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Abstract
This article discusses an approach to designing an anti-windup gain for an interval positive linear system (PLS) with input
saturation in a continuous time framework. The suggested approach demonstrates that the closed-loop systemwith a controller
and the anti-windup gain can be described by a PLS with a dead-zone nonlinearity. The stability analysis for a region of
admissible initial states is shown using the Lyapunov function wherein a sector condition is used. Also, a linear matrix
inequality (LMI)-based optimization is proposed for maximizing the domain of stability associated with the closed-loop
system. For ease of synthesis, the methodology is proposed through conditions incorporated in LMIs. The viability of the
proposed method is illustrated through simulation studies.

Keywords Positive linear systems (PLSs) · Interval uncertainties · Actuator saturation · Lyapunov stability · Anti-windup ·
Linear matrix inequality (LMI)

1 Introduction

Dynamical systems whose state trajectories initiate from
non-negative initial conditions and consistently remainwithin
the positive orthant for all non-negative inputs are referred to
as positive systems. It is noteworthy that, in these systems, all
state variables are invariably constrained to be non-negative
throughout their evolution [1, 2]. Positive systems find appli-
cation in various domains, including bio-medicine [3, 4],
industrial engineering [5], pharmacokinetics [6], chemical
engineering [7], ecology [8], and numerous other fields. The
diverse range of applications underscores the significance of
exploring various facets of positive systems.

One distinctive characteristic of positive systems is their
inherent complexity when compared to conventional lin-
ear systems. Positive systems are defined within cones, as
opposed to linear systems, which are defined within linear
spaces. This distinction has led to substantial research on
the stability domain, control and stabilization of PLSs [9–
11]. Furthermore, research efforts have been dedicated to the
study of PLSs with uncertainties [12, 13], as uncertainties
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in system parameters are inevitable due to factors such as
data acquisition limitations [14], plant variability [3], mea-
surement errors, stochastic environmental disturbances [15],
andmore. Numerous controller design approaches have been
proposed to address interval uncertainties in PLSs [16, 17].

Many engineering applications evolving in the positive
orthant are influenced by input saturation. For instance,
biomedical control systems regulate physiological variables
that remain in the positive orthant. In this context, control
input, typically administered through drug delivery, is imple-
mented using pumps. Likewise, in process control systems,
variables such as level, flow, and pressure are consistently
positive. In all these scenarios, system-level constraints and
the operational range of physical actuators introduce the
effects of saturation. Input saturation, where the input signal
to a system is confined within specific limits, is a com-
mon phenomenon in practical systems [18]. This limitation
can result from physical constraints, actuator limitations, or
design specifications. The presence of actuator saturation
can compromise system performance, leading to reduced
tracking accuracy, slower response times, and increased
steady-state errors. Consequently, the analysis and design of
control systems to address these challenges become impera-
tive.

Traditionally, two main approaches have been docu-
mented in the literature for addressing the saturation issue: (i)
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Initially designing a controller to meet performance require-
ments without considering saturation and subsequently mod-
ifying the controller using an anti-windup compensator to
mitigate the undesirable effects of actuator saturation [19–
21]. (ii)Developing a controllerwhile accounting for actuator
saturation from the outset. The first approach, known as
anti-windup design, is often favored because it allows for
the design of controllers using standard techniques suited to
the specific system and later modifies them to handle the
effects of saturation. These anti-windup compensators oper-
ate specifically during saturation periods, ensuring both the
maintenance of internal stability within the closed-loop sys-
tem and themitigation of performance degradation caused by
actuator saturation. During the earlier stages of anti-windup
research, it was commonly believed that windup phenomena
were solely attributable to the integral part of the controller.
The ‘anti-reset windup’ concept which involved modifying
the integral part of the controller to circumvent actuator sat-
uration is introduced in [22]. A similar method, known as the
conventional anti-windup technique, was presented in [23],
focusing on modifying the control input instead of altering
the integral part of the controller. Subsequently, in [24], a
linear conditioning technique was introduced as an exten-
sion of the ‘back-calculation strategy’ originally outlined
in [22]. This approach involves shaping the reference input
through an additional feedback loop triggered at the moment
of actuator saturation. A block diagram illustrating a conven-
tional anti-windup scheme for managing actuator saturation
is depicted in Fig. 1.

