate Intermediate

Wind speed measurement Present Absent Absent

Wind turbine characteristic Not mandatory mandatory mMandatory
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Fig. 10 When P&O is losing track under wind speed fluctuating [38]

Fig. 11 P&O flowchart [38]

and 12 illustrate the flowchart and block diagram of the P&O
algorithm, respectively.

2.2.2 Incremental conductance method

The incremental conductance (INC) control technique stands
out for its ability to eliminate the necessity for sensors and
foreknowledge of wind turbine (WT) parameters, resulting
in a notable improvement in both reliability and efficiency.
By solely observing the power output generated by the con-
verter and calculating the slopes of the power variations, this
method determines both theMPP and perturbation directions
[50]. Adaptive INC control method goes a step further in

Fig. 12 P&O algorithm [38]

Fig. 13 Modified INC algorithm flowchart [52]

refining the dynamic performance and convergence speed of
WECS. It is important to underscore, however, that the scope
of viable step sizes is restricted and relies on the parameters
of a generator [42, 43, 51].

The fundamental concept behind the basic INC method
lies in the slope of the power-voltage characteristic equation,
where the slope becomes zero precisely at theMPP. The slope
equation is [52]:

idc
vdc

+ didc
dvdc

= 0 (16)

This method track MPP based on the rectifier output as
Eq. 16 independent of weather conditions like speed or direc-
tion of the wind. The modified INC control method uses
adaptive step size for vdc as depicted in Fig. 13 to enhance
the performance of tracking ability.

In various scholarly publications, researchers apply the
dynamic INCcontrol technique to forecast the ideal alteration
step size, enhance the disturbance direction, and precisely
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Fig. 14 MPPT algorithm of INC [30]

follow the MPP [30, 38]. This adaptive feature enhances
the adaptability and efficiency of the INC algorithm in
diverse operational scenarios. Furthermore, the adaptabil-
ity of perturbation step sizes becomes particularly critical
in optimizing the performance of WECS under varying con-
ditions. The control technique of the INC is visually depicted
in Fig. 14, providing a comprehensive overview of its oper-
ational structure and highlighting its integration within the
broader context of wind energy systems.

2.2.3 Optimal relation-based method

In the domain of optimal relation-based (ORB) control
technique, the pursuit of MPPT is accomplished through
the optimization of relationships among various system
variables. These encompass power and rotor speed, elec-
tromagnetic torque and output power, and DC-based power
systems [53, 54]. The allure ofORBcontrol lies in its straight-
forward implementation, impressive dynamic response, and
independence from wind speed sensors. Notably, it tends
to generate a smoother output power profile in compari-
son with alternative strategies. However, it is imperative to
acknowledge a key limitation of ORB control-its reliance on
system-specific pre-knowledge. This prerequisite can exhibit
variability across different systems and evolve as the sys-
tem ages. This demand for prior knowledge introduces a
potential challenge, particularly in scenarios where accurate
information might be difficult to obtain or subject to change.
Moreover, it is worth noting that the application of ORB con-
trol may require a considerable amount of storage, a factor
that should be considered in the design and implementation
stages [30, 54]. Figure15 shows the algorithm of ORB.

Table 2 presents a comparison of the characteristics of
various DPC MPPT algorithms.

2.3 Modified conventional MPPT algorithms

The MPPT algorithm methods mentioned above, which are
of a traditional nature, have successfully monitored the MPP

Fig. 15 MPPT algorithm Of ORB [30]

of WECS. However, each method has its own drawbacks. As
a result, developing a an MPPT algorithm for a precise MPP
monitoring remains a significant challenge. In an attempt to
tackle these challenges, certain researchers have made modi-
fications to the conventional methods [55]. Table 3 discusses
the conventional MPPT algorithms and their modified coun-
terparts.

2.4 Intelligent MPPT algorithms

In WECS, various intelligent control methods, including
fuzzy logic control, neural networks, and other sophisticated
methods, havebeen employed forMPPTapplications [14, 61,
62]. Additionally, different optimization strategies have been
utilized in the MPPT of WECS [63–67]. The integration of
these intelligent algorithms and optimization methods aims
to address the inherent limitations in conventional MPPT
algorithms, ultimately enhancing the overall system perfor-
mance. Intelligent algorithms have emerged as a pivotal tool,
providing a significant advantage by eliminating the need
for precise mathematical parameters [56]. In this paper, we
categorize Intelligent MPPT algorithms into four groups:
fuzzy logic controller (FLC), neural networks (NNs), intel-
ligent sensorless techniques, and multi-variable perturb and
observe (MVPO) MPPT algorithms, as illustrated in Fig. 16
[68, 69]. Subsequently, we provide a concise overview of
each category.

