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Abstract
A nonlinear sliding mode observer is proposed to estimate the lateral and longitudinal velocities and yaw rate of an automotive
vehicle. The observer is based on standard outputs available in nowadays cars such as longitudinal and lateral accelerations,
yaw rate, wheel rotational speed and steering angle. Tyre friction forces are described using the nonlinear Magic formula
model, and the stability analysis is performed based on a Lyapunov quadratic function and the Sylvester criterion. The accuracy
and the robustness of the observer are assessed bymeans of numerical simulation assuming very challenging driving scenarios
and parameters uncertainties.
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List of symbols

Velocities/accelerations

vx Longitudinal vehicle velocity (m s−1)
vy Lateral vehicle velocity (m s−1)
r Vehicle yaw rate (rd s−1)
ωi Wheel angular speed (rd s−1)
Vxi Wheel coordinate system velocity (m s−1)
vxi Longitudinal velocity of the wheel center in the body-

fixed coordinate system (m s−1)
vyi Lateral velocity of the wheel center in the body-fixed

coordinate system (m s−1)
ax Longitudinal acceleration (m s−2)
ay Lateral acceleration (m s−2)

Forces acting on the vehicle

Fxi Longitudinal tyre/road force (N)
Fyi Lateral tyre/road force (N)
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Fti Tyre traction/braking force (N)
Fsi Tyre lateral forces (N)
Fzi Vertical load (N)

Magic formula parameters

B Stiffness factor
D Friction coefficient peak
E Curvature factor

Tyre slip coefficient

λxi Longitudinal slip
λyi Lateral slip
αi The front left tyre slip angle (rd)

Vehicle parameters

m Vehicle mass (kg)
h Height of the vehicle center of gravity (CG) above the

ground (m)
Iz Vehicle moment of inertia around vertical axis (kg m2)
lf Front wheelbase length (m)
lr Rear wheelbase length (m)
bf Front track width (m)
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br Rear track width (m)
g Gravitational constant (m s−2)
δ Front steering angle (rd)
C Common value of the shape factor
μ Tyre/road friction coefficient

1 Introduction

Manycontrol systems in nowadays cars, contribute to achieve
good driving performances together with a comfortable and
safe transportation. Safety is a key factor, and it must be guar-
anteed in different and/or unexpected driving conditions.One
of the most critical aspects of transportation safety is the car
stability that is most threatened when facing critical driving
situations such as extreme steeringmanoeuvres, sudden tyre-
road friction coefficient changing or emergency braking. To
this end, an active control strategy is compulsory for a vehicle
to improve steerability and to maintain the vehicle stability
during critical situations.

Active safety systems generally rely on a real-time knowl-
edge of the vehicle dynamic behaviour. The state (velocities
and forces) of a vehicle cannot be completely supplied in a
feedback scheme unless using very advanced and expensive
sensors. Such devices are not suitable for production cars,
and safety-relevant state variables must be then estimated
based on common available car sensors.

Vehicle state estimation has been subject of investiga-
tion for numerous research papers. Using a GPS alongside
with measured acceleration and yaw rate, supplied by iner-
tial sensors, the state of the vehicle has been estimated using
kinematic Kalman filter (KKF) [1] and nonlinear observers
[2]. In [3], the integration of inertial navigation system sen-
sors with GPS measurements demonstrated more accurate
estimates of the vehicle states. Nevertheless, when an esti-
mation scheme is based onGPS, it is usually penalized by the
poor accuracy of usually implemented ones and their lack of
reception in some geographical areas [4].

On the other hand, vehicle velocities can be estimated
using road-tyre models with an observer based on friction
lateral and longitudinal forces. In addition to an accurate tyre
model, a good perception of the road condition is essential
for such an estimation scheme to be efficient.

