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Abstract
To describe the impact of population mobility between different cities on the spread of infectious disease, a new infectious
disease complex dynamical model is proposed. Moreover, we obtain the basic regeneration number of the model based on
applied spectral analysis. And the disease-free equilibrium points and local equilibrium points of the model are discussed, and
it is found that two kind equilibrium points are globally asymptotically stable. In addition, the final scale of the presentedmodel
is analyzed and an expression for the final scale is obtained. Furthermore, we analyze the impact of population mobility on the
spread of infectious diseases via numerical simulations. Our results reveal that the increase of population mobility between
two cities leads tomore intense disease transmission. Finally, the influence ofmedia effects on the spread of infectious diseases
is investigated. It is shown that the spread of diseases is suppressed because of the increase of individual’s self-isolation rate.
Therefore, controlling the population mobility is an effective initiative to curb outbreaks of infectious diseases throughout
the network. These results can provide a theoretical basis for preventing and controlling the spreading of infectious diseases.

Keywords Dynamical network · Epidemic spreading · Population mobility

1 Introduction

Infectious diseases are transmitted by pathogenic (micro)
organisms. The spread of infectious diseases is both covert
and sudden. Infectious diseases have always caused great
harm to human health and caused great losses to social and
economic development. The global outbreak of influenza in
1918 [1, 2], with a death toll of 20 million, the outbreak
of SARS virus [3, 4] in 2003, and the global outbreak of
COVID-19 [5, 6] in 2019 all posed a great threat to human
health. In the last fewdecades, the study of complex networks
has gradually become a hot issue in the field of complex-
ity disciplines. Scholars have made significant contributions
to the study in these areas such as transportation, social
[7–9], financial [10–12] and biological [13, 14] networks. As
research into complex networks have continued, the spread-
ing of computer viruses in computer networks, contagious
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diseases in social networks can have an effect on the devel-
opment of human society [15]. Therefore, the behavior of
transmission dynamics on complex networks has becomeone
of the research directions of great interest.

The dynamics propagation on complex network has
achieved some very important studies in recent decades
[16–23]. Due to the complex topology of the network, the
relationships between individuals can be accurately depicted.
Study on the transmission of infectious diseases on com-
plex networks mostly focuses on static networks [24–26].
Static networks are effective tools for studying short-term
infectious diseases [27], but for some infectious diseases
with a long duration, population mobility factors are likely
to change the topological structure of the network [28–30].
Hence, studying the spread of infectious diseases on com-
plex dynamic networks is of great significance. Jin et al.
designed an infectious disease model that incorporates pop-
ulation statistics into complex network theory to study the
impact of population statistics on population distribution
[31]. Pan et al. established the community structure of the
SIS epidemic model and discussed the impact of popula-
tion statistics on disease transmission [32]. Also, authors
proposed an infectious diseases model that considers the
demographic characteristics on a complex network. They
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study the spread of the dynamic of two different infectious
diseases [33]. Therefore, it is very meaningful to study the
impact of population mobility on complex network.

In recent years, researchers have increasingly considered
the impact of population mobility on the spread of diseases.
For example, Ref. [34]. proposed a spatiotemporalmodel that
estimates the causal effect of changes in community mobil-
ity (intervention) on infection rates. Researchers usedmobile
phone data to describe the connectivity among areas and
study the impact of this connectivity on the spread ofCOVID-
19 during the second wave of the pandemic in 2020 [35].
Authors mutually compared time series of covid-19-related
data and mobility data across Belgium’s 43 arrondissements.
They concluded that there is a strong correlation between
physical movement of people and viral spread in the early
stage of the sars-cov-2 epidemic in Belgium, though its
strength weakens as the virus spreads [36]. Ref. [37] investi-
gated the bi-directional relationship between humanmobility
and COVID-19 spread across U.S. counties during the early
phase of the pandemic when infection rates were stabilizing
and activity-travel behavior reflected a fairly steady return
to normal following the drastic changes observed during
the pandemic’s initial shock. Authors studied the interaction
between disease transmission and disease related aware-
ness transmission, and then proposed a new coupled disease
transmission model on a two-layer multiple network [38,
39]. Subrata Ghosh proposed a deterministic compartmen-
tal model of infectious disease that considers the test kits as
an important ingredient for the suppression and mitigation
of epidemics. Furthermore, they consider heterogeneous net-
works to study the impact of long and short-distance human
migration among the patches [40].

However, these existing works are inadequate in fully
describing the realistic roles of the population mobility
on complex network. In real life, the population mobility
plays crucial role in the spreading of infectious disease.
Most importantly, individuals typically move not only on
single-layer networks, but also on more complex multi-layer
networks. According to the above considerations, this paper
focuses on studying the impact of population mobility on
disease transmission on a two-layer network.

The paper is organized as follows. In Sect. 2, an infectious
disease model is presented that takes into account popula-
tion movements between two cities. Section 3 investigates
the basic regeneration number and the global stability of the
model using the next-generation matrix scheme. Section 4
verifies the theoretical results through numerical simulation.
Finally, Sect. 5 summarizes the study.

