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Abstract
The phenomena of bifurcation and chaos are examined for a class of second-order nonlinear non-autonomous ordinary
differential equations, which are formulated by the nonlinear dynamic response of a micro-void at the center of the sphere
subjected to periodically perturbed loads and structural damping, and the sphere is composed of the radial transversely isotropic
incompressible Gent–Thomas materials. Firstly, based on the variational principle, the mathematical model describing the
problem is established with the assumption of spherical symmetric deformation. Then, the solution is derived by the first
integral and so on, through qualitative analysis of the solution, some meaningful conclusions are obtained: (1) For constant
loads, the influences of relevant parameters on the number of equilibrium points are discussed. Moreover, the secondary
steering bifurcation of equilibrium curves and the effects of structural damping on the qualitative properties of equilibrium
points are analyzed in detail. (2) For periodic loads, the quasi-periodic and chaoticmotions of themicro-void are discussed, and
the influences of perturbation parameters on the chaotic motions are analyzed. Particularly, when there is structural damping,
periodic and quasi-periodic motions near the center are discussed, the chaos threshold near the saddle point is obtained by
the Melnikov method. In addition, the bifurcation characteristics of micro-void are analyzed by bifurcation diagrams. The
results show that with the increase in perturbation parameters, the motions of the micro-void present a process from periodic
to chaotic and then to periodic motion alternately.
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1 Introduction

With high elasticity, wear resistance and other superior prop-
erties, hyperelastic materials are widely used in aerospace,
petrochemical, construction, medicine and other fields, such
as seals, bushings, tires, dielectric elastomers, artificial blood
vessels, muscles and so on. Hyperelastic materials are also
called Green elastic materials [1], rubber and rubber-like
materials are typical representations of these materials,
and the constitutive relations can be characterized by their
strain energy functions, during which the neo-Hookean,
Mooney–Rivlin, Ogden, Rivlin–Saunders andGent–Thomas
models are the classical ones [2–6]. Structures composed of
hyperelastic materials usually have both material and geo-
metric nonlinearities, so the deformations and motions of
related structures under external loads have always been
the focus of nonlinear mechanics. The common structures
usually include solid structures, structures with micro-void,
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plates, shells and membranes and so on. The forms of exter-
nal loads mainly include constant loads and time-dependent
loads.

Bifurcation and chaos are two main aspects of nonlinear
dynamics, the original intention of bifurcation and chaos is
to study the qualitative behaviors of the nonlinear problems
which are difficult to be solved analytically, and with the
help of them, many complex nonlinear problems have been
investigated numerically [7–10]. Moreover, in the existing
methods, the Lyapunov exponent, bifurcation diagram, and
correlation dimension are commonly used to describe chaos
and its different routes [11–13].

Under the frameworkof nonlinear dynamic theories,many
progress has been made in the deformations and motions
of hyperelastic structures under external loads. Knowles
[14] analyzed the stability of an isotropic incompressible
hyperelastic cylindrical shell firstly. The author derived the
governing equations by using the symmetry of motion and
the incompressible constraint and analyzed the free vibration
of the shell, which laid the foundation for the subsequent
dynamic analysis of hyperelastic structures. Wang et al. [15]
derived a coupled partial differential equation describing the
radial and axial motions of thermal hyperelastic cylindrical
shells under the assumption of axisymmetric deformation,
and analyzed the influences of internal and external boundary
temperatures on the existence of bounded traveling waves,
the effects of compressibility and material parameters on
periodic waves, solitary waves and periodic cusp waves were
also discussed in detail, and the corresponding numerical
simulations were carried out. By taking radial symmetric
deformation as the condition of quasi-equilibrium motion,
Mihai and Alamoudi [16] derived the nonlinear differen-
tial equation describing the deformation of the hyperelastic
heterogeneous spherical shell composed of neo-Hookean
materials. The results showed that the oscillation amplitude
and period were characterized by the probability distribu-
tion and mainly depended on the initial conditions. Zhao
et al. [17] studied the nonlinear dynamic behaviors of visco-
hyperelastic spherical shells under dynamic loads. Based on
the Euler–Lagrange equation, the coupled integral–differen-
tial equations describing the radial symmetric motions of
visco-hyperelastic spherical shells were derived. The results
showed that when the viscosity coefficient of the material
changed, the resonance frequency of the system also shifted,
and the motions of the system appeared chaos and multi-
period vibration alternating phenomenon. Zhao et al. [18]
further studied the influences of dynamic loads and structural
damping on the nonlinear characteristics of incompress-
ible hyperelastic spherical shells and discussed the dynamic
behaviors of periodic, quasi-periodic and chaotic motions
under different load types. Based on the Euler–Lagrange
equation, Firouzi and Kamil [19] obtained a generalized