2.4.1 Fuzzy logic controller method

Fuzzy logic controllers (FLCs) are applied in MPPT algo-
rithms for WECS to attain swift responses and alleviate
oscillations around the MPP. This proves advantageous in
scenarios where precise mathematical modeling of WECS
is challenging. However, the effectiveness of FLCs relies on
the designer’s expertise in determining factors such as the
appropriate error surface, membership function levels, and
the selection of a rule-based layer, which may demand a
significant amount of memory space [70–72]. The funda-
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Table 2 Comparison of the
characteristics of conventional
direct power control MPPT
algorithms [30, 38, 44–46, 52]

MPPT algorithm features CPO INC ORB

Adaptability Average Average Average

Computational complexity Easy Easy Easy

Efficiency Minimal Minimal Intermediate

Oscillation Present Present Not present

Overall expense Average Average Expensive

Robustness Relatively robust Relatively robust Not robust

Speed of convergence Sluggish Sluggish Intermediate

Storage Not mandatory Not mandatory Not mandatory

Time response Relatively fast Intermediate Intermediate

Wind speed measurement Absent Absent Absent

Wind turbine characteristics Not mandatory Not mandatory Not mandatory

Table 3 Comparison of various conventional MPPT algorithm techniques and their modified versions [30, 36, 38, 42–44, 51]

MPPT algorithm Merits Significant limitations Modification

TSR TSR boasts the benefits of
simplicity and swift convergence
speed. Furthermore, it operates
without necessitating memory
for the procedure

Several anemometers, with
precision levels between 5 and
10%, are strategically located
across wind turbine’s covered
expanse to evaluate the effective
wind velocity. This leads to a
decline in the overall
dependability and performance,
primarily attributable to the
substantial starting and ongoing
costs

To address the limitations of wind
velocity sensors, different
researchers propose Wind Speed
Estimation (WSE) algorithms.
WSE is employed to reduce
errors associated with mechanical
speed sensors, thereby improving
both the precision and speed of
tracking the maximum power
point (MPP) [14]

OTC OTC provides benefits like
uncomplexity, resilience, and
efficient tracking, resulting in
heightened overall performance.
The employed MPPT algorithm’s
practicality, independent of
real-time wind speed sensor,
reduces initial and maintenance
costs. This cost-effective aspect
makes OTC an attractive and
sustainable solution for
optimizing energy capture,
offering economic and
operational advantages

This algorithm utilizes weather
conditions and prior knowledge
of wind turbine characteristics.
Integrating turbine speed and
electromagnetic torque
measurements can raise costs and
is contingent on generator
parameters

The effectiveness of MPPT-OTC
methods in wind turbine systems
has been elevated through the
incorporation of intelligent
algorithm introduced by [56],
showcasing superior
performance compared to
traditional OTC. Additionally,
[57] proposed a fuzzy
logic-based MPPT algorithm to
enhance OTC, ensuring improved
performance, particularly under
varying wind velocities in which
system stability is maintained

PSF The PSF algorithm offers reliable
performance in varying wind
speeds, swift convergence for
efficient tracking, absence of
oscillations at the maximum
power point (MPP), robustness,
and a cost-effective profile. These
features make PSF preferable and
economically efficient solution
for optimizing power generation
in wind turbine systems

Compared to TSR and OTC, the
PSF method shows increased
complexity and decreased
effectiveness. The incorporation
of mechanical wind speed
measurement introduces the
potential for errors, and this
approach heightens the risk of
generator stalling during sudden
changes in wind speed,
depending on prior knowledge of
wind turbine characteristics

To prevent generator stalling, an
adjustment is implemented by
offsetting the measured power
with a constant value. However,
this modification introduces a
challenge, as it leads to undesired
overshooting in the control
variable, sophisticating the
accurate tracking of the MPP [36]
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Table 3 continued

MPPT algorithm Merits Significant limitations Modification

P&O This algorithm mitigates the need
for a wind speed sensor, bypasses
the necessity for prior
comprehension of system
parameters and characteristics,
and requires less memory,
resulting in diminished overall
system costs. Additionally, it
demonstrates moderate
performance and robustness,
especially in situations marked
by irregular wind speeds

A significant drawback of this
algorithm is the challenge in
selecting a suitable step size for
perturbation, directly impacting
the performance of the wind
turbine. Larger step sizes induce
oscillations near the maximum
power point (MPP), whereas
smaller step sizes result in
extended convergence time and a
slowed response. Another
concern is the potential for losing
track of the MPP during
variations in wind speed

The refinement in CPO involves a
strategic adjustment in the
tracking approach, resulting in
Modified Perturb and Observe
algorithms (MPO). These
enhancements include variable,
adaptive, and hybrid step size
methodologies to address the
limitations in CPO [58, 59]. This
adaptive evolution aims to
improve overall performance and
effectiveness in optimizing
energy capture in dynamic
environmental conditions

INC This algorithm bears resemblances
to the perturb and observe (P&O)
method; however, it sets itself
apart by demonstrating
preeminent speed convergence
and enhanced tracking
Competence. These
advancements underscore its
capacity to more swiftly and
accurately adapt to dynamic
conditions, showcasing a notable
improvement over the traditional
P&O approach

This algorithm exhibits a sluggish
pace in achieving speed
convergence, along with
suboptimal efficiency and
noticeable oscillations observed
at MPP