Numerous noteworthy control methodologies are dis-
cussed in the literature, including proportional (P) [11],
proportional-integral (PI) [25], proportional-derivative (PD)
[26], and proportional-integral-derivative (PID) controllers
[27]. ThePIDcontroller finds extensive application in diverse
industrial processes, due to its comprehensible structure in
comparison with more complex controllers. However, satu-
ration is a significant consideration in PID control systems
because it can impact the system’s performance and stabil-
ity. When a controller output saturates, it may lead to issues
such as integral windup and reduced responsiveness. Integral
windup can occur when the integral term of the PID con-
troller continues to accumulate error even when the system
is at its limits, leading to overshooting or oscillations when
the saturation is lifted. To mitigate saturation-related chal-
lenges, anti-windup mechanisms are often employed in PID
controllers. Anti-windup techniques are essential in positive
systems to effectively manage integrator windup, ensuring
system stability, performance optimization, and actuator pro-
tection. By carefully limiting the accumulation of error in
the integral term and resetting it appropriately when con-
trol saturation occurs, these techniques prevent overshooting,
maintain steady-state accuracy, andminimize actuator stress.
In positive systems, the linearity and time-invariance proper-

ties facilitate the analysis and implementation of anti-windup
mechanisms, allowing for efficient and reliable control of
complex systems while extending the operational lifespan of
critical components.

The study of controller design for PLSs with saturating
inputs has been a subject of investigation, as evidenced by
reference [28] and other related works [19–21, 29], primar-
ily focused on linear systems. Actuator saturation has been
a prominent concern in these studies, exerting a substantial
impact on PLSs behavior. This effect introduces nonlinear-
ity, compromises system performance, complicates stability
analysis, and necessitates special considerations in control
design. Consequently, comprehending and accommodating
input saturation effects are indispensable for effectively
modeling, analyzing, and controlling PLSs in real-world
applications. However, it is worth noting that the existing
literature has shown a gap in addressing PLSs with interval
uncertainties and actuator saturation. This particular gap in
research has motivated the current study.

In this proposed work, the author seeks to employ an anti-
windup design procedure to alleviate the influence of input
saturation on a positive systemwhen it is subjected to interval
uncertainties. The major contributions of the proposed work
are outlined as follows:

1. Addresses actuator saturation in PLSs with interval
uncertainties by incorporating an anti-windup gain to
guarantee stability in the presence of actuator saturation.

2. Determines the stability region of the closed-loop sys-
tems using a quadratic Lyapunov function and amodified
sector condition.

3. Identifies initial states ensuring asymptotic convergence
toward the origin.

4. Establishes sufficient conditions in the form of LMIs for
theoretical validation.

5. The article upholds the use of convex optimization to
maximize the area of asymptotic convergence while
ensuring closed-loop system stability.

The subsequent section of the manuscript is organized
as follows. Section2 presents the problem statement and
provides a description of the system. Theoretical aspects per-
taining to stability analysis and computation of anti-windup
gain are elaborated in Sect. 3 using a convex optimization
problem. The effectiveness of the proposed approach is
demonstrated through simulation results in Sect. 4, followed
by the conclusion in 5, which concludes the paper.

Notations: Let R represent the set of real numbers, Rm×n

represents the set ofm×nmatriceswith elements fromR,Rn

denotes the Euclidean space of n dimensions and R
n+ refers

to the non-negative orthant in R
n . A1 ∈ [A1, A1] means

A1 ≤ A1 ≤ A1 (entrywise) for any matrices A1, A1, and
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Fig. 1 Block diagram of a
system with actuator saturation
and anti-windup

A1. The i th row of matrix X is denoted by X(i). In denotes
the nth- order identity matrix. XT represents the transpose of
matrix X . Theminimumandmaximumeigenvalues ofmatrix
X are denoted by λmin(X) and λmax (X), respectively. Co{·}
denotes the convex hull of a set.