2 Model formulation

As is well known, the spread of infectious diseases
between two cities due to floating populations become more

complex. In the following, let Ni , k(t), Si , k(t), Sqi , k (t),
Ei , k(t), Ii , k(t), Qi , k(t), Ri , k(t) denote the number of indi-
viduals whose states are N , S, Sq , E , I , Q, R of degree k
in city i at time t .

And the total humanpopulation size is denoted as (N ), and
the total population N is divided into six subclasses: peo-
ple who are easily infected are called susceptible people
(S), susceptible individuals have a sense of self-isolation,
and those who adopt self-isolation measures are referred to
as self-quarantine susceptible

(
Sq
)
, infected individuals in

the incubation period are called exposed (E), people who are
infectedwith the virus and have symptoms are called infected
individuals (I ), exposed and infected individuals separated
from uninfected individuals are referred to as quarantined
(Q), the group of patients including exposed, infected and
quarantined have undergone treatment and rehabilitation are
called recovered (R).

For the total human population, we suppose that Ni , k(t) �
Si , k(t) + Sqi , k (t) + Ei , k(t) + Ii , k(t) + Qi , k(t) + Ri , k(t).

First, some assumptions and symbols are given by

(1) It is assumed that there are no independent individuals.
That is to say, an individual must contact with people.
And an individual can be associated with m individuals
atmost. That is k ∈ {1, · · ·m}, i ∈ {1, 2}.An individual
only contact with a maximum of m individuals.

(2) We assume the following equation holds:

m∑

k�1

Si , k(t) � Si (t),
m∑

k�1

Sqi , k (t) � Sqi (t),
m∑

k�1

Ei , k(t)

� Ei (t),
m∑

k�1

Ii , k(t) � Ii (t),

m∑

k�1

Qi , k(t) � Qi (t),

m∑

k�1

Ri , k(t) � Ri (t),
m∑

k�1

Ni , k(t) � Ni (t).

These equations represent the sum of individuals with
different degrees as all individuals in city i .

(3) Suppose that all newborns are susceptible. And new-
borns enter the city i with a probability of δi , k .The
number of newborn individual in city i is Ai at each
step time.

(4) The network’s nodes do not have multiple edges and
self-loop.This implies thatwe consider the contact num-
ber between different individuals is single. In addition,
any individual cannot be infected unless interconnecting
other individuals.

(5) The probability of a susceptible individual will be
infected by exposed in city i is λi . The probability of
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a susceptible individual will be infected by infectious
in city i is βi . And the natural mortality rate of d1, the
mortality rate due to disease is d2. We assume that q
stands for self-isolation rate,q1 represents the probabil-
ity that the self-quarantined individuals will be released
from isolation. We define ξi as the rate of population
movement from city i to another one. Let γ 1

i repre-
sents the recovery rate of quarantined individuals, let
γ 2
i represents the recovery rate of infectious. And,α1

i
and α2

i represent the isolation rate of exposed individ-
uals and the isolation rate of infectious, respectively.
Furthermore, the conversion rate from the exposed to
infectious is εi in city i . The number of individuals con-
tacted in city i due to population mobility is ωi .

(6) The proportion of individuals whose degree is k in city
i can be defined as pi , k � Ni , k/Ni .The probability of
randomly selecting an edge connecting to an infective
neighbor is given by

θi (t) �
(

m∑

k�1

kpi , k Ii , k(t)/Ni , k(t)

)

/〈ki 〉 �
(

m∑

k�1

k Ii , k(t)

)

/

(
m∑

k�1

kNi , k(t)

)

(1)

And 〈ki 〉 �
m∑

k�1
kpi , k , i � 1, 2.

Figure 1 shows the propagation mechanism of the epi-
demic. The blue and green boxes represent city 1 and city
2, respectively. City 1 and city 2 contain different individu-
als that are connected through human contacts. The blue and
green lines represent the individual’s states that change in
different cities due to population mobility. The parameters
are marked next to the line bar, what are the paths they repre-
sent for a group to transition from one state to another (Table
1).

Based on the above assumptions and mechanism of trans-
mission, the infectious disease model taking into account the
population mobility is established as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
i , k � δi , k Ai + q1Sqi , k − (q + d1)Si , k − (βi + λi )k(1 − ξi )θi (t)Si , k − ωi kξi (λi ′ + βi ′)

(
Ii ′ + Ei ′
Ni ′

)
Si , k

S′
qi , k � qSi , k − d1Sqi , k − q1Sqi , k

E ′
i , k � (βi + λi )kθi (t)(1 − ξi )Si , k + ωi kξi (λi ′ + βi ′)

(
Ii ′ + Ei ′
Ni ′

)
Si , k −

(
d1 + εi + α1

i

)
Ei , k

I ′
i , k � εi Ei , k −

(
d1 + d2 + γ 2

i + α2
i

)
Ii , k

Q′
i , k � α1

i Ei , k + α2
i Ii , k −

(
d1 + d2 + γ 1

i

)
Qi , k

R′
i , k � γ 1

i Qi , k + γ 2
i Ii , k − d1Ri , k

(2)

In the model (2),δi , k Ai shows the number of new-
born individuals in city i that have a degree of k
as they are connected to k existing individuals.q1Sqi , k
denotes that self-isolated individuals become susceptible
person.(q + d1)Si , k means natural death or self-isolation of
susceptible individuals.(βi + λi )k(1 − ξi )θi (t)Si , k describes
the susceptible individuals does not move across cities,
but contacts the latent and sick people in city i .

