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Abstract
Discrete chaotic maps have found a pivotal place in the study of nonlinear dynamics and chaos theory, due to their significant
applications in several disciplines including discrete traffic control, secure communications, cryptography,weather forecasting
and the population biology of species. The stability analysis of discrete systems via different iterative orbits also plays a
prominent role in studying the dynamical behavior of nonlinear systems. In this article, the stability performance of a discrete
map is analyzed using two-step superior (Mann) iterative orbit through various dynamical aspects like fixed points, time-series
analysis, period-doubling bifurcations and Lyapunov exponent. It is evident to notice that in the superior orbit, due to the
freedom of an additional control parameter η, the discrete map admits an improved stability performance up to higher ranges
of the growth-rate parameter ρ. Numerical simulations along with analytical analysis are used to examine the enhanced
stability performance in the proposed discrete system. Further, the comparative bifurcation and Lyapunov diagrams report the
superior stable behavior in the proposed system for decreasing values of parameter η and in contrast to the existing discrete
systems. Thus, the superior stability performance of the discrete system may be used for improved control-based applications
like traffic control and population control in the future.

Keywords Discrete map · Superior orbit · Stability · Chaos · Period-doubling · Lyapunov exponent (LE)
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1 Introduction

A dynamical system is a system that evolves its state in
a given time span according to some fixed rule/formula.
This evolution can take place either smoothly over time
or in discrete time steps. In this way, a dynamical system
may be classified as a continuous or discrete dynamical sys-
tem. Dynamical systems are mainly described by differential
equations or discrete differencemaps based on the time vary-
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ing parameters. Further, a chaotic discrete system is one
where this evolution displays an extreme sensitivity to the
initial conditions in such a way that it is quite impossible
to anticipate the long-run performance of the nonlinear sys-
tem. Poincare [35] initially studied the chaotic dynamics of
nonlinear systems followed by the seminal research work
of Lorenz [25] and May [29] based on the computing of
differential and discrete difference equations. One of the cel-
ebrated discrete chaotic map is the standard logistic system,
also known as Verhulst model of population growth, given
by the difference equation xn+1 = ρxn(1−xn), where ρ > 0
is the growth-rate parameter of population and xn ∈ [0, 1]
denotes the population after n generations. In this model, for
extremely low growth rate, the population will die out with
going to extinction and higher growth rates may settle to a
stable state or vibrates among population booms and busts
series. Detailed discussions on discrete chaotic maps can be
found in numerous other references, for example, Alligood et
al. [1], Ausloos and Dirickx [8], Devaney [13, 14], Diamond
[15], Mira [32], Elagdi [16], Elhadj and Sprott [17], Holm-
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gren [21], Melo and Van Strien [31], Martelli [28], Robinson
[41], Mira et al. [33], Strogatz [47], and Wiggins [49].

Due to their richness in knowledge and implication, in
twenty-first century, various discrete chaotic maps have
found prominent applications in several engineering and
scientific disciplines like transportation problems, image
processing, neural network, data transmission, and cryp-
tography. In 1990, Chowdhury and Debnath [10] studied
about chaos and periodicity in a modulated logistic map.
Andrecut [2] in 1997 explored that chaotic random number
generation may be a powerful tool for computer simulation
processes. Baptista [9] examined the text messages encryp-
tion scheme using chaotic maps in 1998. The traffic flow data
were examined by Shang et al. [44] in 2005 by using time-
series analysis, and they reported that the traffic flow on road
exhibits chaotic dynamics. Lo and Cho [24] also proposed
a discrete traffic flow model to tackle chaotic traffic on the
road. In 2008, a novel cryptosystem using discrete chaotic
maps was proposed by de Oliveira and Sobottka [18]. A
chaotic noise analog generator design based on logistic map
was developed by Medina et al. [30] in 2009. Further, Singh
and Sinha [46] developed a secure communication system
and established chaotic signals via discrete logistic map in
2010. In 2013, Radwan et al. [36] proposed some generalized
discrete chaotic maps with improved applications in secure
communication of data. Sayed et al. [43] also introduced
designs of generalized logistic map with different signs in
2015. Effah-Poku et al. [19] examined the chaotic dynamics
of nonlinear systems in 2018. For more applications of dis-
crete chaotic maps, one can refer to Sharkovsky et al. [45],
Crownover [12], Peitgen et al. [34], Harikirishnan and Nand-
kumaran [20],Malek andGobal [26], Kocarev and Jakimoski
[22], Rocha and Taha [42], and Wackerbauer et al. [48].

To enhance the stability performance and predictability of
the discrete logisticmap up to larger extent of the growth-rate
parameter ρ which is useful for several applications, distinct
iterative orbits and feedbackmethodswere applied so far (see
[3–5, 11, 37, 38] and other references therein). Moreover,
different researchers have also studied various generaliza-
tions of discrete chaotic maps (see [6, 7, 10, 20, 36, 39, 40,
43]). Mann [27] in 1953 proposed a novel two-step feed-
back algorithm also termed asMann (superior) iterative orbit
and reported its improved convergence as compared to the
one-stepPicard iterative orbit. Thus, theMann (superior) iter-
ates aid in exploring the dynamical performance of discrete
chaotic maps in a better way. In 2018–19, Ashish et al. [3–5]
examined the dynamics of standard discrete logistic system
using two-step superior iterative orbit and also proposed an
enhanced model of traffic control. Further, in 2022 Kumar et
al. [23] examined the dynamical performance of another one-
dimensional standard chaotic map using various techniques.
They reported that the chaos and stability performance of
their proposed map are better as compared to the standard

logistic map. Following these works and wider applications
of discrete chaotic maps, in this article, we examine the dis-
crete chaotic map proposed by Kumar et al. [23] in superior
orbit that displays improved stability performance than the
existing chaotic systems. Thus, the superiority in stability
range makes the discrete system in superior orbit a better fit
for different control-based applications such as population
control and traffic control on the road.