Incorporating the concept of
adjusting perturbation step sizes,
INC algorithms seamlessly
enhance the performance of the
system while simultaneously
accelerating the speed of
convergence [30]

ORB This algorithm stands out for its
quick response and easy
operation, eliminating the need
for wind speed sensors.
Additionally, comparing to P&O
and INC methods, it showcases
superior convergence speed.
Importantly, there is no
occurrence of oscillation around
maximum power point (MPP)

This algorithm imposes a
substantial memory requirement
for storing the pre-established
optimal relation curve, thereby
mandating a prerequisite
understanding of the system

In the evolution outlined in
References [36, 60], the ORB
method underwent changes by
seamlessly integrating the P&O
method as an initiation for
real-time exploration of MPP at
local wind velocities. Through
this integration, a limitation of
the ORB method was effectively
addressed by extracting vital
parameters essential for its
efficient operation

mental structure of FLC is depicted in Fig. 17. Fuzzification
transforms input variables into fuzzy sets, and the rule base
comprises IF-THEN rules defining relationships between
input fuzzy sets and corresponding output fuzzy sets. The
control rules evaluate the rules based on current fuzzy input
values. The final step, defuzzification, converts the fuzzy out-
put into a precise numerical value for system control [52,
73]. Numerous articles have proposed diverse FLC strate-
gies within the context of MPPT algorithms, as discussed in
the literature [31, 69, 74–76]. Figure17 illustrates the FLC
scheme.

In the study [77], threeMPPT control strategies such as PI,
P&O, and FLC were assessed for their efficacy in optimiz-
ing wind energy systems in the presence of fluctuating wind
speeds. The analysis revealed that PI struggled to trackmaxi-
mumpower due to system nonlinearity, while P&O exhibited

Fig. 16 Classification of intelligent MPPT algorithms

good performance but oscillated around the optimal value
with varying wind speeds. In contrast, FLC emerged as a
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Fig. 17 Basic structure of fuzzy
logic controller algorithm [71]

superior control technique, demonstrating fast and efficient
power optimization. The results underscored FLC’s superi-
ority over PI and P&O in terms of stability, rapid tracking
ability, and time response, particularly in the face of unpre-
dictable wind speed fluctuations. Similarly, in the assessment
detailed in [78], a comprehensive comparison of overall effi-
ciency, considering speed response and tracking ability for
maximumpower,was undertaken amongFLC,TSR, andPSF
in the domain of wind energy. The findings revealed that FLC
attained an efficiency of 92%, outperforming TSR at 85.44%
and PSF at 87.12%. This result indicates that FLC demon-
strates superior performance with a higher overall efficiency
compared to TSR and PSF.

In the paper [79], a comparison was conducted between
FLC and Hill Climb Search (HCS) based on parameters such
as oscillation and time responses. The results indicated that
FLC exhibited less oscillation and faster responses compared
to HCS. Additionally, in [80], a variable step−size-based
fuzzy logic controller was introduced for theMPPT of awind
energy system, and its performance demonstrated effective
and prompt responses to changes in wind speed.

2.4.2 Neural network method

MPPT control method based on neural network constitutes
a specific approach within the MPPT domain, utilizing arti-
ficial neural networks to optimize the power output of wind
turbines. Neural networks are structured around a fundamen-
tal and intricate design, featuring three essential layers: the
input layer, one or more intermediate layers, and the out-
put layer, as illustrated in Fig. 18 [81, 82]. The input layer
acquires the initial data. The intermediate (middle) layer,
which is between the input andoutput layers, applies transfor-
mations to the input data. And final outcomes of the network
are generated by the output layer. The output layer of the neu-

Fig. 18 Basic architecture of neural network [1]

ral network produces the final results of the network [83–86].
The system is trained utilizing specific input–output patterns,
resulting in a decreased response time. This capability allows
the system to swiftly reach a stable state, even in the presence
of changing wind velocities. Such an approach contributes to
enhancing the equilibrium between response time and output
power [1, 21, 36].

The investigations presented in [87, 88] explore varied
approaches to MPPT in WECS. In [87], a comparison is
made between an artificial neural network (ANN) and a
proportional-integral (PI) controller. This evaluation cen-
ters on their steady and evolving performance, as well as
time response. The outcomes indicate that the ANN outper-
forms the PI controller, demonstrating superior performance
and a more rapid time response. In [88], an evaluation of
the proposed radial-based function neural network (RBF-
NN) for MPPT is conducted, comparing it against back-
propagation-based neural network (BP-NN), FLC, and P&O.
The assessment takes into account parameters such as over-
shoot, ripples, oscillation, and overall performance. The
results indicate that the RBF-NN controller displays reduced
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Table 4 Comparison of the characteristics of intelligent MPPT algorithms [30, 38, 42, 45, 46, 52, 54]