formula for describing the finite deformation of hyperelas-
tic membranes under different geometric shapes and load
loads. This formula considered the anisotropy of isotropic
and transversely isotropic hyperelastic materials, and the
effectiveness of the formula was verified by practical exam-
ples. Eriksson and Nordmark [20] studied the stability of the
spherical membrane under internal pressures based on the
hyperelastic theory, derived the nonlinear differential equa-
tion describing the motion of the membrane, and discussed
the dependence of the dynamic behaviors on related param-
eters. Soares et al. [21] derived a nonlinear mathematical
model describing the motions of a hyperelastic spherical
membrane under internal pressures by the variational prin-
ciple. Firstly, the influences of material parameters on the
natural frequency of the system were discussed, and the
approximate results obtained by skeleton line and harmonic
balance method were compared to highlight the influence
of higher order nonlinear terms of the differential equation
on the dynamic responses of the structure. Then, parameter
analysis was conducted on the membrane under harmonic
excitation, and the important influences of damping on sys-
tem resonance, attraction domain, and bifurcation diagram
were revealed. Zhao et al. [22] obtained the governing equa-
tions describing the nonlinear radial symmetric motions of
a hyperelastic spherical membrane under the assumption
of spherical symmetric deformation. The dynamic char-
acteristics of the system were qualitatively analyzed in
detail in terms of different values of material parame-
ters. Particularly, for given constant loads, the parameter
spaces describing the bifurcation behaviors of equilibrium
curves were established and the characteristics of equi-
librium points were presented. For periodically perturbed
loads, the quasi-periodic and chaotic behaviors were dis-
cussed for the systemswith two and three equilibrium points,
respectively. Zheng et al. [23] studied the radial nonlinear
vibrations for a thin-walled hyperelastic cylindrical shell
composed of the classical incompressible Mooney–Rivlin
materials subjected to a radial harmonic excitation. Using
Lagrange equation, Donnell’s nonlinear shallow-shell the-
ory and small strain assumption, the nonlinear differential
governing equation of motion is obtained for the incom-
pressible Mooney–Rivlin material thin-walled hyperelastic
cylindrical shell. The chaotic behavior of the radial nonlin-
ear vibration of a thin-walled superelastic cylindrical shell
made of incompressible Mooney–Rivlin material is dis-
cussed by numerical simulation. The results demonstrate
that the nonlinear dynamic responses of thin-walled hyper-
elastic cylindrical shell are highly sensitive to the structural
parameters and external excitation. Zhang et al. [24] derived
the differential governing equations of motion describing
the hyperelastic cylindrical shell with the initial geometric
imperfections by using the Donnell’s theory, hyperelastic
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constitutive relations and Lagrange equation. The amplitude-
frequency and force-amplitude response curves are obtained
for the hyperelastic cylindrical shell by using the multi-
ple scale method. The effect of different parameters on
the linear frequencies, amplitude-frequency response curves,
force-amplitude response curves and chaotic responses of
the hyperelastic cylindrical shell are discussed. The results
demonstrate that with the changes of the parameters, the
dynamic responses of the hyperelastic cylindrical shell with
the imperfections change the period to chaotic vibrations
alternately.More research on the dynamic problems of hyper-
elastic structures can be found from the review of Alijani and
Amabili [25].

In the researches of hyperelastic materials, a typical prob-
lem is that when the structure is subjected to external tensile
loads, the internal will be accompanied by the formation and
growth of micro-void, the penetration of adjacent micro-void
and so on. How to reduce the harm brought by this defect
is an issue that cannot be ignored. Gent and Lindley [26]
observed the phenomenon of the cavity formation in hypere-
lastic materials in the experiment firstly. Ball [27] proposed a
nonlinearmodel of the cavity formation in hyperelasticmate-
rials, studied the singular solution of nonlinear differential
equation describing such materials, and pointed out that the
existence of the singular solution depended on the character-
istics of strain energy function. Then,Horgan andAbeyaratne
[28] examined the sudden growth of pre-existingmicro-void,
and discussed the physical significance of model. For the
sphere composed of transversely isotropic incompressible
hyperelastic materials, Yuan et al. [29] studied the motions
of the micro-void and made qualitative analyses of the equi-
librium points of the system. They proved that the motions
of the micro-void were nonlinear periodic vibrations, and
the forms of the periodic motions were completely different
for different material parameters. Ren et al. [30] studied the
dynamic generations of cavities in incompressible hyperelas-
tic spheres under periodic loads, and numerical simulations
were carried out by using time-history curves, phase dia-
grams and Poincaré sections. The results indicated that there
existed a critical value for the periodic load. By analyzing the
relationship between the average load and the critical value
in detail, some problems such as whether there were cavities
generated were discussed. Yuan and Zhang [31] investigated
the generation andmotion of themicro-void in the hyperelas-
tic sphere composed of transversely isotropic Valanis-Landel
materials under constant and periodic stepped loads. When
the sphere was subjected to constant loads, they proved that
once the loads exceed the critical value, the micro-void gen-
erated in the sphere, and the motion of micro-void presented
periodic oscillation. The conditions for the periodic oscilla-
tion of micro-void under periodic stepped loads were also
provided.