ωi kξi (λi ′ + βi ′)
(
Ii ′+Ei ′
Ni ′

)
Si , k indicates that susceptible

individuals are infected as latent people because of popu-
lation movements, contact with lurkers and infected people
in another city.

3 Dynamical analysis

In this section, we carry out a theoretical analysis on the basic
regeneration number and the stability of the equilibriumpoint
of the proposed model (2).

3.1 The basic regeneration number

From hypothesis, we have N ′
i , k � δi , k Ai − d1Ni , k −

d2
(
Ii , k + Qi , k

)
.

Theorem 3.1 The model (2) has solutions in the invariant
region.
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Fig. 1 The propagation mecha-
nism of the two-
city model with popula-
tion mobility

Table 1 Explanation of main
symbols Symbols Explanations

d1 Natural death rate

d2 Death rate due to disease

δi , k The probability that a newborn individual enters city i with degree k

Ai The number of newborn individuals for city i

βi The infection rate of infected individuals in city i

λi The infection rate of latent individuals in city i

q Self-isolation rate

q1 The probability of a self-quarantined person being released from isolation

ξi The population movement rate for city i

γ 1
i Recovery rates for quarantined people

γ 2
i Recovery rates for sick people

α1
i Isolation rate of lurkers

α2
i Isolation rate of patients

εi The probability of latent people being converted to sick people from city i

ωi The number of contacts during population movement from city i

� �
{(

S1, 1, Sq1, 1E1, 1, I1, 1, Q1, 1, R1, 1LS1.m , Sq1,m , E1,m , I1,m , Q1m , R1,m ,

S2, 1, Sq2, 1 , E2, 1, I2, 1, Q2, 1, R2, 1LS2,m , Sq2,m , E2,m , I2,m , Q2,m , R2,m

)

∈ R12n , Ni , k(t) ≤ δi , k Ai

d1

}

(3)

Proof We have

N ′
i , k � δi , k Ai − d1Ni , k − d2

(
Ii , k + Qi , k

)
(4)

N ′
i , k ≤ δi , k Ai − d1Ni , k ,
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then

Ni , k(t) ≤ δi , k Ai

d1
+

(
Ni , k(0) − δi , k Ai

d1

)
e−d1t , ∀t > 0.

(5)

Now, we let Ni , k(0) ≤ δi , k Ai
d1

.

In the end, the following equation can be obtained

0 ≤ Ni , k(t) ≤ δi , k Ai

d1
. (6)

Thus, the region � is positively invariant and attract-
ing for the Eq. (2).

According to the model (2), the disease-free equilib-
rium point of the model is

E0 �
(
S01, 1, S

0
q1, 1 , 0, 0, 0, 0, · · · , S01,m , S0q1,m , 0, 0, 0, 0,

S02, 1, S
0
q2, 1 , 0, 0, 0, 0, · · · , S02,m , S0q2,m , 0, 0, 0, 0

)
.

Next, we discuss the basic regeneration num-
ber of the model.

R0 is defined as the average number of secondary cases
caused by an infected individual during his infectivity period
when he is introduced to a population of susceptible individ-
uals without intervention.

In general, the next generation matrix method is used to
calculate R0. The input matrix F1 and the output matrix V 1

are given below, respectively.

F1 �

⎛

⎜⎜
⎜
⎝

(βi + λi )k(1 − ξi )θi Si , k +
(
βi ′ + λi ′

)
(
Ii ′ + Ei ′

Ni ′

)
kξiωi Si , k

0

0

⎞

⎟⎟
⎟
⎠

.

V 1 �

⎛

⎜⎜⎜
⎝

(
d1 + εi + α1

i

)
Ei , k

(
d1 + d2 + γ 2

i + α2
i

)
Ii , k − εi Ei , k

(d1 + d2)Qi .k + γ 1
i Qi , k − α1

i Ei , k − α2
i Ii , k

⎞

⎟⎟⎟
⎠

.

The partial derivative of the inputmatrix and outputmatrix
at the disease-free equilibrium point are as follows:

F�

⎛

⎜
⎝

F11 F12 0
0 0 0
0 0 0

⎞

⎟
⎠.

F11 �

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

0 · · · 0 m11 · · · m11
...

. . .
...

...
. . .

...
0 · · · 0 m1m · · · m1m

m21 · · · m21 0 · · · 0
...

. . .
...

...
. . .

...
m2m · · · m2m 0 · · · 0

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

,

F12 �

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

f11 · · · 0 m11 · · · m11
...

. . .
...

...
. . .

...
f1m · · · f1m m1m · · · m1m

m21 · · · m21 f21 · · · 0
...

. . .
...

...
. . .