The article is arranged into five distinct sections. An intro-
duction along with brief literature survey is provided in
Sect. 1, while Sect. 2 presents the basic terminology used in
the study. Section3 reports the formulation and analysis of
the discrete system in superior (Mann) orbit, where the supe-
rior stability performance of the system is disclosed through
fixed state evolution, time-series study, period-doubling
bifurcations and Lyapunov exponent analysis. Moreover, a
comparative analysis of the superior stability performance of
the discrete system through bifurcation and Lyapunov plots
along with possible applications is presented in Sect. 4. At
last, Sect. 5 concludes the whole article.

2 Basic definitions

This section deals with the key terminology and facts which
are used in the analysis of discrete maps.

Definition 2.1 (Superior orbit) [27]: Suppose f : X → X
denotes a discrete map defined on a non-empty set X . Then,
the sequence of iterations {xn}, for an initial choice x0 ∈ X ,
defined as

xn+1 = (1 − ηn)xn + ηn f (xn), (1)

where ηn ∈ [0, 1], n = 0, 1, 2, 3, . . ., is called Mann (supe-
rior) iteration orbit, and the entire system is termed as a
two-step superior iterative system as it needs two numbers,
say, η and x0, as input to give a new output number. For
ηn = 1, the system (1) changes to the traditional system
xn+1 = f (xn).

Definition 2.2 (Fixed and periodic point) [13]: For a discrete
map f : X → X defined on a non-empty set X , a point x ∈ X
is said to be fixed if f (x) = x and a periodic point of period-
m for f m(x) = x , where m denotes the smallest positive
integer and the iteration sequence {x1, x2, . . . , xm} is known
as an orbit of period-m.

Definition 2.3 (Attracting and repelling fixed point) [14]: For
a discrete map f : X → X , where X is a non-empty set, a
fixed point x ∈ X is called attracting if | f ′(x)| < 1 and
repelling for | f ′(x)| > 1. Also, that fixed point is known as
neutral or weakly attracting for | f ′(x)| = 1.

Definition 2.4 (Chain rule of differentiation for a cycle) [14]:
For a discrete map f : X → X , where X is a non-empty set,
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if {x1, x2, . . . , xn} denotes an iteration sequence lying on a
period-n cycle. Then, the derivative of nth iteration of the
system f is given as,

( f n)′(x1) = f ′(x1) × f ′(x2) × · · · × f ′(xn−1) × f ′(xn),
(2)

i.e., the derivative of f n at point x1 is the multiplication of
the derivatives of f on each point of the cycle.

Definition 2.5 (Lyapunov exponent) [1]: For a discrete map
f : R → R defined on the set of reals R, the Lyapunov
exponent (γ ), for an iterative orbit {xn}, is defined as

γ (x1) = lim
n→∞

1

n

n∑

k=1

log| f ′(xk)|, (3)

such that the limit exists finitely. The system exhibits fixed
stable and periodic behavior for LE (γ ) < 0 and chaos or
unstable state for γ > 0. Also, for γ = 0, the system depicts
a neutral state. Hence, the Lyapunov exponent value helps in
examining the stable and unstable behaviors of the system.

3 Formulation and analysis of the superior
discrete chaotic system T�,�(x)

Let us consider a discrete chaotic map [23] defined as below:

kρ(x) = ρx(1 − x)

1 + x
, where ρ > 0, and x ∈ [0, 1]. (4)

Further, the difference equation form of the above map
can be given as:

xn+1 = kρ(xn) = ρxn(1 − xn)

1 + xn
, where

ρ > 0, xn ∈ [0, 1] and n = 0, 1, 2, . . . (5)

Then, for an initial choice x0 ∈ [0, 1], the next iterate
x1 of the discrete map (5) via the superior two-step iterative
system (Definition 2.1) can be derived as:

x1 = (1 − η0)x0 + η0kρ(x0), where kρ(x0) = ρx0(1 − x0)

1 + x0
.

Through induction, the discrete map (5) form in superior
(Mann) orbit is given by:

xn+1 = (1 − ηn)xn + ηnkρ(xn), where

ηn ∈ [0, 1], xn ∈ [0, 1] and n = 0, 1, 2, . . . (6)

Now, it is evident that for ηn = 0, the system (6) admits
an obvious state xn+1 = xn and for ηn = 1, it reduces to

the standard discrete map (5). So, for an authenticity of the
article, we consider ηn ∈ (0, 1). Thus, by assuming ηn = η,
xn = x and putting (5) in (6), the proposed variation of the
discrete map (5) in the superior (Mann) orbit changes to the
following form:

Tη,ρ(x) = (1 − η)x + η

(
ρx(1 − x)

1 + x

)
, (7)

where x ∈ [0, 1] and Tη,ρ(x) denotes the superior dis-
crete system with η ∈ (0, 1) and ρ > 0 as its two control
parameters. In this article, we consider the parameter values
η = 0.9, 0.55 and 0.2 to examine the stability performance
of the system Tη,ρ(x).

3.1 Fixed point analysis for the superior system
T�,�(x) at� = 0.9, 0.55 and 0.2

For the discrete system Tη,ρ(x) given in (7), a sequence
of iterations defined as {x0, Tη,ρ(x0) = x1, T 2

η,ρ(x0) =
x2, T 3

η,ρ(x0) = x3, . . . , T n
η,ρ(x0) = xn, . . .} is called an

iterative orbit with an initial input or seed x0 ∈ [0, 1] and
T n

η,ρ(x0) denotes the nth iterate of Tη,ρ(x) at point x0.
Further, from Definition 2.2 using relation (7), the fixed

point iterative orbit for the system Tη,ρ(x) may be written
as the iterative sequence {x0, Tη,ρ(x0) = x0, T 2

η,ρ(x0) =
x0, T 3

η,ρ(x0) = x0, . . . , T n
η,ρ(x0) = x0, . . .} or

{x0, x0, . . . , x0, . . .}, where x0 ∈ [0, 1] is the initial choice.
Now, we explore the general fixed point properties for the
superior discrete system Tη,ρ(x).