So far, many researches have been achieved on the nonlin-
ear dynamics of hyperelastic spherical structures, while most
of them focused on fully integrable Hamiltonian systems,
and only a few researches examined the nonlinear dynamic
responses of nearly integrable Hamiltonian systems under
periodic disturbance loads. In recent years, Zhao et al. [17,
18, 22] have discussed the influence of nonlinear damping
forces in depth for hyperelastic spherical structures, mainly
studying the chaotic behaviors of spherical shells and spher-
ical membranes under dynamic loading. Particularly, Gent
[26], Ball [27] and Horgan [28] have done a lot of pioneering
works on micro-void structures for incompressible hyper-
elastic spheres. Based on this research, Yuan [29, 31] and
Ren [30] et al. further expanded the study on the nonlin-
ear dynamics of micro-void in hyperelastic spheres. On the
one hand, their achievements focused on the analysis of the
formation and growth of micro-void and the phenomenon of
breakage with the increase in applied load and focused on the
oscillation form of micro-void and the stability judgment of
micro-void motion. On the other hand, it is mainly the stress
discontinuity and stress concentration during the formation
of micro-void. At present, there is no literature that systemat-
ically analyzes the complex dynamic phenomena of periodic
perturbation loads and structural damping on the micro-void
motion in incompressible hyperelastic spheres.

In this paper, the dynamic behavior of an incompressible
hyperelastic sphere with a central micro-void is investigated,
where the sphere is composed of a class of radial transversely
isotropic Gent–Thomas materials and subjected to periodic
perturbation loads and structural damping. The structure
damping is introduced into the micro-void structure for the
first time by the energy variational principle, and the chaos
threshold of the perturbation parameter η̃cr = 0.3947 is
determined by Melnikov method with numerical method.
The chaotic characteristics in the sense of Smale horse-
shoe are analyzed in detail by using the Poincaré sections,
and the bifurcation characteristics of micro-void motion are
analyzed in detail by the bifurcation diagram. The results
show that, under the combined load of periodic perturba-
tion loads and structural damping, the micro-void motion
goes through a process from periodic to chaotic and then
to periodic, and the amplitude of periodic response shows a
hopping phenomenon. In particular, the first time the system
enters chaos from period and the first time it returns to period
are characterized by period-doubled bifurcation and inverse
period-doubled bifurcation, respectively. The research con-
tents in this paper are of great significance to complement
and perfect the complex dynamic behaviors of micro-void.

The structure of this paper is organized as follows. Firstly,
a mathematical model describing the radial symmetric
motions of the micro-void is derived based on the variational
principle. Secondly, the nonlinear dynamic behaviors of the
micro-void under constant loads and structural damping are
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analyzed, respectively. Then, the threshold of chaotic motion
is derived using the Melnikov method and numerical cal-
culations, and the bifurcation characteristics of micro-void
are discussed. Furthermore, the chaotic characteristics of the
micro-void under the periodic perturbation loads and struc-
tural damping are analyzed in detail. Finally, the conclusions
are given.

2 Formulation of the problem

Assume that the sphere of radius A is composed of an incom-
pressible hyperelastic material, and that a micro-void of
radius ε is at its center. When the external surface of the
sphere is subjected to sudden periodic loads, the radial sym-
metric motions of the micro-void are investigated.

The initial configuration of the sphere is denoted by

� 0 ={(R, �, �) : ε ≤ R < A,

0 < � ≤ 2π , 0 ≤ � ≤ π}. (1)

According to the assumption of spherical symmetric
deformation, the current configuration of the sphere is given
by

� ={(r , θ , φ) : r = r(R, t) > 0, ε < R < A,

r(ε, t) ≥ 0, θ = �, φ = �}. (2)

The deformation gradient tensor used to describe the
mapping relationship between two configurations is F =
diag{∂r/∂R, r/R, r/R}, where λ1 = ∂r/∂R, λ2 = λ3 =
r/R are called the radial and circumferential principal
stretches, respectively.

In the initial configuration, there is no deformation, and
the sphere is stationary; then, the initial conditions are as
follows

r(R, 0) = R, ṙ(R, 0) = 0. (3)

The hyperelastic material in this paper is the radial trans-
versely isotropic incompressible Gent–Thomas model [32],
and the specific form of the strain energy function is as fol-
lows

W = μ1

2
[(λ21 + λ22 + λ23 − 3) + α ln(λ21λ

2
2

+ λ22λ
2
3 + λ21λ

2
3 − 2) + β(λ21 − 1)2], (4)

where μ1 > 0, μ2 ≥ 0 are shear moduli of the material
and α = μ2

/
μ1. β ≥ 0 is a material parameter that reflects

the degree of anisotropy, it simplified as an isotropic Gen-
t–Thomas material model for β = 0.

For incompressible materials, it requires that λ1λ2λ3 = 1,
i.e., ∂r(R, t)

/
∂R = R2

/
r2(R, t). Integrating R on both

sides of the above equation, we have

r = r(R, t) = [R3 + r31 (t) − ε3]1/3, t ≥ 0, (5)

where r1(t) = r1(ε, t) ≥ 0 is an undetermined function,
represents the radius of the micro-void in the current config-
uration. It is easy to see that Eq. (5) can describe the radial
symmetric motion of the sphere completely.