...
m2m · · · m2m f2m · · · f2m

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

.

where m1l � (β2 + λ2)kξ1
ω1
N2

S01, l , m2l �
(β1 + λ1)kξ2

ω2
N1

S02, l , l � 1 · · ·m.

f1l � (β1 + λ1) (1 − ξ1) kl
S01, l
N1, l

, f2l

� (β2 + λ2) (1 − ξ2) kl
S02, l
N2, l

, l � 1 · · ·m.

V�

⎛

⎜
⎝
V 11 0 0
V 21 V 22 0
V 31 V 32 V 33

⎞

⎟
⎠.

V 11 �

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

η1 · · · 0 0 · · · 0
...
. . .

...
...
. . .

...
0 · · · η1 0 · · · 0
0 · · · 0 η2 · · · 0
...
. . .

...
...
. . .

...
0 · · · 0 0 · · · η2

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

V 21 �

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

−ε1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · −ε1 0 · · · 0
0 · · · 0 −ε2 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · −ε2

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

,

V 32 �

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

−α2
1 · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · −α2
1 0 · · · 0

0 · · · 0 −α2
2 · · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · −α2
2

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

.
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V 22 �

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

μ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · μ1 0 · · · 0
0 · · · 0 μ2 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · μ2

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

,

V 31 �

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

−α1
1 · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · −α1
1 0 · · · 0

0 · · · 0 −α1
2 · · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · −α1
2

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

,

V 33 �

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

σ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · σ1 0 · · · 0
0 · · · 0 σ2 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · σ2

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

.

where η1 � d1 +ε1 +α1
1, η2 � d1 +ε2 +α1

2 ,σ1 � γ 1
1 +d1 +d2,

σ2 � γ 1
2 + d1 + d2.

μ1 � d1 + d2 + γ 2
1 + α2

1, μ2 � d1 + d2 + γ 2
2 + α2

2 .

Based on the above calculation, it can be concluded that.

R0 � ρ
(
FV−1

)
. (7)

Let the right term of model (2) be 0, and we get the local
equilibrium point.

E∗ �
(
S∗
1, k , S

∗
q1, k , E

∗
1, k , I

∗
1, k , Q

∗
1, k , R

∗
1, k , S

∗
2, k , S

∗
q2, k ,

E∗
2, k , I

∗
2, k , Q

∗
2, k , R

∗
2, k

)
,

wherein,

S∗
i , k � Ni ′(d1 + q1)δi .k Ai

/
τ , S∗

qi , k � qNi ′δi .k Ai
/

τ .

E∗
i , k � Ni ′δi .k Ai

[
(d1 + q1)

(
δi , k Ai − d1

) − d1q
]/

τ
(
d1 + εi + α1i

)
.

I ∗
i , k � εi Ni ′δi .k Ai

[
(d1 + q1)

(
δi , k Ai − d1

) − d1q
]/

ττ1.

Q∗
i , k � ϕ

[
τ3

(
Ni ′α1

i δi .k Ai

)
+ α2

i Ni ′δi , k Ai

]/
ττ2.

R∗
i , k � ϕ

[
γ 1
i τ3

(
Ni ′α1i δi .k Ai

)
+ γ 1

i α2i Ni ′δi , k Ai + ϕ1

]/
ττ2d1..

where ϕ1 � γ 2
i

(
d1 + d2 + γ 1

i

)
,ϕ �[

(d1 + q1)
(
δi , k Ai − d1

) − d1q
]
.

τ � Ni ′d1 (d1 + q1 + q) + Ni ′ (βi + λi ) k (1 − ξi ) θ
∗
i

+ ωi (βi ′ + λi ′ ) ξi k (Ii ′ + Ei ′ ) .

τ1 �
(
d1 + d2 + γ 2

i + α2
i

) (
d1 + εi + α1

i

)
. τ2

�
(
d1 + d2 + γ 2

i + α2
i

) (
d1 + εi + α1

i

) (
d1 + d2 + γ 1

i

)
. τ3

�
(
d1 + d2 + γ 2

i + α2
i

)
.

where θ∗
i �

(
m∑

k�1
k I ∗

i , k

)
/

(
m∑

k�1
kN∗

i , k

)
.

3.2 The stability of equilibrium

In this section, we analyze the stability analysis on the two
equilibrium points of the model and obtained the following
two conclusions. According to Theorem 2 in reference [41],
we can obtain the following lemma,

Lemma 3.1 For model (2), the disease-free equilibrium E0

is locally asymptomatically stable in � when R0 < 1, but
unstable if R0 > 1, where R0 is defined by next generation
matrix method.

Firstly, the stability of the disease-free equilibrium point
at R0 < 1 has been demonstrated and we obtained the result
of Theorem 3.2.

Theorem 3.2 For system (2), if R0 < 1, the disease-free
equilibrium E0 is globally asymptomatically stable in �.

Then, we derive a proof of the stability of local equilib-
rium points when R0 > 1 and we obtained the result of
Theorem 3.3.

Theorem3.3 If R0 > 1,the endemic equilibrium E∗ is glob-
ally asymptomatically stable in � for model (2).

Please, refer to “Appendix A” for details on the stability
analysis.