MPPT algorithm features FLC NN ISMPPT MVPO Others

Adaptability Excellent Excellent Excellent Average Average

Computational complexity Greater Greater Greater Greater Intermediate

Efficiency Superior Superior Average Average Depends on the algorithm

Oscillation Absent Absent Depends Absent Depends on the algorithm

Overall expense Expensive Expensive Cheap Cheap Depends on the algorithm

Robustness Robust Robust Relatively robust Relatively robust Relatively robust

Speed of convergence Intermediate Intermediate Intermediate Sluggish Intermediate

Storage Present Present Present Present Depends on the algorithm

Time response Fast Fast Depends Depends Depends on the algorithm

Wind speed measurement Conditional Conditional Not mandatory Not mandatory Depends on the algorithm

Wind turbine characteristics Mandatory Mandatory Not mandatory Not mandatory Depends on the algorithm

oscillation, a minimal ripple factor of (2%), and minimal
overshoot. This emphasizes its swift, effective, and depend-
able performance in tracking the MPP compared to other
controllers.

2.4.3 Intelligent sensorless method

Intelligent sensorlessmaximumpower point tracking (ISMPPT)
methods are designed to optimize the performance of wind
turbines without the need for dedicated wind speed measure-
ments and prior knowledge of the turbine specifications [85,
89]. These algorithms aim to identify the most efficient oper-
ating state of thewind turbine by utilizing available data, such
as generator power output or electrical signals. This elimi-
nates the need for direct measurements of wind speed or
direction [90–92].

Intelligent sensorless algorithms commonly leveragemath-
ematical models, estimators, or adaptive control strategies
to deduce or estimate relevant parameters without relying
on direct sensor measurements [93]. Prevalent approaches
for sensorless MPPT in wind energy include model-based
estimation (MBE), adaptive control, and observer-based
estimation (OBE) techniques. The primary objective of sen-
sorless MPPT algorithms is to reduce costs associated with
sensor installation, maintenance, and calibration, thereby
enhancing the economic viability of wind energy systems.
However, the effectiveness of these algorithms depends on
the precision of the employed models and estimators and
may face challenges in highly dynamic and variable wind
conditions [45].

2.4.4 Multi-variable perturb and observe method

The primary goal of the multi-variable perturb and observe
(MVPO) method is to maximize power generation in a wind
power plant while simultaneously minimizing the number of

wind speedmeasurements and the required control units [94].
MVPO achieves an elevated power output with a reduced
number of components in the wind farm infrastructure. By
employing theMVPO algorithm, it becomes feasible to opti-
mize the current output of each generator individually. This is
accomplished through systematic perturbations of the current
for each generator until an overall increase in power output
is observed across the entire wind farm. This iterative pro-
cess is methodically applied to cover each generator within
the wind farm, demonstrating the algorithm’s efficiency and
adaptability [52].

Table 4 displays the comparison of characteristics of var-
ious Intelligent MPPT algorithms.

2.5 Hybrid MPPT algorithms

Hybrid MPPT in wind energy entails integrating diverse
MPPT techniques to optimize wind turbine performance.
This approach melds traditional algorithms with intelli-
gent or optimization-based methods. Through the amal-
gamation of these varied strategies, hybrid MPPT aims
to harness their individual strengths, mitigate limitations,
and enhance the overall efficiency and adaptability of
wind energy systems. As a result, hybrid MPPT meth-
ods are categorized into hybrid conventional–conventional
MPPT algorithms, hybrid conventional–intelligent MPPT
algorithms, hybrid intelligent–intelligent MPPT algorithms,
optimization-based hybrid MPPT algorithms, and hybrid
fractional-order-intelligent MPPT algorithms, as depicted in
Fig. 19. In this section, we will examine a range of hybrid
MPPT control techniques that have been developed in recent
times, aiming to enhance the efficiency of conventional tech-
niques.
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Fig. 19 Classification of hybrid MPPT algorithm

2.5.1 Hybrid conventional–conventional algorithms

Hybrid conventional–conventional MPPT algorithm inte-
grates multiple conventional MPPT control techniques to
enhance the efficiency of tracking MPP. This method brings
about increased energy generation, efficiency, and resilience
compared to using individual algorithms separately, resulting
in an overall enhancement of system performance [60].

2.5.2 Hybrid conventional-intelligent algorithms

The integration of conventional and intelligent MPPT algo-
rithm is designed to enhance system performance. By
leveraging the strengths of both approaches, these hybrid
algorithms can improve the precision and speed of track-
ing the maximum power point, ultimately boosting energy
efficiency and power output [35, 76]. Intelligent algorithms
exhibit the capacity to tackle intricate issues, and when
integrated with traditional algorithms, they bolster the tech-
nique’s robustness, efficiency, and reliability. According to
existing research, the drawbacks of traditional algorithms
have been mitigated, resulting in enhanced tracking speed
and increased accuracy [76, 95].