Then, the initial condition (3) reduces to

r1(0) = ε, ṙ1(0) = 0. (6)

Let κ = r
/
R, the strain energy function can be expressed

as follows

W (κ) =μ1

2
[(2κ2 + κ−4 − 3)

+ α ln(2κ−2 + κ4 − 2) + β(κ−4 − 1)2]. (7)

Particularly, the potential energy of the structure is
∏ =∫

� 0
W (κ)dV . Substituting Eq. (7) into the potential energy,

we have

∏
=4π

∫ A

ε

μ1

2
[(2κ2 + κ−4 − 3) + α ln(2κ−2

+ κ4 − 2) + β(κ−4 − 1)2]R2dR. (8)

The kinetic energy of the structure is K = ∫
�

1
2ρṙ

2(R,
t)dV . Substituting ṙ = r−2r21 ṙ1 into the above equation, it
can be expressed in the following form

K =
∫

�

1

2
ρr−4r41 ṙ

2
1 dV

=2ρπr41 ṙ
2
1 [r−1

1 − (r31 + A3 − ε3)−1/3], (9)

where ρis the material density.
In nonlinear dynamics, damping is not only a fundamen-

tal physical quantity in structural dynamic analysis, but also
reflects the energy dissipation mechanism during structural
oscillation. In this paper, the non-conserved damping is intro-
duced through the Rayleigh’s dissipation function [33]

WR = 1

2
(c1ṙ

2
1 + c2θ̇

2 + c3φ̇
2), (10)

where c1 is the damping ratio at the radial direction, and c2
and c3 are the damping ratios at the circumferential direction,
whose specific values are determined by relevant experi-
ments. In this paper, only the radial symmetric motion is
considered, so it satisfies c2 = c3 = 0.
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Assume that the outer surface of the structure is subjected
to radial dynamic loads with the following form

p(t) = p0 + η sinωt , (11)

where ω is the excitation frequency, p0 is the constant loads,
and η is the excitation amplitude.

Then, the work done by the radial loads is given by

Wv =
∫ r2

A
4π p(t)A2dr =4π p(t)A2(r2 − A), (12)

where r2 = r(A, t) = [r31 (t) + A3 − ε3]1/3.
The generalized force Q is obtained by differentiation of

the Rayleigh’s dissipation function WR and the work Wv ,

Q = −∂WR

∂ ṙ1
+ ∂Wv

∂r1
= −c1ṙ1 + 4π p(t)A2r−2

2 r21 . (13)

The variational principle requires that

d

dt

(
∂(K − ∏

)

∂ ṙ1

)
− ∂(K − ∏

)

∂r1
= Q. (14)

Substituting Eqs. (8)–(13) into (14), the governing equa-
tion describing the radial symmetric motion of micro-void is
given as follows

4πρr41

[
r−1
1 − (r31 + δ3A3)−1/3

]
r̈1 + 2πρr21

[
3 − 4r1(r

3
1 + δ3A3)−1/3 + r41 (r31 + δ3A3)−4/3

]
ṙ21

+ c1ṙ1 + 4π
∫ A

ε

∂W (κ)

∂r1
R2dR

− 4π p(t)A2(r31 + δ3A3)−2/3r21 = 0. (15)

For convenience, the following dimensionless transforma-
tions are introduced

x = r1
A
, δ = (A3 − ε3)1/3

A
, τ = t

√
ρA2/μ1

,

ω̃ = ω

√
ρA2/μ1, P(τ ) = p(t)

μ1
,

P = p0
μ1

, η̃ = η

μ1
, c̃1 = c1

4π A2√ρμ1
, Ŵ (κ) = W (κ)

μ1
,

(16)

where ω̃ is the dimensionless excitation frequency, and δis
the dimensionless structure parameter.

According to notations of Eq. (16), the governing Eq. (15)
turns into

F(x , δ)ẍ + G(x , δ)ẋ2 + c̃1
x2

ẋ

+ H(x , δ, P , η̃, ω̃) = 0, (17)

where F(x , δ) = x − x2

(x3+δ3)1/3
, G(x , δ) = x4

2(x3+δ3)4/3
−

2x
(x3+δ3)1/3

+ 3
2 ,

H(x , δ, P , η̃, ω̃) = −P(τ )(x3 + δ3)−2/3 +
∫ (x3+δ3)1/3

(x3/(1−δ3))1/3

2κ−2κ−5+2α(κ3−κ−3)
/

(2κ−2+κ4−2)+4βκ−5(1 − κ−4)

1−κ3 dκ.

(18)

In addition, the initial condition (6) becomes

x(0) = (1 − δ3)1/3, ẋ(0) = 0. (19)

So far, the mathematical model is established for the non-
linear dynamic responses of the micro-void at the center
of the hyperelastic sphere subjected to periodically per-
turbed loads and structural damping, and the sphere is
composed of the radial transversely isotropic incompress-
ible Gent–Thomas materials. It should be pointed out that
the structural damping c̃1

x2
ẋ will enrich the nonlinear dynamic

responses of the micro-void.

3 Dynamic responses of micro-void
under constant loads

When η̃ = 0, the micro-void is subjected to constant loads,
i.e., P(τ ) = P . Firstly, the periodic oscillation of the micro-
void under constant loads without structural damping is
discussed. Then, by analyzing the equilibrium point curves
and potential wells of the system, the influences of constant
loads and structural parameters on the bifurcation of micro-
void are discussed in detail.

Let ẋ = y, Eq. (17) is reduced to the following system of
equations, i.e.,

(
ẋ

ẏ

)

=
⎛

⎜
⎝

y

−G(x , δ)y2 − c̃1y
/
x2 − H(x , δ, P , 0, ω̃)

F(x , δ)

⎞

⎟
⎠.