3.3 Final sizes

This subsection is devoted to the calculation of final size of
model. It is well known that the final size can be used to
describe the degree of transmission of infectious diseases.
Usually, we analyze the final number of susceptible individ-
uals because it is determined how many people will have
contracted the disease at the end of the epidemic. Here, we
neglect birth and death, and then model (2) can be described
as
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
i , k � q1Sqi , k − qSi , k − (βi + λi )k(1 − ξi )θi (t)Si , k − ωi kξi (λi ′ + βi ′)

(
Ii ′ + Ei ′
Ni ′

)
Si , k

S′
qi , k � qSi , k − q1Sqi , k

E ′
i , k � (βi + λi )kθi (t)(1 − ξi )Si , k + ωi kξi (λi ′ + βi ′)

(
Ii ′ + Ei ′
Ni ′

)
Si , k −

(
εi + α1

i

)
Ei , k

I ′
i , k � εi Ei , k −

(
γ 2
i + α2

i

)
Ii , k

Q′
i , k � α1

i Ei , k + α2
i Ii , k − γ 1

i Qi , k

R′
i , k � γ 1

i Qi , k + γ 2
i Ii , k

(8)

Then, add the first and second equations in model (8) to

obtain the density of all susceptible individuals
(
dSa
dt

)
.

Wherein Sa � Si , k + Sqi , k .

Without loss of generality, let ω �
∞∫

0
ω(t)dt .

Formodel (8), diseaseswill eventually die out. Sowe have
Ii , k(∞) � 0, Ei , k(∞) � 0, Qi , k(∞) � 0.

Add the first and third equations in model (8)

E ′
i , k + S′

a � −
(
εi + α1

i

)
Ei , k . (9)

Integrate from 0 to infinity on both sides of the Eq. (9)

Ei , k(0) − Ei , k(∞) + Sa(0) − Sa(∞) �
(
εi + α1

i

)
Ei , k .

(10)

According to Eqs. (8) and (9), Eq. (10) can be rewritten
as

Ei , k � Ei , k(0) + Sa(0) − Sa(∞)
(
εi + α1

i

) . (11)

Similarly,

∞∫

0

(
S′
a + E ′

i , k + I ′
i , k

)
dt � −α1

i Ei , k −
(
γ 2
i + α2

i

)
I i , k . (12)

Integrate from 0 to infinity on both sides of the Eq. (12)

(13)

Sa (0) − Sa (∞) + Ei , k (0) + Ii , k (0)

� α1
i Ei , k +

(
γ 2
i + α2

i

)
I i , k .

I i , k � εi
[
Sa(0) − Sa(∞) + Ei , k(0)

]

(
γ 2
i + α2

i

)(
εi + α1

i

) +
Ii , k(0)

γ 2
i + α2

i

. (14)

Similarly, Add the fourth and fifth equations in model (8)

I ′
i , k + Q′

i , k �
(
εi + α1

i

)
Ei , k − γ 1

i Qi , k − γ 2
i Ii , k . (15)

Integrate both sides of the Eq. (15) from 0 to ∞,

Ii , k(0) + Qi , k(0) � −
(
εi + α1

i

)
Ei , k + γ 1

i Qi , k + γ 2
i I i , k .

Substitute Eqs. (11) and (14) into (16):

Qi , k � Qi , k(0)

γ 1
i

+
α2
i Ii , k(0)

γ 1
i

(
γ 2
i + α2

i

) +
γ 2
i α1

i + α2
i εi + α2

i α
1
i

γ 1
i

(
γ 2
i + α2

i

)(
εi + α1

i

)

[
Sa(0) − Sa(∞) + Ei , k(0)

]
. (17)

Integrate the first equation in model (8) from 0 to t .

(18)

ln
Sa (0)

Sa (t)
� (βi + λi ) (1 − ξi )

k

〈ki 〉
∑

kp (k)

t∫

0
Ii , kdt

Ni .k

+ ωiξi (λi ′ + βi ′ )
k

Ni ′

t∫

0

(Ii ′ + Ei ′ )dt .

When t → ∞, we can obtain the relationship formula for
the final scale.

(19)

ln
Sa (0)

Sa (∞)
� (βi + λi ) (1 − ξi )

k

〈ki 〉
∑

kp (k)
I i , k
Ni .k

+ ωiξi (λi ′ + βi ′ )
k

Ni ′

(
∑

k

I i ′, k + Ei ′, k

)

.

4 Numerical simulations

In this section, we investigate the influence of basic repro-
duction number on the spread of infectious diseases and the
influence of parameters related to population flow on the
spread of infectious diseases.

Figure 2 shows the variation of all individual density of S,
Sq , E , I , Q, R at R0 < 1 over time, the black dashed line
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Fig. 2 Changes in individual density over time
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Fig. 3 Changes in individual density over time

represents the changing trends of different subcategories in
city 1, while the red line represents the changing trends of
different subcategories in city 2. It can be seen from Fig. 2,
when R0 < 1, the density of individuals such as E , I and
Q gradually stabilizes towards 0 over time, at this point,
the disease gradually disappears after the outbreak. Figure 3
shows the variation of all individual density of S, Sq , E , I ,
Q, R at R0 < 1 over time. Also, Fig. 3 shows when R0 > 1,
the density of infected persons tends to a certain stable value.
At this point, infectious diseases become endemic and always
exist.