2.5.3 Hybrid intelligent-intelligent algorithms

Hybrid intelligent–intelligentMPPT inwind energy involves
incorporating intelligent control strategies to enhance the per-
formance ofwind turbines. Thismethod integrates intelligent
MPPT algorithms, such as neural networks, fuzzy logics, or
other artificial intelligence methods. The integration of intel-
ligent components empowers the system with the capability
to adapt to unstable weather conditions, leading to enhanced
system performance. This adaptation ensures the extraction
of maximum power from the system under diverse weather
circumstances. The hybrid nature of these algorithms offers
a flexible and robust solution for optimizing power output in
variable wind conditions [31, 64].

2.5.4 Optimization-based hybrid algorithms

Hybrid MPPT algorithms frequently integrate multiple opti-
mization techniques to improve the efficiency and robustness
of the MPPT process. Among these optimization tech-
niques such as particle swarm optimization (PSO) algorithm,
genetic algorithms (GA), and ant colony optimization (ACO)
algorithm are among the commonly utilized optimization
techniques in hybrid MPPT method. In the work by [95],
the combination of ORB and PSO is employed, where PSO
is initially used to search for the optimal coefficient, followed
by the implementation of the ORB MPPT in the subsequent
phase. This approach enhances efficiency without the need
for wind speed measurement or pre-existing knowledge of
parameters, making it a sensorless and parameter-free hybrid
method. Another MPPT algorithm, incorporating a combi-
nation of PSF, PSO and other control techniques, proves
effective in enhancing efficiency across all the speed range
of the wind turbine [96].

In addition to employing a controller, there exist numerous
optimization techniques aimed at refining its performance
by minimizing a specified cost function. These techniques
encompass a variety of algorithms inspired by biologi-
cal or natural phenomena. Notable examples include the
Dandelion optimization algorithm (DOA), firefly optimiza-
tion algorithm (FOA), lung performance-based optimization
algorithm (LPOA), Genghis Khan Optimization Algorithm
(GKSOA), Geyser-inspired optimization algorithm (GIOA),
Prairie Dog optimization algorithm (PDOA), Dwarf Mon-
goose optimization algorithm (DMOA), and Gazelle opti-
mization algorithm (GOA).

DOA is a nature-inspired optimization technique that
mimics the dispersal mechanism of dandelion seeds. It
uses probabilistic movements to explore solution spaces
efficiently, balancing between exploration and exploitation
to find optimal solutions to optimization problems [97].
FOA is a nature-inspired optimization method based on the
flashing behavior of fireflies. It uses the brightness of fire-
flies to represent the quality of potential solutions. Fireflies
are attracted to brighter ones, which correspond to bet-
ter solutions. Through iterative movement toward brighter
neighbors and random exploration, FOA efficiently searches
for optimal solutions in optimization problems [98]. LPOA
is an optimization technique inspired by respiratory sys-
tems. It dynamically regulates exploration and exploitation
in optimization processes. LPOA adapts principles from lung
performance to enhance solution search efficiency, ensuring
a balance between exploration and exploitation for optimal
solution discovery [99]. GKSOA is ametaheuristic optimiza-
tion method inspired by strategic conquest tactics employed
by Genghis Khan. It emphasizes dynamic adaptation and
resource allocation to optimize the search for solutions in
various optimization problems [100].
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GIOA is an optimization method that mimics the eruptive
patterns of geysers. It balances exploration and exploita-
tion in the search for optimal solutions by leveraging the
natural phenomenon of geyser eruptions [101]. PDOA is
an optimization technique inspired by the cooperative for-
aging behavior of prairie dogs. It promotes collaboration
and information exchange among individuals in the opti-
mization process to enhance solution search efficiency and
convergence [102–104]. DMOA is an optimization approach
inspired by the social dynamics and cooperative hunt-
ing strategies observed in dwarf mongoose communities.
It emphasizes collaboration among individuals to enhance
solution refinement and convergence in optimization prob-
lems [105, 106]. GOA is an optimization method inspired by
the evasive maneuvers and swift decision-making of gazelles
in evading predators. It promotes adaptability and robustness
in dynamic environments by incorporating strategies similar
to those used by gazelles to find optimal solutions in various
optimization problems [107, 108].

2.5.5 Hybrid fractional-order-intelligent algorithms

This involves combining fractional-order (FO) control tech-
niques with intelligent algorithms to optimize the MPPT
capabilities of a wind energy system. Fractional-order con-
trol employs fractional calculus in control system design.
Unlike traditionalMPPTalgorithms,which often use integer-
order derivatives and proportional-integral (PI) controllers,
fractional-order calculus involves derivatives and integrals
with non-integer orders (such as 1.5 or 2.5). This provides
additional flexibility and improved performance in certain
applications, enabling more accurate modeling and control
of dynamic systems [73, 109].

One of the key benefits of intelligent-fractional-order
MPPT algorithms is their adaptability to varying wind con-
ditions. They can continuously adjust the control variables,
such as rotor speed or pitch angle, to track the changing opti-
mal operating point, thereby maximizing energy extraction.
These algorithms aim to improve the overall efficiency and
energy yield of wind turbines by reducing losses and increas-
ing the conversion efficiency of wind energy into useful
output power. Essential features of fractional-order con-
trol include flexibility and superior performance. Intelligent
algorithms inherently possess the capability for adaptability
and optimization. Consequently, the integration of fractional
order with intelligent algorithms results in a performance
characterized by heightened adaptability, improved robust-
ness, and optimized efficiency [36, 110].