Kalman filters have been widely used in the literature to
estimate either the vehicle state or parameters. This algo-
rithm is based on the use of an adaptive square-root cubature
Kalman filter and on the principle of similarities. A dual
extended Kalman filter (DEKF) has been appraised in [5]
when estimating the longitudinal and lateral states along-
side the vehicle parameters. In [6–8], vehicle longitudinal
and lateral velocities, yaw rate and tyre parameters have
been estimated using extended Kalman filter (EKF), and in

[9], smooth variable structure filter (SVSF) has been used
for the sideslip angle estimation to tackle modelling errors
and enhance the estimation robustness. An unknown input
observer was employed in [10] for estimating the lateral
dynamics of the vehicle.

Unscented Kalman filters (UKF) have been introduced for
the state estimation and vehicle’s lateral dynamics estimation
in [11, 12] respectively. In [11], a planar two-track model
has been combined with the empiric tyre Magic formula to
describe the vehicle and tyre behaviour. The accuracy has
been increased with advanced vertical tyre load calculation
considering tyre stiffness. and increases the estimation accu-
racy. In [12], a qualitative comparisonbetweenEKFandUKF
has been presented. More recently, authors in [13] discussed
a novel method for the side-slip angle and roll angle estima-
tion based on EKF. They included to the basic EKF algorithm
a fusion algorithm integrating side-slip angle rate to com-
pensate the side-slip angle estimate. The estimation strategy
demonstrated improved accuracy. An adaptive square root
cubature Kalman filter (ASCKF)-based estimator has been
proposed, in [14, 15], alongside an integral correction fusion
algorithm to compensate the estimation error in the presence
of coloured sensor noise.

Sliding mode observers (SMO) have also been suggested
to address the vehicle state and/or parameters, estimation
especially in the presence of external disturbances and/or
parameters uncertainties. In [16, 17], a robust H∞ SMO and
a finite-frequency mixed H−/H∞ gain scheduling observer
(GSO) have been suggested, respectively. The authors tar-
geted an electric ground vehicle, yet they converted the
nonlinear vehicle model to a linear parameter varying (LPV)
form. In [18], a SMO has been compared to a linear vehicle
model-based linear observer, extended Luenberger observer
(ELO) and EKF.

However, all these studies, have simplified the observer
design assuming linear tyre models.

Nonlinear models play a fundamental role in modelling
complex systems, providing a more realistic approach to
describing relationships that cannot be adequately repre-
sented by linear models [19–21]. To accurately describe the
tyre behaviour, there are nonlinear empirical and physical
models. A well-known model for the automotive engineer-
ing community is the Pacejka tyre model [22]. It is widely
used, and it relies on the magic formula that describes the
longitudinal force and side force based on the longitudinal
slip and slip angle, respectively. The model is empirical, so
its parameters strongly rely on experimental tyre data and
may lack of accuracy. Unlike the empirical ones, physical
tyre models, typically LuGre tyre model [23] and brush tyre
model [24], can accurately describe the tyre behaviour. Nev-
ertheless, their complex structure, including too many tyre
parameters, makes their use very hard especially in real-time
applications. A trade-off between accuracy and simplicity
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may be achieved using semi-empirical nonlinear tyre model
like the Dugoff one [25].

The main drawbacks of the above-mentioned observation
techniques are their sensitiveness to parameters uncertain-
ties. Furthermore, in the above-mentioned research papers,
the observer/estimator stability analysis is rarely performed
when nonlinear tyremodels are assumed. In this paper, a slid-
ing mode observer is proposed to estimate the longitudinal
velocity, the lateral velocity, and the yaw rate for a four-wheel
ground vehicle. The stability analysis is performed based on
Lyapunov theory and the robustness of the observer is exam-
ined under a very challenging simulation scenario.

The rest of this paper are organized as follows. The four-
wheel front steering vehicle is modelled in the next section.
The dynamic equations of the rigid chassis are derived, and
the tyre/road friction forces adopted model is presented. In
Sect. 3, the SMO is designed. The estimation error dynamic
is derived, and the stability analysis is performed using a
Lyapunov quadratic function alongside with the Sylvester
criterion. Simulation results and relevant discussion are pre-
sented in Sect. 4, while Sect. 5 concludes the paper.

2 Vehicle modelling

A schematic of the vehicle model used in this paper is
sketched in Fig. 1. The vehicle body is assumed to be rigid, so
suspension dynamics are neglected. The equations of motion
are then derived using Newton’s rule.