As we have Tη,ρ(x) = (1 − η)x + η
(
kρ(x)

)
, where

kρ(x) = ρx(1−x)
1+x , then, by usingDefinition 2.2 of fixed point,

it may be written as:

Tη,ρ(x) = x,

that is, (1 − η)x + η

(
ρx(1 − x)

1 + x

)
= x,

(1 − η) (1 + x) x + ηρx (1 − x) = x (1 + x) ,

x (ηρ − η − ηρx − ηx) = 0,

either x = 0 or η (ρ − 1 − ρx − x) = 0,

∴ x = 0 and ρ − 1 − ρx − x = 0 (∵ η > 0) ,

that is, x = 0 and x = ρ − 1

ρ + 1
for ρ > 0.

Thus, p1 = 0 and p2 = ρ−1
ρ+1 for ρ > 0 are the two fixed

points for the discrete system Tη,ρ(x) for each η ∈ (0, 1).
Also, it is evident to notice that the non-trivial fixed point
p2 = ρ−1

ρ+1 lies in [0,1] for all ρ > 1. Thus, the discrete
system Tη,ρ(x) reveals only the trivial fixed point p1 = 0 for
0 < ρ ≤ 1 and the two fixed points p1 = 0 and p2 = ρ−1

ρ+1
for ρ > 1 as depicted in Fig. 1a, b, respectively.
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Attracting and repelling fixed points versus parameters
η and ρ in the superior systemTη,ρ(x)

Here, for distinct values of the control parameter η, we
examine the respective ranges of growth-rate parameter ρ,
for which fixed points p1 and p2 of the system Tη,ρ(x) are in
attracting and repelling states. So, by using Definition 2.3 of
attracting and repelling fixed points for the system Tη,ρ(x),
we have “A fixed point x for the system Tη,ρ is called attract-
ing if |T ′

η,ρ(x)| < 1 and repelling for |T ′
η,ρ(x)| > 1. Also,

the fixed point is known as neutral or weakly attracting for
|T ′

η,ρ(x)| = 1”. As, we have

Tη,ρ(x) = (1 − η)x + η

(
ρx(1 − x)

1 + x

)

Then, T ′
η,ρ(x) = (1 − η) + ηρ

(
1 − 2x − x2

(1 + x)2

)
. (8)

Now, we consider three distinct values of the control
parameter η:

(a) For η = 0.9
As p1 = 0 and p2 = ρ−1

ρ+1 are two fixed points of the
system Tη,ρ(x) for each η ∈ (0, 1), for fixed point p1 = 0,
using (8), we get |T ′

0.9,ρ(0)| = |1 − η + ηρ| = |1 − (0.9) +
(0.9)×ρ| < 1 for 0 < ρ < 1.Also, |T ′

0.9,ρ(0)| = 1 forρ = 1
and |T ′

0.9,ρ | > 1 for ρ > 1. Thus, the fixed point p1 = 0 is
attracting for 0 < ρ < 1, neutral (weakly attracting) at ρ = 1
and repelling for ρ > 1 for the system T0.9,ρ(x).

Likewise, for other fixed point p2 = ρ−1
ρ+1 , by using rela-

tion (8), we have

∣∣∣T ′
η,ρ(p2)

∣∣∣ =
∣∣∣∣∣(1 − η) + ηρ

(
1 − 2p2 − p22

(1 + p2)2

)∣∣∣∣∣

that is,

∣∣∣∣T
′
0.9,ρ

(
ρ − 1

ρ + 1

)∣∣∣∣ = |(1 − 0.9) + (0.9) × ρ

×
⎛

⎜⎝
1 − 2 ×

(
ρ−1
ρ+1

)
−

(
ρ−1
ρ+1

)2

(
1 +

(
ρ−1
ρ+1

))2

⎞

⎟⎠

∣∣∣∣∣∣∣
.

(9)

By solving (9), we find that |T ′
0.9,ρ(p2)| < 1 for 1 <

ρ < 4.66. Further, |T ′
0.9,ρ(p2)| = 1 at ρ = 4.66 and

|T ′
0.9,ρ(p2)| > 1 for ρ > 4.66. Hence, by Definition 2.3,

the fixed point p2 of the system Tη,ρ(x) is attracting for
1 < ρ < 4.66, neutral for ρ = 4.66 and repelling for
ρ > 4.66, at η = 0.9.

(b) For η = 0.55
Likewise, as discussed in case (a), for the trivial fixed point

0, using (8), we have |T ′
0.55,ρ(0)| = |1 − (0.55) + (0.55) ×

ρ| < 1 for 0 < ρ < 1. So, the fixed point p1 = 0 of
T0.55,ρ(x) is attracting for 0 < ρ < 1, neutral for ρ = 1 and
repelling for ρ > 1. Further, for the fixed point p2 = ρ−1

ρ+1 ,
we get

∣∣∣∣T
′
0.55,ρ

(
ρ − 1

ρ + 1

)∣∣∣∣ = |(1 − 0.55) + (0.55) × ρ

×
⎛

⎜⎝
1 − 2 ×

(
ρ−1
ρ+1

)
−

(
ρ−1
ρ+1

)2

(
1 +

(
ρ−1
ρ+1

))2

⎞

⎟⎠

∣∣∣∣∣∣∣
.