Figure 4 indicates the relationship between I1(t) and pop-
ulation mobility rate. In Fig. 4, different lines represent
different population mobility rates, which mainly reveal the
relationship between populationmobility rates ξ and infected
individuals I1(t) in city 1. It is found thatwhen the population

mobility rate increased, the speed of disease outbreak accel-
erated, and the number of patients increased significantly.
This behavior exacerbates the outbreak of diseases and also
increases the number of infected individuals.

In Fig. 5, different lines represent different values of the
number of contacts. From Fig. 5, we can see that the lines
with larger values of contacts which have larger peak values
and the earliest time to reach the peak value. And the vertical
axis represents the infected individuals in city 1. From the
perspective of disease transmission, when a disease spreads
between two cities due to population mobility, the more peo-
ple encounter during individual mobility, the greater risk of
encountering infected individuals and contracting the virus.

Figure 6 shows the relationship between self-isolation rate
(q) and infected individual I1(t) in city 1, different lines rep-
resent different values of self-isolation rate. From Fig. 6,
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Fig. 4 The relationship between I1(t) and population mobility rate
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Fig. 6 The relationship between I1(t) and self-isolation rate

we can observe that the higher of the self-isolation rate (q)

is, the slower of the speed of disease outbreak is, and the
number of patients is significantly reduced. In fact, when
diseases spread, people will develop a sense of self isola-
tion and take some self- isolation measures, such as working
from home, wearing masks, reducing going out, and so on.
The result of this approach is a decrease in population mobil-
ity, which can reduce the chance of exposure to the virus and
control the spread of diseases. In particular, we notice that
the media effect plays positive role on curbing the spread-
ing of infectious diseases. That is, the media calls on people
to take self-protection measures or reflect on the trajectories
of nearby infected individuals, thereby increasing individ-
ual self-isolation rates. This measure can greatly avoid the
probability of individual infection.

To better characterize the model behavior with respect to
its main parameters, we have also discussed the relationship
between the basic regeneration number and the population
movement rate in two cities.

The relationship between R0 and two population mobility
rates is depicted in Fig. 7a. While Fig. 7b can be obtained
from a top-down three-dimensional graph. The color bar in
the figure indicates that as the color changes from blue to
red, the corresponding R0 value also increases. We observe
an increase of population mobility in both cities as the basic
regeneration number R0 increases. In fact, if the flow of
population between cities is reduced, the basic number of
regenerations can be controlled and the spread of diseases
can be effectively suppressed.

The relationship between R0 and the number of contact ω
in two cities is shown in Fig. 8. Figure 8a presents the change
of R0 with ω1 and ω2 in the form of a three-dimensional
graph, Fig. 8b is observed from the perspective of a top-
down 3D view. It is found that as the number of effective
contacts increases in both cities, the basic regeneration num-
ber R0 gradually increases. This is of great significance for
the spread of diseases in real life. If the number of effec-
tive contacts between cities is reduced, the basic number of
regenerations can be controlled and the spread of diseases
can be effectively suppressed.

The blue line in Fig. 9 represents I1(t) with different
degrees, while the green line represents I2(t) with different
degrees. Figure 9 depicts the changes of I1(t)(blue curve)
and I2(t)(green curve) as the degree of the initial node
increases. We can observe that as the degree increases,I (t)
also increases. The higher the degree of the initial node, the
more neighbors it has. When infectious diseases spread, the
transmission rate of infected nodes also increases. In other
words, an increase in the number of neighboring nodes of a
node results in an increase in the density of infected individ-
uals.

In what follows, we intend to analyze the relationship
between the infection balance states of nodes and the degree
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(a) 3-dimensional diagram of the relationship between and �        (b) Top view of the relationship between and
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of nodes. Besides, the NW small world network and BA
scale-free network were used in numerical simulation, and
Fig. 10 gives the trend of the infection equilibrium state curve
and the trend of degree curve.

As shown in Fig. 10a, the node with large degree has
large infected equilibrium state. However, Fig. 10b indicates
that the relevance is a little weaker for the BA scale-free net-
work. As a consequence, the node with higher degree is eas-
ier to be infected.

These numerical results imply that population mobility
between cities has a significant impact on disease transmis-
sion. If we want to quickly curb the spread of the disease, we
need to control population mobility, such as policies such as

school closures, to isolate the spread of the disease from the
outside world.

5 Conclusions

This paper proposed an improved infectious disease model,
taking into account the factors of population mobility and
self-isolation in two cities. Furthermore, the dynamic anal-
ysis of the model, including the basic regeneration number
and the stability of the equilibrium point, have been theo-
retically derived. In addition, we analyzed the final scale of
the presented model and obtained the according expression.
Furthermore, the impact of populationmobility on the spread
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of infectious diseases is investigated via numerical simula-
tions. Our results show that people are more susceptible to
infection when the rate of population movement within cities
increases. When the rate of population movement between

the two cities increases, the rate of infection of susceptible
individuals accelerates, and the rate of spread of infectious
diseases increases rapidly. Meanwhile, if the media effect is
greater, it means that the number of self-isolated individuals
will increase, which can slow down the spread of infectious
diseases.
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Appendix A: Specific derivation of stability
analysis

Stability plays a crucial role in the dynamic analysis of infec-
tious disease models. The following content is the theoretical
derivation of stability analysis. Let’s first derive the global
stability of the disease-free equilibrium point at R0 < 1.