The rigid body dynamicswith respect to the centre of grav-
ity (CoG) coordinate system can be written for longitudinal,
lateral and yaw motions, respectively, as follows [26, 27]:

mv̇x � mvyr + (Fx1 + Fx2 + Fx3 + Fx4) (1)

mv̇y � −mvxr +
(
Fy1 + Fy2 + Fy3 + Fy4

)
(2)

(3)

Izṙ � bf
2
(Fx1−Fx2) +

br
2
(Fx3−Fx4)

+ lf
(
Fy1 + Fy2

) − lr
(
Fy3 + Fy4

)

This figure provides a detailed schematic of the 3-DOF
vehicle model. Gray rectangles represent the wheels, with
arrows indicating applied forces and associated distances.
Vehicle velocity v and yaw rate r are depicted by arrows, and
the x and y axes provide visual reference. This concise yet
informative description aims to facilitate a clear understand-
ing of the 3-DOF vehicle model.

In this paper, only front wheel steering δ is considered, so
δ1 � δ2 � δ, and δ3 � δ4 � 0. Tyre friction longitudinal
forces Fti and friction lateral forces Fsi are related to the

longitudinal and lateral tyre forces as follows [26, 27]:

Fx1 � Ft1cos(δ) − Fs1sin(δ) (4)

Fx2 � Ft2cos(δ) − Fs2sin(δ) (5)

Fx3 � Ft3 (6)

Fx4 � Ft4 (7)

Fy1 � Ft1sin(δ) + Fs1cos(δ) (8)

Fy2 � Ft2sin(δ) + Fs2cos(δ) (9)

Fy3 � Fs3 (10)

Fy4 � Fs4 (11)

By combining the above equations, the dynamic model of
the vehicle is as follows:

⎡

⎢
⎣

v̇x

v̇y

ṙ

⎤

⎥
⎦ �

⎡

⎢
⎣

vyr
−vxr
0

⎤

⎥
⎦ + Bx (δ)Ft + By(δ)Fs (12)

Fig. 1 Schematic of the 3-DOF vehicle model
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Fig. 2 Pacejka tyre model

where Ft � [Ft1Ft2Ft3Ft4]T , Fs � [Fs1Fs2Fs3Fs4]T ,

Bx (δ) �

⎡

⎢⎢
⎣

cos(δ)
m

cos(δ)
m

1
m

1
m

sin(δ)
m

sin(δ)
m 0 0(

lfsin(δ)+ bf
2 cos(δ)

)

Iz

(
lfsin(δ)− bf

2 cos(δ)
)

Iz
br
2 − br

2

⎤

⎥⎥
⎦

and

By(δi ) �

⎡

⎢⎢
⎣

−sin(δ)
m

−sin(δ)
m 0 0

cos(δ)
m

cos(δ)
m

1
m

1
m(

lfcos(δ)− bf
2 sin(δ)

)

Iz

(
lfcos(δ)+

bf
2 sin(δ)

)

Iz
− lr

2 − lr
2

⎤

⎥⎥
⎦

Friction longitudinal and lateral forces, Fti and Fsi ,
respectively, are calculated based on the Pacejka tyre model
[22, 28] which we assume the same for the four wheels
(i � 1 · · · 4) (cf. Fig. 2).

Figure 2 graphically represents the Pacejka tire model
by depicting the variation of the friction coefficient μ with
respect to the slip ratio λ. λm representing the slip ratio asso-
ciated with the maximum friction coefficient, and μs , the
asymptotic value of μ as λ approaches infinity. These points
are vital in computing the parameters of the Pacejka model,
including C, B, and E.