(10)

Now, simplifying (10), we get |T ′
0.55,ρ(p2)| < 1 for 1 <

ρ < 7.41. Thus, in turn, the fixed point p2 of T0.55,ρ(x)
is attracting for 1 < ρ < 7.41, neutral for ρ = 7.41 and
repelling for ρ > 7.41.

(c) For η = 0.2
Using (8), for η = 0.2 and fixed point p1 = 0, we find

|T ′
0.2,ρ | = |1− (0.2)+ (0.2)×ρ| < 1 for 0 < ρ < 1. Hence,

0 is an attracting fixed point for 0 < ρ < 1 and neutral
and repelling fixed point for ρ = 1 and ρ > 1, respectively.
Similarly, for p2 = ρ−1

ρ+1 in this case, we obtain

∣∣∣∣T
′
0.2,ρ

(
ρ − 1

ρ + 1

)∣∣∣∣ = |(1 − 0.2) + (0.2) × ρ

×
⎛

⎜⎝
1 − 2 ×

(
ρ−1
ρ+1

)
−

(
ρ−1
ρ+1

)2

(
1 +

(
ρ−1
ρ+1

))2

⎞

⎟⎠

∣∣∣∣∣∣∣
.

(11)

By solving (11), we get |T ′
0.2,ρ(p2)| < 1 for 1 < ρ < 20.05

and hence the fixed point p2 of T0.2,ρ(x) displays attracting,
neutral and repelling states for 1 < ρ < 20.05, ρ = 20.05
and ρ > 20.05, respectively.

It is evident from the above analysis that the obvious fixed
point p1 = 0 is in attracting (stable) state for 0 < ρ ≤ 1
for each η ∈ (0, 1), whereas the other fixed point p2 = ρ−1

ρ+1
is attracting (stable) in the respective ranges of parameter
ρ for distinct values of parameter η ∈ (0, 1), that is, for
1 < ρ ≤ 4.66, 1 < ρ ≤ 7.41 and 1 < ρ ≤ 20.05 at
η = 0.9, 0.55 and 0.2, respectively. The cobweb plots in
Fig. 2a–d display the attracting behavior of fixed points 0
and ρ−1

ρ+1 of Tη,ρ(x) for different values of parameters η and
ρ.

Remark 3.1 The growth-rate parameter ranges for the attract-
ing behavior of the non-trivial fixed point p2 at η =
0.9, 0.55, 0.2 are 1 < ρ ≤ 4.66, 1 < ρ ≤ 7.41 and
1 < ρ ≤ 20.05, respectively. Thus, the respective attract-
ing (stable) range of the fixed point p2 increases when the
parameter value η decreases.

3.2 Time-series representation in the superior
system T�,�(x) for� = 0.9, 0.55 and 0.2

This section presents the time-series representation of the
system Tη,ρ(x) by changing the parameters η and ρ in their
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Fig. 1 For the system Tη,ρ(x), graphical representation of a only the trivial fixed point p1 at η = 0.9 and ρ = 0.8, b two fixed points p1 and p2 at
η = 0.9 and ρ = 3.5
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Fig. 2 For Tη,ρ(x), a attracting nature of fixed point 0 at η = 0.9, ρ = 0.8 and attracting behavior of fixed point ρ−1
ρ+1 for b η = 0.9, ρ = 4, c

η = 0.55, ρ = 6, d η = 0.2, ρ = 17.25
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specific extent. Figures3 and 4 depict the time-series plots
of Tη,ρ(x) at η = 0.9, 055 and 0.2.

(a) For η = 0.9
The superior system Tη,ρ(x) admits fixed state, periodic

behavior and chaos for η = 0.9 and 0 < ρ ≤ 6.2 as shown in
Fig. 3a–d. Also, Fig. 3a depicts that the iterative orbit of the
system T0.9,ρ(x) tends to the trivial fixed point p1 = 0 for
0 < ρ ≤ 1 and to the non-trivial fixed point p2 = ρ−1

ρ+1 for
1 < ρ ≤ 4.66. For 4.66 < ρ ≤ 5.54, the system oscillates
between period-2 stable solutions and period-4 vibrations
exist in the system for 5.54 < ρ ≤ 5.71 as depicted in Fig.
3b, c, respectively. These 2n periodic oscillations continue
in the system up to ρ = 5.76. As ρ∞ ≈ 5.76, the system
T0.9,ρ(x) enters into an irregular state and exhibits chaos for
5.76 < ρ ≤ 6.2 as shown in Fig. 3d. Moreover, for ρ > 6.2,
the system T0.9,ρ is undefined, as there exists at least one
such xn that does not lie in [0,1].

(b) For η = 0.55
The system displays fixed state and periodicity for η =

0.55 and 0 < ρ ≤ 8.49 as shown in Fig. 4a–c. Further, Fig.
4a depicts the convergence in the system to the obvious fixed
point 0 for 0 < ρ ≤ 1 and to the non-trivial fixed point ρ−1

ρ+1
for 1 < ρ ≤ 7.41. Period-2 stable vibrations exist in the
system for 7.41 < ρ ≤ 8.49 as shown in Fig. 4b. Also, for
ρ > 8.49, the system is undefined, as there is at least one
such xn that does not lie in the interval [0, 1] (see Fig. 4c).

(c) For η = 0.2
Figure 4d–f represents the time-series plots of the system

for η = 0.2 and 0 < ρ ≤ 20.25. In particular, Fig. 4d shows
the fixed point convergence for the system to the obvious
fixed point 0 for 0 < ρ ≤ 1 and to the non-trivial fixed point
p2 for 1 < ρ ≤ 20.05, whereas the period-2 stable oscilla-
tions in the system for 20.05 < ρ ≤ 20.25 are depicted in
Fig. 4e. For η > 20.25, the system T0.2,ρ(x) does not exist
as xn does not lie entirely in [0, 1] there as depicted in Fig.
4f.