2 Problem formulation

Considering the continuous time interval PLS as:

ẋs(t) = Asxs(t) + Bsus(t)

ys(t) = Csxs(t)
(1)

with initial conditions described as:

xs(t0) = σx ≥ 0, ∀ t ∈ R+.

where system state xs(t) = xs ∈ R
n+, control input us(t) =

us ∈ R
m+ and measured output ys(t) = ys ∈ R

r+, As ∈ [As ,
As], Bs ∈ [Bs , Bs],Cs ∈ [Cs ,Cs] are constant matrices with
known bound. Also, As ∈ R

n×m isMetzler (its off-diagonal
entries are all non-negative, i.e., for all (i, j) such that i �= j ,
[As]i j ≥ 0 entrywise), Bs ≥ 0 ∈ R

n×m , Cs ≥ 0 ∈ R
r×n .

Definition 1 ( [16]): The system defined by equation (1) is a
positive system if for any given non-negative initial condition
xs(t0) = σx ≥ 0, ∀ t ≥ 0 and input us ≥ 0 its state trajectory
never becomes negative, i.e., xs ∈ R

n+, ∀ t ≥ 0.

A positive dynamic output-feedback stabilizing controller
(in this case observer-based controller) has been formulated
guaranteeing performance requirements and closed-loop sys-
tem stability without control saturation as:

ϑ̇c = Acϑc + Bcys

�c = Ccϑc + Dcys
(2)

where controller state ϑc ∈ R
n+, controller output �c ∈ R

m+
and Ac, Bc, Cc, Dc are real matrices of well-suited dimen-
sions, with Ac being a Metzler matrix. These matrices can
be obtained based on (Theorem 5 and Theorem 7, ( [16])).

Now taking actuator saturation into effect, the control
input to the system (2) is described as:

us = sat(�c) = sat(Ccϑc + Dcys) (3)

where sat(�c(i)) = sgn(�c(i))min
[
u0(i), |�c(i)|

]
with

u0(i) > 0 for i = {1, 2, · · ·m} and the input vector us has
the amplitude limitation of 0 ≤ us(i) ≤ u0(i).

To mitigate the adverse impacts of actuator saturation, the
controller design has been updated with an anti-windup term
E0(sat(�c) − �c), where E0 ∈ R

n×m is an anti-windup
gain. The modified controller design is:

ϑ̇c = Acϑc + Bcys + E0(sat (�c) − �c)

�c = Ccϑc + Dcys .
(4)

Defining the error of the system and proceeding further,

er = xs − ϑc

ėr = ẋs − ϑ̇c
(5)

The compensated closed-loop system is described with an

augmented vector, ρ = [
xs er

]T ∈ R
2n+ and a dead-zone

nonlinearity function, ψ(�c) = �c − sat(�c) as follows:

ρ̇ = A1ρ − (B1 + RE0)ψ(�c) (6)

where �c = Kρ with K = [
(DcCs + Cc) −Cc

]
and

A1 =
[

As + BsCc + BsDcCs −BsCc

As − Ac − BcCs + BsCc + BsDcCs Ac − BsCc

]
,

B1 = [
Bs Bs

]T
, R = [

0 In
]T

.

In general, ψ(�c) corresponds to a dead-zone nonlinearity

ψ(�c) = [ψ(�c(1)) · · · ψ(�c(m))]T , where ∀i = 1, · · · ,m

ψ(�c(i)) =

⎧
⎪⎨

⎪⎩

�c(i) − u0(i) if �c(i) > u0(i)
0 if − u0(i) ≤ �c(i) ≤ u0(i)
�c(i) + u0(i) if �c(i) < −u0(i)

In this case, the input vector us has the amplitude limita-
tion of 0 ≤ us(i) ≤ u0(i) with u0(i) > 0 for i = {1, 2, · · ·m}
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so, a dead-zone nonlinearity function, ψ(�c) = �c −
sat(�c) is considered. The augmented system (6) acknowl-
edges an augmented initial condition as:

ρ(t0) = σρ =
[
xs(t0)
er (t0)

]
=

[
σx
σe

]
≥ 0, ∀ t ∈ R+.