Friction forces depend on the longitudinal and lateral i th
wheel slip ratios λxiλyi respectively, and they are given by:

Fti � Fzi f (λxi ) (13)

Fsi � Fzi f
(
λyi

)
(14)

where Fzi is the normal load on the i th wheel, and:

f (λ) � μsin(C atan(Bλ − E(Bλ − atan(Bλ)))) (15)

Pacejka tyre model parameters are defined as follows [22,
28]:

C � 2

π
sin−1

(
μs

μ

)
(16)

B � μ

λmC
(17)

E � Bλm − tan
(

π
2C

)

Bλm − tan−1(Bλm)
(18)

The normal load on a tyre is not only influenced by the
vehicle weight. It also depends on the fore-aft location of
the vehicle centre of gravity and longitudinal acceleration.
For wheels 1 to 4, the normal loads are respectively given by
[29]:

Fz1 � m

(lf + lr)

(
0.5glr − 0.5v̇xh − lr

bf
v̇yh

)
(19)

Fz2 � m

(lf + lr)

(
0.5glr − 0.5v̇xh +

lr
bf

v̇yh

)
(20)

Fz3 � m

(lf + lr)

(
0.5glf + 0.5v̇xh − lf

br
v̇yh

)
(21)

Fz4 � m

(lf + lr)

(
0.5glf + 0.5v̇xh +

lf
br

v̇yh

)
(22)

Longitudinal and lateral slip ratios are given by [2]:

λxi � (ωi Rw − Vxi )

Vxi
(23)

λyi � sin(αi ) (24)

where Vxi , the velocities in x-direction of the wheel coor-
dinate systems, and αi , the tyre slip angle, are respectively
given by [2]:

Vxi �
√(

vxi 2 + vyi 2
)
cos(αi )(i � 1, . . . 4) (25)

αi � δi − tan−1
(

vyi

vxi

)
(i � 1, . . . , 4) (26)

The longitudinal and lateral velocities at the wheel centre
relatively to the body-fixed coordinate system are given by:

vx1 � vx − rbf
2

(27)

vy1 � vy − rlf (28)

vx2 � vx +
rbf
2

(29)
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vy2 � vy + rlf (30)

vx3 � vx − rbr
2

(31)

vy3 � vy − rlr (32)

vx4 � vx +
rbr
2

(33)

vy4 � vy − rlr (34)

Finally, the i th wheel rotational speed is related to the
traction/braking respective torque Ti as follows:

Izω̇i � Ti − Fxi Rw(i � 1, . . . , 4) (35)

3 Slidingmode observer design

In this section, a nonlinear slidingmode observer is proposed
to give an estimation for the vehicle’s longitudinal and lateral
velocities vx and vy aswell as yaw rate r . The observer design
is based on the dynamicmodel derived in the previous section
and lies on the following assumptions:

Assumption 1 The vehicle longitudinal acceleration ax ,
lateral acceleration ay , yaw rate r , wheel speedsωi and front-
wheel steering δ are available outputs.

Assumption 2 The tyre-road friction coefficient for each
wheel μi (i � 1, . . . , 4) is known.

Both assumptions are reasonable since lateral acceleration
and yaw rate are available outputs via appropriate sensors in
cars equipped with electronic stability program (ESP), and
longitudinal acceleration is obtained with a separate inertial
measurement unit (IMU) [2, 30, 31]. The tyre-road friction
coefficient can be measured or estimated as discussed in [32,
33].

Let:

Fx �
4∑

i�1

Fxi � max (36)

Fy �
4∑

i�1

Fyi � may (37)

(38)

Mz � bf
2
(Fx1−Fx2) +

br
2
(Fx3−Fx4)

+ lf
(
Fy1 + Fy2

) − lr
(
Fy3 + Fy4

)

The vehicle dynamics are then written as follows:

v̇x � vyr + ax (39)

v̇y � −vxr + ay (40)

ṙ � Mz

Iz
(41)

In this paper, we propose and analyse the following
observer:

˙̂vx � v̂yr + ax − kvx sign
(
Fx − F̂x

)
(42)

˙̂vy � −v̂xr + ay − kvy sign
(
Fy − F̂y

)
(43)

˙̂r � M̂z

Iz
+ krsign(r − r̂) (44)

Using the vehicle/observer dynamic Eqs. (39) to (44), the
observation error dynamics are then given by:

˙̃vx � ṽyr + kvx sign
(
Fx − F̂x

)
(45)