3.3 Periodic evolution of the superior system
T�,�(x) for� = 0.9, 0.55 and 0.2

Periodic evolution, another leading aspect in nonlinear sys-
tems, is generally used to examine the dynamical perfor-
mance of discrete systems, by reporting the period-doubling
character of different iterative orbits of the system. This
section put forward the period-doubling bifurcations ver-
sus the parameters η and ρ for the system Tη,ρ(x). So,
for an initial choice x0 ∈ [0, 1], with step size 0.001 and
η = 0.9, 0.55, 0.2, the period-doubling diagrams are pre-
sented in Figs. 5 and 6, respectively.

(a) For η = 0.9
Figure 5a displays the complete bifurcation plot of the

system T0.9,ρ(x). Further, it is evident from Fig. 5b that as

ρ ≈ 4.66, the non-trivial fixed point p2 = ρ−1
ρ+1 turns into an

unstable state and initial bifurcation in the system comes into
picture, where the system vibrates between period-2 stable
branches B1 and B2 for 4.66 < ρ ≤ 5.54. In similar fashion,
forρ > 5.54, the next period-doubling appears in the system;
that means, for 5.54 < ρ ≤ 5.71 the stable branches B1 and
B2 of period-2 become unstable and the system T0.9,ρ(x)
starts to oscillate among period-4 stable branches B11, B12,
B21 and B22. Also, other higher 2n-order bifurcations in the
system are reported for 5.71 < ρ ≤ 5.76. As ρ∞ ≈ 5.76,
a transition from period-doubling to the chaotic evolution is
noticed in the system. The full-fledged chaos performance
of the system in the magnified form for the parameter range
5.76 < ρ ≤ 6.2 can be visualized in Fig. 5c. Moreover,
for ρ > 6.2, the system T0.9,ρ(x) cannot be defined, as it
exceeds 1 there; that means, the value of ρmax for the system
T0.9,ρ(x) is 6.2 (see Fig. 5a).

(b) For η = 0.55
Figure 6a–b depicts the bifurcations plots of the system

T0.55,ρ(x). Further, Fig. 6a clarifies that the non-trivial fixed
point p2 = ρ−1

ρ+1 becomes unstable for ρ > 7.41 and the sys-
tem T0.55,ρ(x) alternates between period-2 stable branches
B1 and B2 for 7.41 < ρ ≤ 8.49. Also, when the growth-
rate parameter ρ exceeds 8.49, i.e., for ρ > 8.49, the system
T0.55,ρ(x) is not defined, since xn does not lie in [0, 1] there
as shown in Fig. 6b. Thus, the value of pmax for T0.55,ρ(x)
is 8.49 (see Fig. 6a, b).

(c) For η = 0.2
Figure 6c shows that the system T0.2,ρ(x) admits conver-

gence to the obvious fixed point 0 for 0 < ρ ≤ 1 and to
the non-trivial fixed point solution ρ−1

ρ+1 for 1 < ρ ≤ 20.05
alongwith stable period-2 oscillations in the parameter range
20.05 < ρ ≤ 20.25. In addition, for ρ > 20.25, the iterative
orbit xn /∈ [0, 1], and thus, the discrete system T0.2,ρ(x) does
not exist there, as depicted in Fig. 6d. In this way, the value of
parameter ρmax for the system T0.2,ρ(x) is 20.25 (see Fig. 6c,
d).

Remark 3.2 For η = 0.9, 0.55 and 0.2, the values of param-
eter ρmax are 6.2, 8.49 and 20.25, respectively (see Figs. 5a
and 6b, d). Hence, the value of growth-rate parameter ρmax

increases when the value of control parameter η decreases.

Remark 3.3 The growth-rate parameter (ρ) extents corre-
sponding to the stable behavior of the system Tη,ρ(x) for
η = 0.9, 0.55 and 0.2 are reported as 0 < ρ ≤ 5.76 (Fig. 5a,
b), 0 < ρ ≤ 8.49 (Fig. 6a, b) and 0 < ρ ≤ 20.25 (Fig. 6c, d),
respectively. Thus, the respective range for stability perfor-
mance in the system increases when we decrease the value
of control parameter η.
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Fig. 3 For the superior system Tη,ρ(x), a fixed stable solutions at η = 0.9;ρ = 0.8, 2, 3 and 4, b period-2 stable vibrations at η = 0.9; ρ = 4.95
and 5.25, c period-4 stable vibration at η = 0.9 and ρ = 5.65, d unstable vibration at η = 0.9 and ρ = 6

3.4 Maximal Lyapunov exponent in the superior
system T�,�(x) for� = 0.9, 0.55 and 0.2

This section presents the maximal Lyapunov exponent
(MLE), a tremendous tool to characterize chaos, predictabil-
ity of nonlinear systems and their sensitive dependence to
initial conditions for distinct iteration orbits. So, for the sys-
tem Tη,ρ(x), the MLE is determined as follows:

Let x and x + ξ for 0 < ξ < 1 be the close initiators for
two distinct orbits and D, defined as the exponential growth
ξenγ , denote the divergence between these orbits, where γ

indicates the maximal Lyapunov exponent (MLE) of Tη,ρ(x)
and n signifies the number of iterations. So, we obtain

T n
η,ρ(x + ξ) − T n

η,ρ(x) = D = ξenγ ,

i.e.,
T n

η,ρ(x + ξ) − T n
η,ρ(x)

ξ
= enγ . (12)

Taking limit ξ → 0 at both sides, we have

lim
ξ→0

T n
η,ρ(x + ξ) − T n

η,ρ(x)

ξ
= enγ ,

i.e., (T n
η,ρ)′(x) = enγ . (13)