The global asymptotic stability of the system described in
equation (6) is ensured when the initial condition satisfies
σρ ≥ 0 ∈ ε(P), where ε(P) represents an ellipsoidal cone
defined as: ε(P) = {ρ ∈ R

2n+ : ρT Pρ ≤ 1}. This stability
condition guarantees that the system trajectories converge
toward the origin.

In this note, the aim is to search for a solution to the sum-
marized problem.

Remark 1 The problem at hand is to design an anti-windup
gain E0 for the augmented system such that a large domain
of asymptotic stability can be determined. This task involves
careful consideration of the system’s behavior under windup
conditions, and finding a gain that can effectively prevent
windup while ensuring stability. Thus, the objective is to
design an anti-windup gain minimizing the impact of input
saturation.

3 Main results

3.1 Stability analysis

1. The augmented system (6) without the control bound is
globally stable if matrix A1 is Hurwi t z Metzler matrix.

2. With matrices J , K ∈ R
m×2n+ , a polyhedral set Q is

defined as:

Q(K , J , u0) ∼= {ρ ∈ R
2n+ ; |(K(i) − J(i))ρ| ≤ u0(i)} (7)

where, i = {1, 2, · · ·m} with u0(i) > 0 and J(i), K(i) are
the i th row of matrix J and K , respectively.

Lemma 1 Considering the nonlinearity ψ(�c), if ρ ∈
Q(K , J , u0) then for any diagonal and positive definite
matrix T ∈ R

m×m+ , the following relation holds good:

ψ(�c)
T T [ψ(�c) − Jρ] ≤ 0. (8)

Proof Proof of this Lemma 1 is similar to the proof of Lemma
1,( [20]). �	

Thedomain of stability of the closed-loop system (6) using
the Lyapunov function is evaluated as follows.

A Lyapunov function is chosen as:

V (ρ) = ρT Pρ where P = PT > 0. (9)

For the augmented system described by equation (6) to be
asymptotically stable certain conditions are derived using
the Lyapunov function and accordingly anti-windup gain,
E0 matrix is to be computed.

Theorem 1 For the asymptotic stability of the augmented
system (6) there should exists a positive definite symmetric-
matrix X ∈ R

2n×2n, a matrix Y ∈ R
m×2n, a matrix Z ∈

R
n×m and a diagonal positive definite matrix W ∈ R

m×m

which satisfies:

[
X A1 + (A1)

T X B1W + RZ − Y T

W B1
T + ZT RT − Y −2W

]
< 0 (10)

[
X XK(i)

T − Y(i)
T

K(i)X − Y(i) u20(i)

]
≥ 0, (11)

Then gain matrix is found as E0 = ZW−1, such that the
ellipsoidal cone ε(P) = {ρ ∈ R

2n+ ; ρT Pρ ≤ 1}, with P =
X−1, is an asymptotic stability region of system (6).

Proof Considering J = Y X−1 to satisfy relation (11), indi-
cates that the polyhedral set Q defined above includes the
ellipsoidal cone ε(P). From Lemma 1, it can be inferred that
∀ρ ∈ ε(P), ψ(�c) = �c − sat(�c) satisfies the sector con-
dition (8). Computing time derivative of Lyapunov function
along trajectories of the augmented system.