Intelligent fractional-order MPPT algorithms may be
computationally more demanding than simpler integer-order
control strategies. However, they have the potential to pro-
vide higher efficiency and better performance, especially in
wind farmswith complex, turbulentwindpatterns [110–112].

These algorithms are an area of active research and develop-
ment in the field of wind energy. Researchers are continually
working to improve the accuracy and efficiency of MPPT
algorithms through the integration of fractional-order calcu-
lus and intelligent techniques [113–116].

Table 5 presents a comparison of the characteristics of
various hybrid MPPT control algorithms, and a compilation
of references for MPPT algorithms is listed in Table 6.

3 Comparative analysis and discussion

After reviewing various literature sources, a comparative
analysis was conducted, considering factors such as adapt-
ability, susceptibility, robustness, efficiency, convergence
speed, sensor usage, complexity, reliance on prior knowl-
edge, and overall cost. The results of this analysis are
presented in Tables 1, 2, 4, and 5. Table 3 specifically delves
into the comparison between conventional MPPT algorithms
and their modified counterparts. The primary objective of an
MPPT algorithm in a WECS is to optimize the output power
of a variable wind turbine system. Selecting an appropriate
MPPT algorithm proves to be a challenging task.

When assessing IPCMPPT algorithms like TSR, PSF, and
OTC, their notable attributes include speed and simplicity.
However, it is essential to highlight that these algorithms pri-
oritize maximizing captured mechanical wind power rather
than optimizing electrical power output. As indicated by the
data in Table 1, both TSR and PSFmandate the use of a wind
speed sensor. TSR, in particular, demonstrates superior effi-
ciency compared to PSF and has the added advantage of not
requiring training and memory. Nevertheless, the incorpora-
tion of a speed sensor anemometer, which is both costly and
adds an extra expense to the system, presents a challenge.
The real-time application of these techniques is further com-
plicated by the significant difference in wind velocity near
the turbine compared to the free stream velocity. The OTC
MPPTalgorithm is recognized for its simplicity, fast, and effi-
ciency, and it does not require a wind speed measurement.
Nonetheless, due to its indirect measurement of wind speed,
changes in wind speed may not be promptly and prominently
reflected in the reference torque. This particular aspect dimin-
ishes OTC efficiency when compared to the TSR algorithm.
In terms of the PSF and OTC algorithms, their performance
and complexity are comparable, especially regarding training
requirements. They collectively offer a cost-effective control
solution for WECS. Table 1 shows a comparison of the char-
acteristics of IPC algorithms.

Table 2 provides an overview of the characteristics ofDPC
MPPT algorithms, such as P&O, INC, and ORB. These algo-
rithms are widely valued for their simplicity, allowing for
the direct computation of optimal electrical power without
the necessity for advanced knowledge or wind speed mea-
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Table 5 Comparison of the characteristics of hybrid MPPT algorithm [30, 36, 38, 47, 52, 54, 77, 117]

MPPT algorithm features Hybrid
conventional

Hybrid
conventional-
intelligent

Hybrid
intelligent

Optimization
based hybrid

Hybrid
fractional-
order-
intelligent

Adaptability Average Excellent Excellent Excellent Excellent

Computational complexity Easy Intermediate Greater Greater Greater

Efficiency Intermediate Superior Superior Superior Very superior

Oscillation Depends Depend on the
algorithms

Absent Absent Absent

Overall expense Average Expensive Expensive Expensive Expensive

Robustness Relatively robust Robust Very robust Very robust Very robust

Speed of convergence Intermediate Intermediate Fast Fast Very Fast

Storage Depends Present Present Present Present

Time response Depends Relatively fast Fast Fast Very Fast

Wind speed measurement Depends Depends Depends Depends Depends

Wind turbine characteristics Depends Not mandatory Not mandatory Not mandatory Not mandatory

Table 6 A compilation of references on MPPT algorithm for WECS

MPPT algorithm References Remarks

MPPT algorithms [30, 38, 42, 44, 51, 52] The papers discuss various MPPT control techniques for WECSs,
analyzing the advantages and disadvantages of each based on
different parameters and applications. The evaluations provide
insights into the specific strengths and limitations of these algorithms
in diverse contexts, offering a comprehensive overview of their
effectiveness in WECS

Modified TSR [64, 118, 119] Presented is an MPPT algorithm based on modified TSR, which
includes the development of an algorithm for estimating wind speed.
This modified approach is then contrasted with conventional
TSR-based algorithms

Modified P&O [32, 38, 58, 58, 59, 120, 121] A comprehensive review that encompasses both conventional and
modified P&O techniques for MPPT is presented. The review delves
into the nuances of traditional P&O methods and explores the
advancements achieved through modifications

Intelligent (FLC) [122–124] FLC-based MPPT algorithm is presented, and its performance in
tracking the maximum power is discussed