By taking logarithm at both sides of (13), we get

γ = 1

n
log|(T n

η,ρ)′(x)|, (14)

such that η ∈ (0, 1), ρ > 0 and (T n
η,ρ)′(x) is the first

derivative of T n
η,ρ(x). Further, for the iteration sequence{

x1, x2 = Tη,ρ(x1) , x3 = Tη,ρ(x2), . . ., xn+1 = Tη,ρ(xn),
. . .}, the derivative for the nth degree polynomial, i.e.,
(T n

η,ρ)′(x1), through Definition 2.4 of chain rule, may be
defined as below:

(T n
η,ρ)′(x1) = T ′

η,ρ(xn) · T ′
η,ρ(xn−1) · · · ·T ′

η,ρ(x2) · T ′
η,ρ(x1). (15)
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Fig. 4 For the system Tη,ρ(x), a fixed stable solutions at η = 0.55;
ρ = 0.7, 2.25, 4.15, 6.75, b period-2 stable vibrations at η = 0.55;
ρ = 7.45, 8.25, c undefined vibration at η = 0.55, ρ = 9.5, d fixed

stable solutions at η = 0.2; ρ = 0.55, 1.75, 3.95, 9.25, 17.25, e period-
2 stable vibrations at η = 0.2; ρ = 20.12, 20.15, f undefined vibration
at η = 0.2, ρ = 21.5
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Fig. 5 For the system Tη,ρ(x) at η = 0.9, x0 = 0.3, N = 500, a bifurcation plot for 3 ≤ ρ ≤ 6.2, b period-doubling plot for 3 ≤ ρ ≤ 5.76, c
magnified chaotic region for 5.77 ≤ ρ ≤ 6.2

Thus, by (14) and (15), the maximal Lyapunov exponent
(MLE) is given as:

γ = 1

n
log|T ′

η,ρ(xn) · T ′
η,ρ(xn−1) . . . T ′

η,ρ(x2) · T ′
η,ρ(x1)|,

= 1

n

[
log|T ′

η,ρ(xn)| + log|T ′
η,ρ(xn−1)| + · · ·

+ log|T ′
η,ρ(x2)| + log|T ′

η,ρ(x1)|
]
,

= 1

n

n∑

k=1

log|T ′
η,ρ(xk)|, (16)

where η ∈ (0, 1) and ρ > 0. Thus, it is observed that
the maximal Lyapunov exponent (γ ) is equal to the aver-
age value of log|T ′

η,ρ(x)| for the iteration sequence {xn} in
the superior system Tη,ρ(x). Moreover, the negative MLE
(γ ) signifies stable behavior in the system, whereas for the
positive MLE(γ ), the system exhibits chaotic or unstable
behavior and admits more sensitivity on initial conditions.

For any fixed stable orbit of Tη,ρ(x), the maximal Lya-
punov exponent (γ ) reduces to the form:

γ = log|T ′
η,ρ(x1)|. (17)

Moreover, for any periodic stable orbit of order m, MLE
(γ ) takes the following form:

γ = 1

m

m∑

k=1

log|T ′
η,ρ(xk)|. (18)

AsMLE estimation for aperiodic orbits, which are neither
fixed nor periodic, using the entire length of orbits is practi-
cally impossible. So, MLE is evaluated by using only finite
length of an iterative orbit.

Example 3.4 Let Tη,ρ(x) be the superior discrete system and
kρ(x) be the original discrete map, where ρ ∈ (0, 6.2] and
x ∈ [0, 1]. Then, evaluate the maximum Lyapunov exponent
(γ ) for:
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Fig. 6 For the system Tη,ρ(x) with x0 = 0.3 and N = 500, a period-doubling plot for η = 0.55, 0 < ρ ≤ 8.49, b undefined bifurcation plot for
η = 0.55, ρ > 8.49, c stable region for η = 0.2, 0 < ρ ≤ 20.25, d undefined bifurcation plot for η = 0.2, ρ > 20.25

(a) the non-trivial fixed point p2 = ρ−1
ρ+1 at η = 0.9 and

ρ = 4,
(b) the order-two periodic points, say, x1 = 0.4613 and x2 =

0.8114 at η = 0.9 and ρ = 5.

Solution. (a)As discussed in Sect. 3.2, in the parameter extent
1 < ρ ≤ 4.66, the iteration orbit for the system Tη,ρ(x)
approaches to the non-trivial fixed point solution p2 = ρ−1

ρ+1
for all x ∈ [0, 1] and the corresponding fixed point for the
iteration orbit at ρ = 4 is determined as p2 = 4−1

4+1 = 3
5 =

0.6. So, to evaluate the maximal Lyapunov exponent (γ ) for
the fixed point p2, we have to solve (17).

Since we have

T ′
η,ρ(x) = (1 − η) + ηρ

(
1 − 2x − x2

(1 + x)2

)
,

thus, by putting η = 0.9, ρ = 4 and x = 0.6 in above
relation, we get

T ′
0.9,4(0.6) = (1 − 0.9) + 0.9 × 4 ×

(
1 − 2 × 0.6 − (0.6)2

(1 + 0.6)2

)

= −0.6873 (19)

Thus, from (17) and (19), we obtain

γ = log|−0.6873| = −0.1628

So, the required value of MLE (γ ) is −0.1628, which is
less than zero. Thus, the orbit for the non-trivial fixed point
p2 = ρ−1

ρ+1 = 0.6 is stable and hence it becomes a stable
attractor of the system T0.9,4(x).