(20)

In Eq. (20), let ẋ = 0, ẏ = 0, if the system has a solution
(xi , 0), then, (xi , 0) must be the equilibrium point of the
system. It is clear that the number of solutions of Eq. (17)
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corresponds to the number of equilibrium points of the sys-
tem (20), and the equilibrium points can be determined by
the following equation

P =(x3 + δ3)2/3
∫ (x3+δ3)1/3

(x3/(1−δ3))1/3

2κ − 2κ−5 + 2α(κ3 − κ−3)
/

(2κ−2 + κ4 − 2) + 4βκ−5(1 − κ−4)

1 − κ3 dκ. (21)

When other parameters are given, there exists a critical
value β0 for the material parameter β, the system only has
one equilibrium point for 0 < β < β0. There are two critical
loads Pt1 and Pt2; the system will have a secondary turning
bifurcation for β0 < β. (i) The system also has only one
equilibrium point for P < Pt1 or P > Pt2. (ii) The system
has three equilibrium points for Pt1 < P < Pt2, as shown in
Fig. 1a. Similarly,material parameterα and structural param-
eter δ also have critical values α0 and δ0, respectively, and
the impacts on the number of equilibrium points are shown
in Fig. 1b, c.

3.1 Constant loads without damping

When there is no structural damping, i.e., c̃1 = 0, qualitative
analysis of the equilibrium points is performed by the first
integral of the system, where δ = 0.999, α = 1.2, β = 1,
P = 3.85, C0 = −0.00613.

It can be derived that the first integral is given by

1

2
x2F(x , δ)ẋ2 + P

[
1 − (x3 + δ3)1/3

]

+
∫ x

(1−δ3)1/3
z2

∫ (z3+δ3)1/3

(z3/(1−δ3))1/3

Ŵ ′(κ)

1 − κ3 dκdz = C , (22)

where C is an integral constant.
Under the given initial condition, themicro-void performs

periodic motions and the period is as follows

T = 2
∫ xmax

(1−δ3)1/ 3

⎛

⎝ x2F(x , δ)

2
[
C − P[1 − (x3 + δ3)1/3] − ∫ x

(1−δ3)1/3
z2

∫ (z3+δ3)1/3

(z3/(1−δ3))1/3
Ŵ ′(κ)

1−κ3
dκdz

]

⎞

⎠

1/ 2

dx , (23)

where xmax is the maximum radius of the micro-void.
Figure 2 shows the potential wells and the contour lines

of the system. The types of equilibrium points can be dis-
cussed by analyzing the potentialwells, and then, the periodic
motions of micro-void around different potential wells also
can be analyzed.

It can be seen from Fig. 2 that different energy con-
stants C correspond to different orbits of micro-void. As
shown in Fig. 2a, b, there are three critical values of C , i.e.,

C1 = −0.15495, C2 = −0.00753, C0 = −0.00613, which
cause the periodic motions of micro-void around different
potential wells. There is no equilibrium point in the system

for C < C1. The system has one equilibrium point (x1, 0)
forC1 < C < C2, which is a center, in this case, the motions
of micro-void are periodical around the single potential well.
The system has two equilibrium points (x2, 0), (x3, 0) for
C2 ≤ C < C0, which are both centers; the motions of micro-
void are periodical around either of the potential wells. The
system has three equilibrium points (x4, 0), (x5, 0), (x6, 0),
(x4 < x5 < x6) for C ≥ C0, where (x4, 0) and (x6, 0) are
centers, (x5, 0) is a saddle point, the motions of micro-void
are periodical around the double potential wells. Figure 2c, d
shows the variations of the phase trajectory curveswith loads.
It can be found that there exists a critical load P = Pc2,which
causes significant changes of structural stiffness.

3.2 Constant loads with damping

When there exists structural damping, i.e., c̃1 �= 0, the
domain of attraction, vector field and the convergence of
phase orbit of the system are mainly discussed.

Figure 3 shows the influence of the structural damping on
the domain of attractions of the system. Under the action of
damping, it can be seen from the vector field that the system
has two focuses and one saddle point, where the black curve
represents the homoclinic orbit of the system, and the red and
blue curves represent the phase orbit curves at different initial
values. For c̃1 = 0.0001, the phase orbits do not converge to
the focus of the system. When c̃1 increases, the phase orbits
converge to the focus of the system, as shown in Fig. 3b–d.

Specifically, for c̃1 = 0.1 and c̃1 = 0.5, even if the initial
values are at the left of the saddle point, the phase orbits
converge to the right focus, but if the damping is large enough,
such as c̃1 = 5, if the initial value is at the left of the saddle
point, the phase orbit converges to the left focus of the system.
On the other hand, under the action of the structural damping,
the energy dissipation generated by the system will affect
the convergence speed of the system, and the greater the
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Fig. 1 Equilibrium point curves of the system

damping, the faster the convergence speed. The influence
also leads to changes of the shape and size of the attraction
domain, and it is obvious that the attraction domain of the
right focus is much larger than that of the left focus.