V̇ (ρ) = ρT P ρ̇ + ρ̇T Pρ (12)

V̇ (ρ) = [
ρT −ψ(Kρ)T

]

[
PA1 + AT

1 P P(B1 + RE0)

(B1 + RE0)
T P 0

] [
ρ

−ψ(Kρ)

]
(13)

Using sector condition (8),

V̇ (ρ) ≤ V̇ (ρ) − 2ψ(Kρ)T Tψ(Kρ)

+ 2ψ(Kρ)T T Jρ ∀ρ ∈ ε(P) (14)

V̇ (ρ) = [
ρT −ψ(Kρ)T

]

[
PA1 + AT

1 P P(B1 + RE0) − J T T T

(B1 + RE0)
T P − T J −2T

]

[
ρ

−ψ(Kρ)

]

For the system to be stable, the below inequality should be
satisfied.

[
PA1 + AT

1 P P(B1 + RE0) − J T T T

(B1 + RE0)
T P − T J −2T

]
< 0

(15)
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Also, equation (15) is pre- and post-multiplied by

[
P−1 0
0 T−1

]

and taking P−1 = X , T−1 = W , Y = J X , E0 = ZW−1

equation (15) is equivalent to

[
A1X + X AT

1 B1W + RZ − Y T

W B1
T + ZT RT − Y −2W

]
< 0. (16)

Now, when equation (10) is satisfied ∀ρ ∈ ε(P), where
ρ �= 0 then, V̇ (ρ) < 0. Hence, it can be concluded that ε(P)

is a positively invariant and contractive region for the closed-
loop system (6) which implies that for any ρ(0) ∈ ε(P), the
corresponding trajectories of the system converges asymp-
totically to the origin, i.e., ε(P) is the domain of asymptotic
stability for the augmented system (6). �	

3.2 Estimation of basin of attraction

The asymptotic stability of the system, defined by Eq. (6),
is affirmed for all admissible initial conditions given by a
polyhedral set formed by the convex hull of its vertices as
	 ∼= Co{ν1, ν2, · · · νnr }, νr ∈ R

2n (where r = 1, 2, · · · nr ).
In this Section, a convex optimization technique is presented
where optimization implicitly implies the maximization of
the approximation of the basin of attraction linked to it
(i.e., β	 ⊂ ε(P)) where β is a scaling factor. So, for obtain-
ing a set ε(P)with significant size, the optimization problem
(eigenvalue problem [30]) is given as:

min
X ,Y ,Z ,W

{αγ }
subject to

relation (10) and (11) with
[
γ νTr
νr X

]
≥ 0.

(17)

where α is the tuning parameter, γ = λmax (X−1) and 1
β2 =

γ .
Also, β = 1√

λmax (X−1)
, the minimization of λmax (X−1)

infers maximization of β. The relation, β	 ⊂ ε(P) is satis-
fied by LMI condition (17).

This optimization is useful for illustrating the anti-windup
benefit, across broad asymptotic stability domains. With the
new E0 design, an estimate of the basin of attraction of the
improved closed-loop system can be made larger, guarantee-
ing the stability of the system under interval uncertainties
and input saturation.

Fig. 2 Mammillary model with two compartments

4 Illustrative examples

Example 1:Consider a two compartment mammillary model
as depicted in Fig. 2 wheremi j represent flow rate constants.
Such model has wide range of applicability in the area of
pharmacokinetics for analysis of certain body metabolism.

The system parameters for the compartmental system
(borrowed from [17]) are:

As =
[−(m11 + m21) m12

m21 −(m22 + m12)

]
;

Bs =
[
b1 0
0 b2

]
; Cs = [

n11 0
]

The elements of the bounded matrices As, As,Cs,Cs are
derived from:

m11 = 1.2 ± 0.042, m12 = 0.3 ± 0.061, m21 = 0.5 ± 0.045,

m22 = 0.6 ± 0.140, n11 = 1 ± 0.1, b1 = 1, b2 = 1.

Now, considering the observer-based controller design
approach [16] for the interval positive system in the above-
mentioned compartmental system, the following state observer
matrices G, L , and controller matrix K are obtained.