˙̃vy � −ṽxr + kvy sign
(
Fy − F̂y

)
(46)

˙̃r � 1

Iz

(
Mz − M̂z

) − krsign(̃r) (47)

where ṽx � vx − v̂x , ṽy � vy − v̂y and r̃ � r − r̂ .
The observer stability is discussed using the following

quadratic Lyapunov function:

V � 1

2

(
ṽ2x + ṽ2y + r̃2

)
(48)

123



Nonlinear tyre model-based sliding mode observer for vehicle… 2949

The Lyapunov function time derivative along the trajecto-
ries (45)–(47) is given by:

(49)

V̇ � kvx sign
(
Fx − F̂x

)
ṽx + kvy sign

(
Fy − F̂y

)
ṽy

+ r̃

(
Mz − M̂z

)

Iz
− krsign (̃r ) r̃

To demonstrate the negative definiteness of the above-
mentioned Lyapunov function time derivative, we use the
approximate signum function signapr(x) defined as follows:

(50)signapr (x) � x

|x | + η

where η is a small positive scalar.
Define also:

kx � kvx∣∣Fx − F̂x
∣∣ + η

(51)

ky � kvy∣∣Fy − F̂y
∣∣ + η

(52)

krr � kr
|r − r̂ | + η

(53)

The time derivative of the Lyapunov function is then:

V̇ � kx
(
Fx − F̂x

)
ṽx + ky

(
Fy − F̂y

)
ṽy + r̃

(
Mz − M̂z

)

Iz
− krr r̃

2

(54)

Based on the friction forces model, as discussed in [2],
there exist positive constants ci ,i � 1, . . . , 9, such that:

(
Fx − F̂x

)
ṽx ≤ −c1ṽ

2
x + c2 |̃vx |

∣∣̃vy
∣∣ + c3 |̃vx ||̃r | (55)

(
Fy − F̂y

)
ṽy ≤ c4

∣
∣̃vy

∣
∣|̃vx | − c5ṽ

2
y + c6

∣
∣̃vy

∣
∣|̃r | (56)

r̃

(
Mz − M̂z

)

Iz
≤ c7 |̃vx ||̃r | + c8

∣∣̃vy
∣∣|̃r | + c9̃r

2 (57)

Using (54) and (55)–(57), we have:

V̇ ≤ kx
(
−c1ṽ

2
x + c2 |̃vx |

∣∣̃vy
∣∣ + c3 |̃vx ||̃r |

)

+ ky
(
c4

∣∣̃vy
∣∣|̃vx | − c5ṽ

2
y + c6

∣∣̃vy
∣∣|̃r |

)

+
(
c7 |̃vx ||̃r | + c8

∣∣̃vy
∣∣|̃r | + c9̃r

2
)

− krr r̃
2 ≤ x̃ T Qx̃ (58)

where x̃ �
[
ṽx ṽy r̃

]T
, and

Q �
⎡

⎢
⎣

−kxc1
1
2

(
kxc2 + kyc4

) 1
2 (kxc3 + c7)

1
2

(
kxc2 + kyc4

) −kyc5
1
2

(
kyc6 + c8

)

1
2 (kxc3 + c7)

1
2

(
kyc6 + c8

)
c9 − krr

⎤

⎥
⎦

(59)

According to the well-known Sylvester criterion, matrix
Q is negative definite if and only if all its leading principal
minors are negative.

The first principal minor of Q is −kxc1, so kx must be
positive. The second principal minor is given by:

kxc1kyc5 − 1

4

(
kxc2 + kyc4

)2

� kxc1kyc5 − 1

4

(
kx

2c2
2 + ky

2c4
2 + 2kxc2kyc4

)

� −1

4

(
ky

2c4
2 + 2kyc4

kx (c2c4 − 2c1c5)

c4
+ kx

2c2
2
)

� −1

4

(
kyc4 +

kx (c2c4 − 2c1c5)

c4

)2

− kx 2

4

(

c2
2 −

(
(c2c4 + 2c1c5)

c4

)2
)

< 0 (60)

So:

(61)