4 Dynamic responses of micro-void
under periodic loads

4.1 Quasi-periodic motion of micro-void

When η̃ > 0, the micro-void is subjected to periodic per-
turbation loads, i.e., P(τ ) = P + η̃ sin ω̃τ , the system is a
nearly integrable Hamiltonian system. By giving the initial
value x0 = [1.65, 0] and parameters δ = 0.999, α = 1.2,
β = 1, P = 3.85, ω̃ = 1, the dynamic behaviors near

the center of the system are analyzed by the time response
curves, the phase orbits and the Poincaré sections.

4.1.1 Periodic loads without damping

When there is no structural damping, i.e., c̃1 = 0, the
influences of different perturbation parameters on the quasi-
periodic behaviors of micro-void near the center are dis-
cussed in detail.

The time response curves and Poincaré sections of the
system with different perturbation parameters are shown in
Fig. 4. For η̃ = 0, the time response curve is periodical, and
the system performs periodic motions, as shown in Fig. 4a.
For η̃ = 0.01 > 0, the time response curve presents per-
turbation and is no longer periodical, with the increase in η̃,
the perturbation increases further, as shown in Fig. 4b, c. For
η̃ = 0.1, the Poincaré section is a closed curve, as shown in
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Fig. 2 Potential wells and contour lines of the system

Fig. 4d, therefore, it can be determined that the micro-void
performs the quasi-periodic motion near the center.

4.1.2 Periodic loads with damping

Next, wewill discuss that the system is subjected to the struc-
tural damping, i.e., c̃1 > 0, the mainly analysis focuses on
the dynamic behaviors of micro-void near the center under
different perturbation parameters and structural damping.

For η̃ = 0.1, Fig. 5 shows the time response curves, phase
orbits, and Poincaré sections near the center under different
damping coefficients. The time response curves of the sys-
tem are non-periodic, and the amplitude gradually decreases
for c̃1 = 0.001, but are periodic for c̃1 = 0.1. It can be
seen from phase orbit curves and Poincaré sections that in a

periodic excitation system with damping, there exists a crit-
ical value c̃1cr of the damping, the micro-void still presents
quasi-periodicmotion near the center for c̃1 < c̃1cr , while the
motion of micro-void changes from a quasi-periodic state to
a periodic state for c̃1 > c̃1cr . It is worth noting that the orbit
converges to a stable fixed point during the quasi-periodic
motion of the micro-void.

4.2 Chaotic motion of micro-void

In this part, firstly, the chaotic behaviors of the system under
periodic perturbation loads are analyzed, and then, the more
complex nonlinear dynamic phenomena of the micro-void
under periodic perturbation loads and structural damping are
discussed.
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Fig. 3 Attraction domains of the system with different damping coefficients

4.2.1 Periodic loads without damping

When there is no structural damping, the influence of the
perturbation parameters on the chaotic motions of the micro-
void near the saddle point is discussed by time response
curves and Poincaré sections. As shown in Fig. 6, the time
response curve of the system is obviously non-periodic for
η̃ = 0.01, while η̃ increases, the disturbance of the system
is further strengthened; the phase orbit curves have similar
behavior, as shown in Fig. 6c,d.

Figure 7 shows the Poincaré sections when the perturba-
tion parameters are different. The projections of the phase
orbit of the system on the Poincaré section are irregular scat-
tered points near the homoclinic orbit with η̃ = 0.001, as
shown in Fig. 7a, when the perturbation parameters increase,
the projection area increases significantly, indicates that

when the perturbation parameters increase, the irregularity of
the nonlinear motions of the micro-void is further strength-
ened, as shown in Fig. 7b–d.

4.2.2 Periodic loads with damping

When consider the effect of the structural damping, firstly,
Melnikov method is used to deduce the chaos in the sense of
smale horseshoe in the motion of the micro-void. Secondly,
bifurcation diagrams are used to analyze the bifurcation char-
acteristics of the micro-void in detail. Finally, the chaotic
attractor is discussed.

Melnikov method:
The implicit expression for the homoclinic orbit (x1, x2) is
given by
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Fig. 4 Time response curves and Poincaré sections near the center under different perturbation parameters

C = 1

2
x21 F(x1, δ)x

2
2 +

∫ x1

(1−δ3)1/3
z2

∫ (z3+δ3)1/3

(z3/(1−δ3))1/3

Ŵ ′(κ)

1 − κ3 dκdz + P[1 − (x31 + δ3)1/3]. (24)

Then, the expression of x2 is

x2 = ±
√√√√2x−2

1 F−1(x1, δ)

[

C −
∫ x1

(1−δ3)1/3
z2

∫ (z3+δ3)1/3

(z3/(1−δ3))1/3

Ŵ ′(κ)

1 − κ3 dκdz − P[1 − (x31 + δ3)1/3]
]

. (25)
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Fig. 5 a, b Time response curves, c, d phase orbits, and e, f Poincaré sections under different damping
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Fig. 6 a, b Time response curves and c, d phase orbit curves near the saddle point under different perturbation parameters

Let τ = 0, we have x2 = 0, the intersection of homoclinic
orbit and horizontal axis, denoted by x0, satisfies that

∫ x0

(1−δ3)1/3
z2

∫ (z3+δ3)1/3

(z3/(1−δ3))1/3

Ŵ ′(κ)

1 − κ3 dκdz + P[1 − (x30 + δ3)1/3] = C .