G =
[−11.0313 6.1204

8.0419 −13.6149

]
; L =

[
5.8297
17.8711

]
;

0 5 10 15
Time (sec)

0

1

2

3

4

5

6

Pl
an

t s
ta

te

without controller

with controller

Fig. 3 Plot of xs1 (t) state without saturation compensation
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Fig. 4 Plot of xs2 (t) state without saturation compensation
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Fig. 5 Plot of control inputs without saturation compensation

K =
[−0.4214 −0.1212
−2.0942 −0.8231

]
.

Further, the above-designed observer-based controller for the
interval positive system without saturation is compared with
Eq. (2) and then considering input saturation in the system,
the procedure for anti-windup gain design is followed with

randomcontrol boundsu0(i) = [
1 1

]T
and tuningparameters

α = 1. Now, solving the LMI conditions in (17) following
results are obtained.

β = 2.0031; E0 =
[−0.5807 −1.6921
−2.0453 −3.9755

]
.

Figure 3 and 4 depict the states of the plant with (dashed
curve) and without (solid curve) controller action with E0 =
0 by taking three random sample of the uncertain system
matrices A andC . It can be observed that the multiple trajec-
tories evident the uncertain system and due to the saturation
effect the trajectories of the systemdonot converge asymptot-
ically to zero. Figure 5 shows the control signal for E0 = 0
where saturated control input can easily be depicted. Fur-
thermore, Figs. 6 and 7 depict the states of the plant with
and without controller action with designed E0 and it can
be mentioned that the anti-windup greatly improved the time
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Fig. 6 Plot of xs1 (t) state with saturation compensation
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Fig. 7 Plot of xs2 (t) state with saturation compensation

response and lead the system’s trajectories asymptotically to
zero. Figure 8 shows that the control signal for the designed
E0 remained saturated for a small duration of time. Table 1
illustrates certain system parameters for comparison of per-
formance with E0 = 0 and with designed E0. It is evident
that with designed E0, the system performance is improved,
particularly in relation to settling time and steady-state error.

Figure9 illustrates the domain of stability projected
onto the plane (x1, x2), which corresponds to the states
xs1 and xs2 of the plant with unstable equilibrium points
±[0.8709 1.6015]T ; which are very close to the edge of the
obtained domain of stability. Being positive system, the equi-
librium point lying in the positive orthant has to be taken into
account in this context. Thus, proving the efficiency of the
proposed approach in providing potentially a good approxi-
mation of the basin of attraction.

5 Conclusions and future works

An approach of anti-windup design to mitigate the saturation
effect in a PLS with interval uncertainty in system param-
eters has been proposed with conditions solvable in LMI
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Fig. 8 Plot of control inputs
with saturation compensation
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Table 1 Comparison of system
parameters

States Input saturation Settling time(sec) Steady-state error

xs1 (t) With saturation effect 63.3263 0.66931

(i.e., E0 = 0)

xs1 (t) Mitigating saturation effect 19.9235 0.00006

(i.e., with designed E0)

xs2 (t) With saturation effect 62.9881 0.94221

(i.e., E0 = 0)

xs2 (t) Mitigating saturation effect 29.9596 0.00011

(i.e., with designed E0)

Fig. 9 Stability domain

framework. The demonstrated controller shows its effective-
ness with guaranteeing the positivity of the system. While
designing the anti-windup gain to investigate the stability
aspects of the closed-loop system (6), a Lyapunov function
is taken into consideration, and then the condition for anti-
windup gain E0 calculation is given with defined region of
asymptotic stability. The Lyapunov stability utilizing convex
optimization enables the design of E0, resulting in a wider
domain of asymptotic stability. The proposed control scheme
is believed to bewidely applicable in practical systemswhere
a range of operations of the physical actuator involves the sat-
uration effect. As a result, new avenues for investigation into
more realistic scenarios involving delayed positive systems

have opened up. This is viewed as one of the potential oppor-
tunities for developing this work further. Additionally, this
paper is framed as an instance of applying a single propor-
tional control in the controller design to address saturation
effects. It would be valuable to investigate comprehensive
PID controllers in future studies.
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