(b) Also, for 4.66 < ρ ≤ 5.54, the orbit for the system
T0.9,ρ(x) displays order-2 periodic behavior for each x ∈
[0, 1]. At ρ = 5, the periodic points are calculated as, say,
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x1 = 0.4613 and x2 = 0.8114. So,

T ′
0.9,5(0.4613) = (1 − 0.9) + 0.9 × 5 ×
(
1 − 2 × 0.4613 − (0.4613)2

(1 + 0.4613)2

)
= −0.1853 (20)

and

T ′
0.9,5(0.8114) = (1 − 0.9) + 0.9 × 5 ×
(
1 − 2 × 0.8114 − (0.8114)2

(1 + 0.8114)2

)
= −1.6572 (21)

Now, by using (18), (20) and (21), we get

γ = 1

2

[
log|T ′

0.9,5(0.4613)|
+ log|T ′

0.9,5(0.8114)|
]
,

= 1

2

[
log|−0.1853| + log|−1.6572|] ,

= 1

2
[−0.7321 + 0.2194] ,

∴ γ = −0.5127

Hence, the estimatedMLEvalue is−0.5127, which is also
less than zero. So, as a result, the periodic points of order-
two, say, x1 and x2 are the stable attractors for the system
T0.9,5(x).

Maximal Lyapunov exponent (γ ) versus parameters η

and ρ for the superior system Tη,ρ(x)

Now, we illustrate the maximal Lyapunov exponent
(MLE) behavior of the superior discrete system Tη,ρ(x) for
different values of control parameter η ∈ (0, 1) via showing
10,000 points for the system.

(a) For η = 0.9
The MLE plots of the system T0.9,ρ(x) are depicted in

Fig. 7a–b. Further, Fig. 7a clearly shows that in the extent
0 < ρ ≤ 5.76, the MLE (γ ) approaches to a negative value,
that is, γ < 0, which signalizes the fixed stable and periodic
behaviors in the system T0.9,ρ(x). Also, for ρ > 5.76, the
MLE value (γ ) is positive, representing chaos or irregular
behavior in the system. After magnifying the MLE plot for
5.76 < ρ ≤ 6.2, an amazing behavior in the system can
be reported via Fig. 7b, where the system admits extreme
sensitivity to initial conditions and a fully developed chaos
comes into picture.

(b) For η = 0.55
Likewise, Fig. 7c depicts that the MLE (γ ) plot of the

system T0.55,ρ(x) tends to a negative value, thatmeans,γ < 0
for 0 < ρ ≤ 8.49. Moreover, in this range for parameter ρ,
the Lyapunov spectrum exhibits two negative spikes, which
characterize the fixed stable and periodic behavior of the
system T0.55,ρ(x).

(c) For η = 0.2
The MLE (γ < 0), that means, approaches to a value less

than zero in the parameter range 0 < ρ ≤ 20.25, which
symbolizes stable state in the system T0.2,ρ(x) as displayed
in Fig. 7d. Here, in the mostly extent of parameter ρ, i.e.,
0 < ρ ≤ 20.05, the Lyapunov spectrum displays only one
negative spike indicating the fixed stable behavior in the sys-
tem T0.2,ρ(x).

Remark 3.5 It is evident from the above discussion that the
superior system Tη,ρ(x) exhibits more sensitivity to initial
conditions and higher nonlinearity for large η values, as
depicted for η = 0.9 in Fig. 7a and improved stability range
for small η values, as shown for η = 0.2 in Fig. 7d.

4 Comparative analysis of the superior
discrete chaotic system T�,�(x)

This section deals with the comparative stability analysis of
the superior discrete system Tη,ρ(x) for decreasing values
of control parameter η ∈ (0, 1) and versus existing discrete
systems in terms of comparative bifurcation and maximal
Lyapunov exponent diagrams.

4.1 Comparative stability analysis w.r.t. decreasing
values of control parameter� ∈ (0, 1)

From the comparative bifurcation plots at different values of
control parameter η versus the growth-rate parameter ρ as
depicted in Fig. 8, we notice that for decreasing values of the
control parameter η from 1 to 0, the superior system Tη,ρ(x)
remains in a convergent or stable state for the higher range of
the growth-rate parameter ρ. That means, the stability extent
of the parameter ρ increases as we decrease the value of
parameter η ∈ (0, 1). Hence, it represents an inverse relation
amidst the control parameter η ∈ (0, 1) and the growth-rate
parameter ρ > 0. A comparative study of the main dynam-
ical behaviors of the superior system Tη,ρ(x) versus distinct
values of control parameter η is also provided in Table 1.

4.2 Comparative stability analysis of the system
T�,�(x) versus existing discrete systems

Here, we examine the stability extent of the superior discrete
system Tη,ρ(x) in contrast to the canonical logistic system
fρ(x) = ρx(1−x), logistic system in superior orbitMη,ρ(x)

and the original discrete system kρ(x) = ρx(1−x)
1+x . So, from

the comparative Lyapunov plots shown in Fig. 9, it is reported
that the red coloredLyapunov spectrumof the system Tη,ρ(x)
renders an enhanced stability range in contrast to the remain-
ing Lyapunov spectrums in different colors for other systems.
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Fig. 7 For the system Tη,ρ(x) with x0 = 0.3 and N = 10, 000, a Maximal Lyapunov exponent plot for η = 0.9, 3 ≤ ρ ≤ 6.2, b magnified region
of Lyapunov spectrum for η = 0.9, 5.77 ≤ ρ ≤ 6.2, c MLE plot for η = 0.55, 0 < ρ ≤ 8.49, d MLE plot for η = 0.2, 0 < ρ ≤ 20.25

Further, Fig. 9 also depicts comparatively lower maximal
Lyapunov exponent (MLE) value for the system Tη,ρ(x) than
that of the existing discrete systems. In addition, the lower
MLE value of any system indicates the weaker sensitivity on
initial conditions. Thus, the superior discrete system Tη,ρ(x)
having lowerMLEvaluemay be effectively used for different
control-based applications.