1

4

(
kyc4 +

kx (c2c4 − 2c1c5)

c4

)2

>
kx 2

4

((
(c2c4 + 2c1c5)

c4

)2

− c2
2

)

And:

ky >
kx
c4

⎛

⎝

√√
√√

((
(c2c4 + 2c1c5)

c4

)2
− c22

)

− (c2c4 − 2c1c5)

c4

⎞

⎠

(62)

The third principalminor,which is thematrix determinant,
is given by:

det(Q) � −kxc1

(
−kyc5(c9 − krr ) − 1

4

(
kyc6 + c8

)2
)

− 1

2

(
kxc2 + kyc4

)
(
1

2

(
kxc2 + kyc4

)
(c9 − krr )

− 1

4

(
kyc6 + c8

)
(kxc3 + c7)

)

+
1

2
(kxc3 + c7)

(
1

4

(
kxc2 + kyc4

)(
kyc6 + c8

)
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− 1

2
(kxc3 + c7)kyc5

)

(63)

After some tedious calculation, one can notice that the
determinant may be made negative by choosing krr large
enough.

4 Simulation results

4.1 General model description

In this section, we provide a detailed description of the orga-
nizational structure of the three-degrees-of-freedom(3-DOF)
vehicle dynamics model and the associated sliding mode
observer. The organizational chart offers a visual represen-
tation of the internal framework of the model, elucidating
key components and their interconnections. This preliminary
overview aims to furnish readers with a profound under-
standing of how the model is articulated before delving into
the analysis of simulation results. The following figure illus-
trates the organizational chart, facilitating a visual grasp of
the model’s complexity.

Figure 3 provides a detailed depiction of the organi-
zational chart for the three-degrees-of-freedom (3-DOF)
vehicle dynamics model, incorporating both the Pacejka tire
model and the slidingmode observer. The system’s inputs are
represented by the steering angle, traction or braking torque,
and the friction coefficient. The observer algorithm utilizes
longitudinally and laterally measured accelerations, along
with wheel speed, as parameters. These variables can be
easily obtained through typical sensors. The arrowed connec-
tions in the figure illustrate the interactions and information
exchanges among these components, offering a compre-
hensive view of the model’s internal structure. This visual
representation is carefully crafted to enhance understanding,
paving the way for a detailed analysis of simulation results.

4.2 Accuracy of the observer

In this section, the performance of the proposed slidingmode
observer developed in the previous section is appraised by
means of numerical simulation.

The longitudinal acceleration ax , lateral acceleration ay ,
yaw rate r , wheel speeds ωi and front-wheel steering δ are
available outputs, and the observed state is:

x̂ �
[
v̂x v̂y r̂

]T
(64)

The observer algorithm has been implemented in Mat-
lab/Simulink environment with a small step time for numer-
ical integration to deal with the system nonlinearities. The

Table 1 Numerical parameters adopted for simulation

Vehicle parameters

m �
1298.9 kg

h � 0.6 m Iz �
1627 kg.m2

lf � 1 m lr � 1.454 m bf � 1.436 m br � 1.436 m

Tyre/road parameters

Iw �
2.1 kg.m2

Rw �
0.35 m

μ � 1(Dry
asphalt)

μ � 0.5(Icy
road)

Magic formula parameters

B � 12.12 C � 1.65 E �
−0.5804

Observer parameters

kvx � 5 kvy � 0.8 kr � 30

step time has been set to Ts � 5.10−6 s. The nominal vehicle
model used for the simulation is based on the Magic formula
tyre model, and Table 1. Shows the numerical parameters
that have been adopted.

Initial states for the nominal plant and for the observer are
set to:

x0 �
[
vx0 vy0 r0

]T �
[
27.78m.s−1 0 0

]T
(65)

x̂0 �
[
v̂x0 v̂y0 r̂0

]T �
[
22.22m.s−1 0.5m.s−1 0.5rd.s−1

]T

(65)

During time interval [0, 15s], the performance of the
observer is examined. First, the vehicle is performing a lane
changemanoeuvre depicted inFig. 4. Then, during time inter-
val [4, 6s], the braking/accelerating torque shown in Fig. 5
is applied to the corresponding wheels. For time interval [6,
15s] a μ− split scenario is introduced simultaneously with
a lane change, while the vehicle is braking. Such a scenario
assumes different contact surfaces for left and right vehicle
tyres. For the tyres on a dry asphalt road, the tyre–road fric-
tion coefficient is assumed to be of constant value (μ � 1),
and at time t � 6s, it steps to (μ � 0.5) for the right wheels
(cf. Fig. 6).