(26)

Integrating Eq. (26) with respect to x1 leads to that

τ =
∫ x1

x0

dx

±
√
2x−2F−1(x , δ)

[
C − ∫ x

(1−δ3)1/3
z2

∫ (z3+δ3)1/3

(z3/(1−δ3))1/3
Ŵ ′(κ)

1−κ3
dκdz − P[1 − (x3 + δ3)1/3]

] = τ(x1). (27)

The system under the periodic perturbation loads and
structural damping is reduced to

ẋ = f (x) + ε̃g(x, τ), (28)

where.
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Fig. 7 Poincaré sections near the saddle point under different perturbation parameters

x =
(
x1
x2

)

, f (x) =
(

f1
f2

)

, 0 < ε̃ � 1, g(x, τ) =
(

0
ε̃η̃(x31+δ3)−2/3 sin(ω̃τ )−ε̃c̃1x

−2
1 x2

F(x1, δ)

)

,and

⎧
⎪⎪⎨

⎪⎪⎩

f1 = x2

f2 =
P(x31 + δ3)−2/3 − [G(x1, δ)x22 + ∫ (x31+δ3)1/3

(x31/(1−δ3))1/3
Ŵ ′(κ)

1−κ3
dκ]

F(x1, δ)

,

D f =
(

0 1
∂ f2
∂x1

−2x2G(x1, δ)
F(x1, δ)

)

, tr(D f ) = −2x2G(x1, δ)

F(x1, δ)
,

f (x0) ∧ g(x0, τ + τ0)

= x2[ε̃η̃(x31 + δ3)−2/3 sin(ω̃(τ + τ0)) − ε̃c̃1x
−2
1 x2]

F(x1, δ)
.

Note: in the above expression, “∧” denotes the exterior
product.

Using the above variable substitution, Eq. (27) satisfies
that

e(τ ) =
∫ τ

0
tr(D f )dτ = −2

∫ x1

x0

G(x1, δ)

F(x1, δ)
dx1 = e(x1).

(29)
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Then, we have

f (x0) ∧ g(x0, τ + τ0)

= η̃x2(x31 + δ3)−2/3 sin(ω̃τ (x1))

F(x1, δ)
cos(ω̃τ0)

+ η̃x2(x31 + δ3)−2/3 cos(ωτ(x1))

F(x1, δ)
sin(ω̃τ0)

− c̃1x
−2
1 x22

F(x1, δ)
. (30)

The Melnikov function of the system is given by

M(τ0) =
∫ ∞

−∞
f (x0) ∧ g(x0, τ + τ0)exp

(
−

∫ τ

0
tr(D f )dt

)
dτ

= η̃ cos(ω̃τ0)

∫ ∞

−∞
x2(x31 + δ3)−2/3 sin(ω̃τ (x1))

F(x1, δ)
exp(−e(x1))dτ

+ η̃ sin(ω̃τ0)

∫ ∞

−∞
x2(x31 + δ3)−2/3 cos(ωτ(x1))

F(x1, δ)

exp(−e(x1))dτ − c̃1

∫ ∞

−∞
x−2
1 x22

F(x1, δ)
exp(−e(x1))dτ

.= η̃ cos(ω̃τ0)J1 + η̃ sin(ω̃τ0)J2 − c̃1 J3

= η̃

√
J 21 + J 22 sin[ω̃τ0 + arctan(J1

/
J2)] − c̃1 J3 . (31)

Therefore, the condition that function M(τ0) has zero
points is

|η̃| >
c̃1 J3√
J 21 + J 22

. (32)

Equation (32) is a necessary condition for the emergence
of chaos in themotions of themicro-void.At this time, the sta-
ble manifold and the unstable manifold of the system appear
cross homoclinic points on the Poincaré sections, i.e., system
(17) has chaos in the sense of smale horseshoe. Particularly,
when ω̃ = 1, c̃1 = 0.01, the threshold value of chaos is
calculated numerically as η̃cr = 0.3947.

4.2.3 Numerical simulation

In this section, numerical simulations of the chaotic motions
are given. Firstly, the bifurcation characteristics of micro-
void under different damping are discussed using the bifur-
cation diagrams of the system. Secondly, the chaotic motions
of micro-void in the sense of smale horseshoe are also exam-
ined.

Figure 8 shows the bifurcation diagrams of system veloc-
ity with load P . When damping coefficient is c̃1 = 0.001, as
the load P increases, the response of the system presents a

process from periodic to chaotic motion, as shown in Fig. 8a,
and the chaotic region decreases obviously with the increase
in c̃1, as shown in Fig. 8b. Specifically, when c̃1 = 0.1, the
response of the system completely becomes periodic motion,
and the amplitude of the periodic response presents a jumping
phenomenon, as shown in Fig. 8c.