Intelligent (NN) [70, 76, 86] These papers introduce an MPPT algorithm based on Neural Networks
(NN), and its ability to track the maximum power is thoroughly
examined and discussed

Intelligent (NN) [82, 125] Introducing an MPPT algorithm based on Neural Networks (NN),
these research studies highlight its superior capability in tracking
maximum power compared to other MPPT controllers, even though
they require data for training

Intelligent (NN,FLC) [71] FLC and NN based MPPT are presented and evaluated in diverse
environmental conditions using MatLab/SIMULINK

Hybrid (FLC&NN) [31] In this article, hybrid neural network and fuzzy logic control is
introduced and discussed its performance

Hybrid (P&O and FLC) [35, 76] Hybrid P&O and PSF based MPPT algorithm is discussed. This
proposed techniques applied their individual advantages and
improve overall performance of the system

Hybrid (PSF and PSO) [96] Hybrid PSF-based MPPT algorithm with PSO optimization method is
presented and its performance is discussed

123



A review and comparative analysis of maximum power point tracking control algorithms… 3511

Table 6 continued

MPPT algorithm References Remarks

Hybrid (P&O and ORB) [60, 95] Hybrid P&O and ORB method is presented. Drawbacks and benefits
of individual algorithms are discussed. To address their limitations, a
hybrid algorithm is proposed and its advantages are discussed

Hybrid (P&O and OTC) [126] Hybrid P&O and OTC MPPT algorithm is presented. The algorithm is
tested under various wind conditions, demonstrating its adaptation
capability and improved energy efficiency

Fractional-order-intelligent [112, 113] An MPPT algorithm, combining fractional-order (FO) and intelligent
elements, is introduced and its performance is compared with that of
classical controllers

Intelligent [30, 36, 38, 44, 51] Various intelligent MPPT algorithms are discussed, and their merits,
demerits, and applications are explained

Hybrid [30, 38, 40] The study outlines the analysis of multiple hybrid control techniques
and their specific drawbacks. Furthermore, the benefits of combining
two or more MPPT algorithms are explained, with the objective of
improving overall performance

surements. This straightforward approach not only enhances
their cost-effectiveness but also contributes to their overall
reliability. Both the P&Oand INCalgorithms are craftedwith
minimal memory requirements. In terms of power efficiency,
the INC method theoretically has the capacity to achieve
more effective tracking of the MPP than the P&O algorithm.
Despite the shared merits of straightforward design and
adaptability in both algorithms, the existence of fluctuations
around the MPP can potentially diminish the performance of
the wind energy system. To enhanceMPPT efficiency, accel-
erate convergence speed, and improve system precision, a
customized INC algorithm is employed. This adjusted algo-
rithm automatically adjusts the step size to accurately trace
the MPP of the wind energy system.

The accuracy of the ORB MPPT algorithm is apparent,
relying solely on measurements of DC voltage and current.
Noteworthy is its autonomy and adaptability, as it operates
without the need for preexisting knowledge of the system or
wind speed sensors. Additionally, it excels in precision and
effectiveness when tracking maximum wind power. How-
ever, in terms of expense, a comparisonwith other algorithms
inTable 2 suggests that this specific algorithm is slightlymore
expensive.

Intelligent algorithms optimize a wind turbine operation
and extract the maximum power through sophisticated con-
trol strategies employing advanced computational methods.
Currently, a diverse range of intelligent control methods is
extensively employed, including expert control, fuzzy con-
trol, neural network control, and optimization algorithms
such as GA, ACO, PSO, among others. These algorithms are
specifically designed to enhance the efficiency and overall
performance of the MPPT system, especially in scenar-
ios with stochastic and unpredictable wind speeds. They
find common application in various complex controlled sys-

tems, addressing intricate challenges associated with highly
nonlinear and uncertain control issues in complex systems.
Intelligent algorithms prove invaluable in solving problems
traditionally difficult to resolve using conventional methods
with superior performance. However, they required enough
data and analysis for effective practical implementation.
Table 4 provides a comparison of performance character-
istics among intelligent algorithms.

The multivariable P&O is a control strategy derived
from P&O algorithm, but it is expanded to optimize sev-
eral variables concurrently. This principle entails adjusting
and optimizing multiple variables, commonly the currents of
various generators within a wind turbine system, with the
goal of collectively maximizing power output. The over-
arching objective is to improve the efficiency of energy
capture by systematically perturbing the pertinent variables
and observing their influence on the overall system per-
formance. ISMPPT algorithms are techniques specifically
developed to improve the operation of a wind turbine system
without depending on direct sensor measurements. Instead
of relying on sensors, these algorithms employ mathematical
models, estimators, or adaptive control strategies to deduce
or estimate the essential parameters crucial for optimizing
the turbine’s performance, all without directly utilizing sen-
sor measurements.