This figure illustrates the graphical representation of the
steering angle for the four wheels of the vehicle. Each wheel
is associatedwith a specific angle, depicting the configuration
of the steering system. This visualization provides a clear
understanding of how the wheels respond and contribute to
the overall manoeuvrability of the vehicle.

Figure 5 Detailed the graphical profiles of braking and
accelerating torques for the four wheels of the vehicle. Each
wheel displays its individual profile. This visualization pro-
vides a detailed understanding of how these torques act
individually on each wheel, influencing the deceleration and
acceleration dynamics of the vehicle
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Fig. 3 General Model
Description

Fig. 4 The steering angle for the
four wheels
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Fig. 5 Braking/accelerating
torque profiles for the four
wheels

This figure presents graphical profiles of the wheel/road
friction coefficients for the four wheels of the vehicle. Each
wheel displays its individual profile, illustrating the variation
of the friction coefficient over time or distance travelled. This
visualization provides a detailed insight into how the friction
coefficient evolves individually for each wheel, influencing
the overall performance of traction and braking.

The upper plot of Fig. 7 depicts the vehicle longitudi-
nal acceleration. Its sign, positive or negative, matches the
piecewise braking and acceleration phases, in the driving
scenario, respectively. The lateral acceleration catches the
steering changing alongside with the braking carried out on
the μ-split track.

Figure 7 presents graphical profiles of the longitudinal
and lateral accelerations of the vehicle. The curves depict the
evolution of these accelerations over time or distance trav-
elled. This visualization provides a detailed understanding of
the vehicle’s motion dynamics, highlighting changes in lon-
gitudinal and lateral accelerations during different driving
phases.

Figure 8 illustrates the longitudinal velocity, lateral veloc-
ity and yaw rate estimates given by the slidingmode observer
with initial state (66).

While facing a notably challenging assessment scenario,
our study demonstrates the observer’s exceptional per-
formance in estimating key vehicle dynamics parameters
throughout the simulation intervals. The accuracy of the
observer shines prominently in the estimation of longitu-
dinal velocity, lateral velocity, and yaw rate. Additionally,
the observer provides highly accurate estimates even under
deliberately introduced challenging initial conditions.

This figure displays the vehicle’s state estimate, con-
sidering the initial condition specified in Eq. (66). The
visualization offers insights into the predicted state of the
vehicle based on the given initial conditions, contributing to
a comprehensive understanding of the performance of the
state estimation process.

These results directly contribute to a holistic understand-
ing of the vehicle’s behaviour. The observer, by providing
precise estimates of key dynamic parameters, enhances the
overall comprehension of the vehicle’s dynamic response.

4.3 Robustness of the observer

To examine the robustness of the proposed observer, the vehi-
cle parameters (cf. Table 1) used in the observer algorithm
are 15% larger compared to their nominal values used for the
vehicle truth model.
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Fig. 6 The wheel/road friction
coefficient for the four wheels

Table 2 Observer parameters for uncertain vehicle parameters

Observer parameters

kvx � 5 kvy � 0.35 kr � 50

Figure 9 illustrates the longitudinal velocity, lateral veloc-
ity and yaw rate estimates given by the slidingmode observer
with initial state (66). The observer parameters are set to new
values summarized in Table 2.

This figure illustrates the vehicle’s state estimate while
considering the initial condition specified in Eq. (66) under
uncertainties in vehicle parameters. The visualization pro-
vides insights into how the state estimation process performs
in the presence of uncertainties, contributing to a compre-
hensive understanding of the robustness of the estimation
algorithm.