Figure 9 shows the bifurcation diagrams of system veloc-
ity with perturbation parameters η̃. The response of the
system presents a large area of chaotic phenomena with
c̃1 = 0, as shown in Fig. 9a. For c̃1 = 0.001, the response
of the system appears a periodic state. For c̃1 = 0.01, the
response of the system presents from periodic to chaotic
and then to periodic alternately; moreover, the amplitude
of periodic response also has a jumping phenomenon, and
the amplitude of chaotic motion is significantly higher than
that of periodic motion. Specifically, the system performs
the period-2 motion from period-1 motion through a nonlin-
ear dynamic characteristic of period-doubling bifurcation for
η̃ = 0.392. When η̃ = 0.394, the system performs period-4
motion again through the period-doubling bifurcation, and
then, the frequency band of bifurcation becomes narrower
and narrower, and it performs chaotic motion through the
period-doubling bifurcation. When η̃ = 0.397, the system
performs an inverse period-doubling bifurcation for the first
time, the system presents from a chaotic state to a period-4
motion, as shown in Fig. 9c, d.

It can be seen from the bifurcation characteristics of the
micro-void that, the minimum excitation amplitude η̃ for the
system to generate chaos also increases with the increase in
structural damping c̃1. This is because the energy dissipated
by the system increases with the increase in damping and
then, the minimum excitation amplitude required for chaos
in the system increases, i.e., increasing damping can reduce
the non-periodic motion region of the system, which can
inhibit the chaotic motion of the micro-void to some extent.

When the other parameters are fixed, the perturbation
parameter is η̃ = 0.3955 > η̃cr . Figure 10 shows the
Poincaré sections of the system under different structural
damping. As c̃1 = 0.001, a large number of irregularly
scattered points appear in the Poincaré section, and the sys-
tem performs the chaotic motion, as shown in Fig. 10a. As
c̃1 = 0.01, the Poincaré section performs a certain hierarchi-
cal structure and has the characteristics of horseshoe chaos,
as shown in Fig. 10b.

Figures 11 and 12 show the phase orbits and Poincaré
sections of the periodic motion of the micro-void under
different perturbation parameters and structural damping,
respectively. It can be seen that although the motions of the
micro-void both present periodic forms, the phase orbits of
their motions are very different, the micro-void moves peri-
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Fig. 8 Bifurcation diagrams of system velocity ẋ with load P

odically around the single potential well of the system in
Fig. 11, moves periodically around the double potential wells
in Fig. 12,whichmeans that the periodicmotion of themicro-
void changes from single well motion to double wells motion
with the changes of perturbation parameters and structural
damping.

Figure 13 shows the Poincaré sections of the system for
different excitation frequencies. It can be found that with the
changes of the excitation frequencies, the Poincaré sections
produce fractal structures and become strange attractors. The
existence of the strange attractors shows that under the peri-
odic perturbation loads and structural damping, even though
the motion of the micro-void is irregular and unpredictable,
the motion region is still certain.

5 Conclusions

In this paper, the effects of periodic perturbation load and
structural damping on the nonlinear dynamic behaviors of the
micro-void at the center of a sphere are examined, where the
sphere is composed of a class of radial transversely isotropic
incompressible Gent–Thomas material. The second-order
nonlinear ordinary differential equation describing the radial
symmetric motion of the micro-void is derived by the vari-
ational principle. Through qualitative analysis of solutions,
the main conclusions are as follows:

(1) For the constant loads without damping, the bifurcation
behaviors of themicro-void are discussed, the influences
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Fig. 9 Bifurcation diagrams of system velocity ẋ with perturbation parameter η̃

of relevant parameters on the number of equilibrium
points are given, and the periodic motions of the micro-
void around different potential wells are analyzed in
detail. For the constant loads with damping, the influ-
ences of structural damping on the attraction domains
are mainly analyzed. The results show that the phase
orbits of the system converge to different focuses under
different damping, and the greater the damping is, the
faster the system converges. The existence of damping
also leads to changes of the shape and size of attraction

domain, in which the right focus attraction domain is
much larger than that of the left focus.

(2) For the periodic loads without damping, the quasi-
periodic motions of the micro-void near the center and
the chaotic motions near the saddle point are discussed,
and the influences of perturbation parameters on the
chaotic motions are analyzed. For the periodic loads
with damping, the periodic and quasi-periodic motions
of themicro-void near the center are discussed. Near the
saddle point of the system, firstly, the chaos threshold is
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Fig. 10 Poincaré sections of the system with different structural damping coefficients

Fig. 11 Phase orbit and Poincaré section of the system for η̃ = 0.35, c̃1 = 0.01

obtained by the Melnikov method. Secondly, the bifur-
cation characteristics of the micro-void are analyzed
by the bifurcation diagrams. The results show that, the
response of the system presents from periodic to chaotic
and then to periodic alternately, and the chaotic region
is reduced obviously; moreover, the amplitude of peri-
odic response also has a jumping phenomenon, and the
amplitudes of chaotic motions are significantly higher
than these of periodicmotions. Finally, the Poincaré sec-
tions of the systemhave fractal featureswith the changes
of the excitation frequencies, and it is found that the

strange attractors are generated during the movements
of the micro-void.

(3) By analyzing the dynamic response characteristics of
the system with and without damping, the influence of
structural damping on the response amplitude has been
discovered. Specifically, it has been found that struc-
tural damping can significantly constrain the amplitude
range of micro-void vibration response and stabilize the
response, thereby enhancing the structure service per-
formance and safety.
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Fig. 12 Phase orbit and Poincaré section of the system for η̃ = 0.3955, c̃1 = 0.1

Fig. 13 Poincaré sections of the system for different excitation frequencies
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