Firstly, the disease-free equilibrium E0 of system (2) is(
S0i , k , S

0
qi , k , 0, 0, 0

)
.

Where

S0i , k � δi , k Ai (d1 + q1)

d1 + q1 − qq1
(A1)

S0qi , k � qδi , k Ai

d1 + q1 − qq1
. (A2)

System (2) is rewritten in the form.

⎧
⎪⎨

⎪⎩

dX

dt
� F(X , Z)

dZ

dt
� G(X , Z)

. (A3)

Where X � (
Si , k(t), Sqi , k (t)

)′
Z �

(
Ei , k(t), Ii , k(t), Qi , k(t)

)′.

F(X , Z) �
⎛

⎜
⎝

δi , k Ai + q1Sqi , k − (q + d1)Si , k − (βi + λi )k(1 − ξi )θi Si , k − ωi kξi (βi ′ + λi ′)
(
Ii ′ + Ei ′
Ni ′

)
Si , k

qSi , k − d1Sqi , k − q1Sqi , k

⎞

⎟
⎠.

G(X , Z) �

⎛

⎜⎜⎜⎜
⎝

θi (βi + λi )k(1 − ξi )Si , k + (βi ′ + λi ′)
(
Ii ′ + Ei ′
Ni ′

)
kωiξi Si , k −

(
d1 + εi + α1

i

)
Ei , k

εi Ei , k −
(
d1 + d2 + γ 2

i + α2
i

)
Ii , k

α1
i Ei , k + α2

i Ii .k − γ 1
i Qi , k − (d1 + d2)Qi , k

⎞

⎟⎟⎟⎟
⎠

.

U0 � (X0, 0) �
(
S0i , k , S

0
qi , k , 0, 0, 0

)
denotes the

disease-free equilibrium of system.
Then, we have the following two conditions:
(H1) For dX

dt � F(X , 0) �(
δi , k Ai + q1Sqi , k − (q + d1)Si , k

qSi , k − d1Sqi , k − q1Sqi , k

)

,x0 �
(
S0i , k , S

0
qi , k , 0, 0, 0

)
is a globally asymptomatically sta-

ble equilibrium of dx
dt � F(x , 0). Hence,U0 is globally

asymptomatically stable.

(H2) G(X , Z) � AZ − G̃(X , Z).

A�

⎛

⎜
⎝

A11 A12 0
A21 A22 0
A31 A32 A33

⎞

⎟
⎠.

123



Dynamics behavior of a novel infectious disease model considering population mobility… 2307

A11 �

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

−η1 · · · 0 ρ11 · · · ρ11
...

. . .
...

...
. . .

...
0 · · · −η1 ρ1m · · · ρ1m

ρ21 · · · ρ21 −η2 · · · 0
...

. . .
...

...
. . .

...
ρ2m · · · ρ2m 0 · · · −η2

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

, A12

�

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

f11 · · · 0 ρ11 · · · ρ11
...

. . .
...

...
. . .

...
f1m · · · f1m ρ1m · · · ρ1m

ρ21 · · · ρ21 f21 · · · 0
...

. . .
...

...
. . .

...
ρ2m · · · ρ2m f2m · · · f2m

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

And A21�−V 21, A22� − V22, A31 � −V 31, A32 �
−V 32, A33 � −V 33.

Where ρ1l � (β2 + λ2)kξ2ω2
S01, l
N2

, ρ2l �
(β1 + λ1)kξ1ω1

S02, l
N1

, l � 1 · · ·m.

Note that A is an Metzler matrix,−A is an M-matrix, and
all eigenvalues with respect to A have negative real parts
when R0 < 1.We derive that Z(t) is globally asymptomati-
cally stable, which means.

lim
t→∞ Z(t) � 0,

lim
t→∞(X(t), Z(t)) � (x0, 0) � U0.

Then, the disease-free equilibrium E0 is globally asymp-
tomatically stable when R0 < 1.

Next, we discuss the global stability of the local equilib-
rium point at R0>1.

Proof Consider the following Lyapunov function candidate

L �
(

Si , k − S∗
i , k − S∗

i , k ln
Si , k
S∗
i , k

)

+ h1

(

Sqi , k − S∗
qi , k − S∗

qi , k ln
Sqi , k
S∗
qi , k

)

+h2

(

Ei , k − E∗
i , k − E∗

i , k ln
Ei , k

E∗
i , k

)

+h3

(

Ii , k − I ∗
i , k − I ∗

i , k ln
Ii , k
I ∗
i , k

)

+ h4

(

Qi , k − Q∗
i , k − Q∗

i , k ln
Qi , k

Q∗
i , k

)

.