Despite deviations in vehicle parameters from their nom-
inal values, our sliding mode observer consistently provides
highly accurate estimates of longitudinal velocity and yaw
rate throughout all simulation intervals. The lateral velocity
estimate remains remarkably acceptable, underscoring the
robustness of the proposed sliding mode observer against

uncertainties in vehicle parameters. This resilience is a tes-
tament to the effectiveness of our observer in maintaining
accurate estimations even under varying and uncertain vehi-
cle conditions.

Finally, Fig. 10 illustrates the impact of uncertain tyre/road
friction coefficients on our observer’s estimation. With a
deliberate 20% reduction in the friction coefficient for all
wheels throughout the simulation, we observe a slight influ-
ence on the lateral velocity estimate. However, it’s crucial to
highlight that, despite this challenge, both the longitudinal
velocity and yaw rate estimates remain remarkably accurate.
Importantly, the lateral velocity results, while exhibiting a
marginal effect, maintain an acceptable level of reliability.
This reaffirms the observer’s robustness, demonstrating its
ability to provide trustworthy estimations even under condi-
tions of varying friction.

This figure depicts the vehicle’s state estimate considering
the initial condition specified in Eq. (66) under uncertain-
ties in both vehicle parameters and friction coefficients. The
visualization provides valuable insights into the performance
and robustness of the state estimation process in the face of
uncertainties in these critical factors.

These results emphasize the observer’s ability to main-
tain accuracy even in the presence of uncertainties in vehicle
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Fig. 7 Longitudinal and lateral
accelerations

Fig. 8 Vehicle state estimate with
initial condition (66)
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Fig. 9 Vehicle state estimate with
initial condition (66) under
vehicle parameters uncertainties

parameters and the friction coefficient, reinforcing its contri-
bution to the overall control system.

5 Conclusion and perspectives

In this study, we introduced a nonlinear sliding mode
observer. Our observer design assumes the availability
of measurements such as longitudinal acceleration, lateral
acceleration, yaw rate, wheel angular velocities, and wheel
steering angle. Based on a planar double-track vehiclemodel,
this design incorporates the Pacejka nonlinear tire model to
evaluate friction forces.

The stability analysis of the observer has been thoroughly
conducted using a quadratic Lyapunov function in conjunc-
tion with the Sylvester criterion. We assessed the robustness
of the observer against uncertainties related to vehicle param-
eters and tire/road friction coefficient.

Sufficient conditions for observer gains have been estab-
lished, and their numerical values have been defined for sim-
ulation, demonstrating promising results. While the driving
scenario used for observer evaluation is highly challenging,
the state estimation proves to be highly accurate.

The robustness of the proposed observer against uncer-
tainties has been validated through numerical simulation.We

conclude that longitudinal velocity and yaw rate are rela-
tively insensitive to vehicle parameters and tire-road friction
coefficient uncertainties. However, lateral velocity is slightly
affected when the friction coefficient is not well known,
although this limitation can be overcome with online esti-
mation.

In summary, our nonlinear slidingmode observer emerges
as a robust and effective solution for vehicle state estimation,
providing reliable performance even in demanding driving
conditions. Looking ahead, several promising research direc-
tions emerge to enhance the robustness and applicability of
the proposed sliding mode observer. An intriguing avenue
involves exploring the integration of additional filtering algo-
rithms, such as the Kalman filter, to further mitigate potential
noise impacting acceleration and rotation speed measure-
ments. The utilization of these advanced filtering algorithms
could contribute to refining the observer’s precision, espe-
cially in challenging driving scenarios.

Furthermore, a natural extension of this research would
involve investigating the practical implementation of the
observer in advanced control algorithms, particularly in anti-
lock braking systems (ABS) and traction control systems
(ASR). By integrating this observer into these systems, we
could fully leverage its precision and robustness capabilities
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Fig. 10 Vehicle state estimate
with initial condition (66) under
vehicle parameters and friction
coefficient uncertainties

to enhance vehicle stability and performance in diverse con-
ditions. This synergy between the sliding mode observer and
advanced control systems could open new perspectives for
safer and more responsive vehicles.
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