The intricacies of energy conversion in nonlinear wind
power systems stem from the unpredictable and stochastic
nature of wind speed. Relying solely on a single control
method often proves limiting and falls short of achieving
desired outcomes due to inherent uncertainties. To address
these challenges, hybrid approaches have emerged, enhanc-
ing overall control effectiveness and introducing adaptability.
In the context of wind energy, a hybrid MPPT algorithm
integrates various methods, aiming to boost adaptability and
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improve overall efficiency and robustness as shown in Table
5. Each MPPT algorithm brings its unique strengths and
weaknesses, and the hybrid strategy strategically capital-
izes on these in different conditions, ensuring adaptability
to diverse scenarios.

The hybrid fractional-order-intelligent MPPT algorithm,
specifically tailored for wind energy, epitomizes a cohe-
sive control approach that amalgamates the advantages of
fractional-order control techniques with intelligent algo-
rithms. This integrated strategy seeks to surpass the limi-
tations of conventional and other hybrid methods, aiming
to enhance adaptability and elevate the overall efficiency of
wind energy systems by optimizing power extraction from
the wind. Moreover, within the landscape of hybrid MPPT
algorithms, the fractional-order-intelligent MPPT algorithm
currently stands out as a prominent focus in ongoing research.

4 Future directions

A wind energy system is a renewable energy solution that
converts the kinetic energy of the wind into usable energy.
To efficiently extract maximum power and maintain con-
trol over the system, a controller is essential. However,
due to the unpredictable and stochastic nature of the wind,
an effective control algorithm is required. This algorithm
should possess qualities such as adaptability to chang-
ing environmental conditions (wind speed and direction),
robustness, high efficiency, accuracy, and intelligence. In
WECS, intelligent-based MPPT algorithms, including intel-
ligent algorithms, hybrid intelligent algorithms, and hybrid
fractional-order intelligent algorithms, are preferred. These
algorithms have demonstrated significant improvements in
the efficiency, accuracy, adaptability, and overall perfor-
mance of wind energy conversion systems.

Based on this review paper, the forthcoming research
on MPPT for wind energy systems is expected to primar-
ily focus on three key areas: hybrid intelligent algorithms,
hybrid fractional-order intelligent algorithms, and hybrid
fractional-order intelligent algorithms coupled with opti-
mization techniques. This underscores the current emphasis
in renewable energy systems, which present distinct advan-
tages over alternative approaches.

5 Conclusion

To improve the efficiency of a wind power generation in
the face of unpredictable wind conditions, the selection of a
suitable MPPT algorithm is paramount. In this paper, a com-
prehensive overview is conducted, entailing a comparative
analysis of diverse MPPT algorithms. The review facilitates
the identification and selection of the most suitable MPPT

algorithm for a specific application, thereby improving sys-
tem performance and maximizing overall output power. The
MPPT algorithms are classified into four primary groups:
IPC, DPC, intelligent, and hybrid algorithms, each present-
ing distinctive advantages and disadvantages.

Conventional algorithms display drawbacks, including
slow convergence speed, the necessity for prior knowledge,
dependence onwind speedmeasurements, and low efficiency
in power tracking. The conventional perturb and observe
algorithm, among conventionalMPPT algorithms, stands out
for its simplicity and cost-effectiveness, making it a preferred
choice for achieving the MPP. However, accurately selecting
the required step-size poses a significant challenge for CPO
directly influenced by factors such as settling time and oscil-
lations around the MPP. As a result, MPO algorithms have
been introduced to address these limitations by incorporating
fixed, adaptive, variable, and hybrid step-sizes. MPO based
on hybrid step-sizes exhibits enhanced performance, albeit
introducing added complexity due to the generation of dif-
ferent step-sizes. MPO based on hybrid step-sizes exhibits
enhanced performance, although it introduces added com-
plexity due to the generation of different step-sizes.

In the domain of intelligent MPPT algorithms, develop-
ments such as fuzzy logic, neural networks, and diverse
expert controls have been employed to optimize the effi-
ciency of wind energy conversion. These intelligent MPPT
algorithms excel in extracting maximum power efficiently,
notwithstanding their requirement for a substantial amount
of data to operate effectively. The application of optimiza-
tion methods such as PSO, GA, and ACO in hybridization
has resulted in notable enhancements for quickly identify-
ing the optimal operating point of a system. This has led to
improved precision inMPP tracking and increased efficiency
in energy conversion. The success of the conventional-
intelligent hybrid approach is especially evident in reducing
the control method’s reliance on system parameters and
the necessity for wind speed measurements, ultimately con-
tributing to enhanced overall efficiency. Intelligent hybrid
algorithms, exemplified by fuzzy logic control-neural net-
work (FLC-NN), not only tackle the limitations of MPPT
but also bolster the resilience and overall effectiveness of
the algorithm. Moreover, we assess the hybrid fractional-
order-intelligent approach for its outstanding tracking capa-
bilities, especially in conditions characterized by complexity,
variability, and challenging-to-predict wind patterns. This
method offers enhanced adaptability, increased robustness,
and optimized performance.Ongoing research in this domain
explores synergies between fractional-order control and
intelligent algorithms, aiming to advance and adapt control
strategies for WECSs.
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