4.3 Applications of the superior discrete system
T�,�(x)

From the above discussions, it is inferred that the superior
system Tη,ρ(x) displays an extensive stability range as com-
pared to the other systems. Also, the corresponding stability
range of the system further increases, when the value of con-
trol parameter η decreases from 1 to 0. Hence, owing to the
enhanced stability range, the superior system Tη,ρ(x) may

be a better fit for different control-based nonlinear phenom-
ena, where stability is essential like transportation problems
related to traffic control (see [3, 5, 24] and other references
therein).

Lo andCho [24] proposed a discrete trafficmodel based on
standard logistic system fρ(x), and Ashish et al. [3] further
studied that model using Mann (superior) orbit Mη,ρ(x). As
discussed above, the discrete chaotic system kρ(x) admits
better stability as compared to logistic system fρ(x) and
this stability range further increases under the superior sys-
tem Tη,ρ(x) for the decreasing values of control parameter
η ∈ (0, 1). Thus, motivating by applications of these discrete
systems in traffic control and enhanced stability range of the
superior discrete system Tη,ρ(x) as compared to the existing
chaotic systems, it is speculated that the proposed system
might have potential applications in discrete traffic control.
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Fig. 8 Comparative bifurcation
plots of Tη,ρ(x) for different
values of η versus parameter ρ
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Table 1 Comparative dynamics
table of superior system Tη,ρ(x)
for different η values

Dynamical behavior η = 0.9 η = 0.55 η = 0.2

Fixed state 0 < ρ ≤ 4.66 0 < ρ ≤ 7.41 0 < ρ ≤ 20.05

Periodic state 4.66 < ρ ≤ 5.76 7.41 < ρ ≤ 8.49 20.05 < ρ ≤ 20.25

Chaotic state 5.76 < ρ ≤ 6.2 – –

So, for possible applications in traffic control, a compara-
tive analysis of the traffic behavior via traffic control models
based on different discrete systems is provided under Table
2. The different traffic states given in Table 2 mainly corre-
spond to distinct dynamical behaviors of the discrete systems
taken inSect. 4.2 for comparative analysis viaLyapunovplots
(Fig. 9). In particular, the stable (attracting) behavior of the
trivial fixed point 0 corresponds to no traffic zone for different
systems, whereas the stability range of the non-trivial fixed
point is taken as the stable traffic state. Also, the periodic
oscillations and chaos in these systems correspond to peri-
odic stable and unstable traffic zones respectively. In superior
system Tη,ρ(x), the range of predictable and stable traffic
state is more as compared to the other discrete systems.

5 Conclusions

This article presents a novel analysis on the stability perfor-
mance of a discrete chaotic map in Mann (superior) orbit. In
contrast to the original discretemap, the stable behavior in the
superior system depends on two control parameters, namely
η and ρ. Several dynamical aspects like fixed points, attract-
ing and repelling fixed points, time-series representations,
period-doubling bifurcations and maximal Lyapunov expo-
nent (MLE) are interpreted thoroughly for the discrete system

in superior orbit. The superior stability performance in the
system with respect to decreasing values of control parame-
ter η and versus existing discrete systems is also revealed via
comparative bifurcation and MLE diagrams. The following
outcomes are deduced from the analysis:

• The analysis is done for η = 0.9, 0 < ρ ≤ 6.2; η = 0.55,
0 < ρ ≤ 8.49 and η = 0.2, 0 < ρ ≤ 20.25, respectively,
and it is revealed that the stability range of the system
improves rapidly when the value of parameter η ∈ (0, 1)
decreases.

• At each η ∈ (0, 1), the superior system admits only the
trivial fixed point p1 = 0 for 0 < ρ ≤ 1, which is in
attracting (stable) state, whereas for ρ > 1, there exist
two fixed points p1 = 0 and p2 = ρ−1

ρ+1 such that p1 is
repelling and p2 is attracting for 1 < ρ ≤ 4.66 at η =
0.9, for 1 < ρ ≤ 7.41 at η = 0.55 and for 1 < ρ ≤ 20.05
at η = 0.2, respectively.

• The discrete map in superior orbit exhibits periodic
behavior for the parameter extents 4.66 < ρ ≤ 5.76,
7.41 < ρ ≤ 8.49 and 20.05 < ρ ≤ 20.25 at η = 0.9,
0.55 and 0.2, respectively.

• Moreover, at η = 0.9, the irregular behavior or chaos is
reported in the system for 5.76 < ρ ≤ 6.2, while for
η = 0.55 and 0.2, there exists no chaos in the system.
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Fig. 9 Comparative Lyapunov
plots of Tη,ρ(x) with other
discrete systems versus
parameter ρ
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Table 2 Comparative table of
the traffic control models based
on different discrete systems

Traffic behavior fρx Mη,ρ(x) kρx Tη,ρ(x)

No traffic on road 0 < ρ ≤ 1 0 < ρ ≤ 1 0 < ρ ≤ 1 0 < ρ ≤ 1

Stable traffic 1 < ρ ≤ 3 1 < ρ ≤ 3.22 1 < ρ ≤ 4.22 1 < ρ ≤ 4.66

2 ≤ n-stable traffic 3 < ρ ≤ 3.57 3.22 < ρ ≤ 3.85 4.22 < ρ ≤ 5.21 4.66 < ρ ≤ 5.76

Unstable traffic 3.57 < ρ ≤ 4 3.85 < ρ ≤ 4.22 5.21 < ρ ≤ 5.83 5.76 < ρ ≤ 6.2

Thus, it is speculated that the enhanced range of stability
performance of the discrete system in superior orbit in con-
trast to the existing discrete systems (see Sect. 4) makes it
more efficient for several real-life control-based applications
such as traffic control and population control in the future.
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