(A4)

where h1, h2, h3, h4 and h5 are positive constants to be
determined later. Differentiating the function with respect to
time yields.

L ′ � (1− S∗
i , k

Si , k
)S′

i , k + h1(1− S∗
qi , k

Sqi , k
)S′

qi , k + h2(1− E∗
i , k

Ei , k
)E ′

i , k

+ h3(1 − I ∗
i , k

Ii , k
)I ′
i , k + h4(1 − Q∗

i , k

Qi , k
)Q′

i , k .

(A5)

Substituting system (A5) into the above formula and
sorted out:

L ′ �
(
1 − 1

x1

)(
δi , k Ai + q1Sqi , k

)
+ (1 − x1)S

∗
i , k

[
(q + d1) + (βi + λi )k(1 − ξi )θi + ωi kξi (βi ′ + λi ′)

(
Ii ′ + Ei ′

Ni ′

)]

+ h1qS
∗
i , k

(
x1 − x1

x2

)
+ (1 − x2)h1(d1 + q1)S

∗
qi , k + (1 − x3)h2E

∗
i , k

(
d1 + εi + α1

i

)

+

(
x1 − x1

x3

)
h2S

∗
i , k

[
(βi + λi )k(1 − ξi )θi + ωi kξi (βi ′ + λi ′)

(
Ii ′ + Ei ′

Ni ′

)]
+ (1 − x4)h3 I

∗
i , k

(
d1 + d2 + γ 2

i + α2
i

)

+

(
x3 − x3

x4

)
h3εi E

∗
i , k + (1 − x5)h4Q

∗
i , k

(
d1 + d2 + γ 1

i

)
+

(
x3 − x3

x5

)
h4α

1
i E

∗
i , k +

(
x4 − x4

x5

)
h4α

2
i I

∗
i , k . (A6)

where x1 � Si , k
S∗
i , k
, x2 � Sqi , k

S∗
qi , k

, x3 � Ei , k
E∗
i , k
, x4 � Ii , k

I ∗
i , k
, x5 �

Qi , k
Q∗
i , k
.
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The above formula can be simplified

L ′ � δi , k Ai + q1Sqi , k + S∗
i , k

[
(q + d1) + (βi + λi )k(1 − ξi )θi + ωi kξi (βi ′ + λi ′)

(
Ii ′ + Ei ′

Ni ′

)]

+ h1(d1 + q1)S
∗
qi , k + h2E

∗
i , k

(
d1 + εi + α1

i

)
+ h3 I

∗
i , k

(
d1 + d2 + γ 2

i + α2
i

)
+ h4Q

∗
i , k

(
d1 + d2 + γ 1

i

)

− (
δi , k Ai + q1Sqi , k

) 1
x1

+

[
h1q − (q + d1) + (βi + λi )k(1 − ξi )θi + ωi kξi (βi ′ + λi ′)

(
Ii ′ + Ei ′

Ni ′

)]
x1S

∗
i , k

+ h2S
∗
i , k

[
(βi + λi )k(1 − ξi )θi + ωi kξi (βi ′ + λi ′)

(
Ii ′ + Ei ′

Ni ′

)]
− x2h1(d1 + q1)S

∗
qi , k

+ x3E
∗
i , k

[
h3εi + h4α

1
i − h2

(
d1 + εi + α1

i

)]
+ x4 I

∗
i , k

[
h4α

2
i − h3

(
d1 + d2 + γ 2

i + α2
i

)]

− x5Q
∗
i , k

[(
d1 + d2 + γ 1

i

)]
− x1

x2
h1qS

∗
i , k − x1

x3
S∗
i , kh2

[
(βi + λi )k(1 − ξi )θi + ωi kξi (βi ′ + λi ′)

(
Ii ′ + Ei ′

Ni ′

)]

− x3
x4

h3εi E
∗
i , k − x3

x5
h4α

1
i E

∗
i , k − x4

x5
h4α

2
i I

∗
i , k . (A7)

Considering h3 � 1, by setting the coefficients of x2, x3,
x4, x5 to 0 and solving for h1, h2, h4 yields.

h1 � [(q + d1) + a]
/
q.h2 �[

α2
i εi + α1

i

(
d1 + d2 + α2

i + γ 2
i

)]/[
α2
i

(
d1 + εi + α1

i

)]
.h4 �[(

d1 + d2 + α2
i + γ 2

i

)]/
α2
i .a � (βi + λi )k(1 − ξi )θi +

(βi ′ + λi ′)
(
Ii ′+Ei ′
Ni ′

)
kξiωi .

Using the arithmetic–geometric means inequality, it is
found that L is less or equal to zero with equality only
if x1 � 1, x2 � 1, x3 � 1, x4 � 1, x5 � 1. By
LaSalle’s invariance principle, we know the largest invari-
ant set in � is reduced to the endemic equilibrium E∗, and
the largest invariant set contained in

{(
Si , k , Sqi , k , Ei , k , Qi , k , Ii , k , Ri , k

) ∈ �|L ′ � 0
}

(A8)

Then, we conclude that the endemic equilibrium is glob-
ally asymptotically stable in �.
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