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Abstract
Reduced multiple-model control design as an alternative approach to control complex nonlinear systems could bring about
the simplicity in system analysis, control design, and implementation and could guarantee the local stability using two tools:
gap metric and stability margin. This is while a study on closed-loop stability of nonlinear systems remains a contentious
issue which is left to be solved.We introduced a stability analysis of a linear matrix inequalities based reduced multiple-model
control algorithm, whereby the closed-loop stability will be met driven via Lyapunov approach. The stabilizing strategy is
applied to design a reduced multiple-model control using linear matrix inequality. The global stability could be guaranteed via
such a valuable approach. This is illustrated on a complex nonlinear system, which is modeled around two different operating
points to describe its strong nonlinearities. The closed-loop stability properties are also illustrated via computer simulations.

Keywords Stability analysis · Linear matrix inequality · Multiple-models · Gap metric · Stability margin · Model order
reduction
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GDD Glucose-dependent desired
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HOMB High order model bank
HONLM High order nominal linear models
HVAC Heating, ventilation, and air conditioning
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ISE Integral square error
ITAE Integral time absolute error
ITSE Integral time square error
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1 Introduction

In the past few decades, different control techniques have
addressed high order nonlinear systems, which could be
categorized in four strategies: nonlinear controller [1, 2], sin-
gle linear controller [3], multiple-model controllers [4], and
Reduced Multiple-Model (RMM) controllers [5]. Heating,
Ventilating, and Air Conditioning (HVAC), Type 1 Diabetes
Mellitus (T1DM), and PH neutralization systems are best
example of high order nonlinear systems [3, 4, 6]. Order
and nonlinearity complexities in considered systems could
result in modelling, control design and analysis and con-
trol implementation challenges requiring proper treatment.
Among all strategies cited in the previous literatures, RMM
control design could adequately resolve the mentioned prob-
lems in both aspects of order and nonlinearity [5].
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Two tools should be employed to benefit from RMM con-
trol design in such complex systems: Order Reduction (OR)
and Multiple-Model (MM) [5]. Therefore, the variety of OR
andMMmethods should be considered in this regard [7–11],
all of which bring about different results in the closed-loop
sense. A new control approach that combines MM and OR
can cope well with order and nonlinearity characteristics [5].
Undeniable achievements of this combination are reducing
computational loads, saving time, simplifying control design,
and simplifying control implementation.

Although RMM control design has received a consider-
able attention during the past decade, the closed-loop stability
has remained a closed book to some extent. One of the most
efficient methods in MM approach is based on gap metric
and stability margin [7, 12], which is only able to fulfill the
local stability for each linear model, while there is no guar-
antee for stabilization of the nonlinear system constructed
by weighted reduce multiple models [13, 14]. Indeed, each
local controller can just stabilize the local model, while the
combination of all local controllers does not necessarily
stabilize the nonlinear system. In the closed-loop stability
analysis context, the stability condition is obtained according
to quadratic Lyapunov approach,which depends on existence
of a common positive definite matrix for all reduce multi-
ple models [15]. Although this approach is facilitated via
Linear Matrix Inequalities (LMI) [16, 17], which could be
efficiently solved by convex programming techniques, find-
ing the commonpositive definitematrixmaybecomedifficult
when the set of reduced multiple models is large [18]. This
occurs due to conservatism of Lyapunov function. Piecewise
quadratic Lyapunov function has been replaced by the previ-
ous one to deal with the numerous numbers of models [19].
However, it is proven that this method is not acceptable for
saturated systems [20]. A none quadratic Lyapunov function
is another solutionwhich result in time derivate problem [21].
In this paper, wemainly focus on closed-loop stability analy-
sis of RMM control algorithm based on quadratic Lyapunov
approach to solve complexity problems for high order non-
linear systems.

The contribution of this paper is to designRMMcontroller
based on LMI for such complex systems, while the closed-
loop stability is guaranteed. To do so, we first determine the
reduced multiple models and then each reduced model is for-
mulated as an LMI to analyze stability. In this way a set of
LMI families, which has as equal number as the reducedmul-
tiple models, are constructed by all reduced multiple models.
This can be solved analytically. The solution includes control
coefficients for the closed-loop stability driven via Lyapunov
approach.

To illustrate the effectiveness of the proposed approach
T1DM is examined. T1DM is one of the commonest dis-
eases which could seriously lead to probable dangers in
body parts. Diabetic patients are not capable of producing

insulin, so artificial pancreas is responsible for producing
Blood Glucose (BG) level in their bodies. Many scholars
have introduced mathematical modeling of T1DM [22], one
of which is Hovorka [1]. The variety of approaches are pro-
posed to regulate BG, including H∞, MPC, adaptive, PID to
name but a few. Although these efforts are valuable, further
research should be conducted to account for the complexity
in Hovorka model. RMM-based control design is one of the
promising methods by which an artificial pancreas could be
made to protect the patient from hypoglycemia where the
BG level drops too low. According to this fact we design
an LMI-based RMM controller for T1DM, while the closed-
loop stability is also considered.

The contribution of the present work is adjusting the con-
troller parameter in a simple way to control a high order
nonlinear system so that the close loop stability is attained.
Although many researchers have addressed how to design
the controller for such systems, complexity is not consid-
ered carefully. Therefore, to simplify the controller design
for such complex system still is a desired and challenging
problem.

This paper is organized as follows. Section 2 presents pre-
requisites used in the currentwork. The proposedmethod and
the closed-loop stability analysis are discussed in Sect. 3. In
order to design the LMI-based RMMcontroller, an algorithm
is proposed that reduces complexities in high order nonlin-
ear systems while satisfies the closed-loop stability as well.
Implementation of the proposed control algorithm on T1DM
is illustrated in Sect. 4. Finally, conclusions are drawn in Sect.
5.

2 Prerequisites

Strong nonlinearity and high order are two main characteris-
tics which could lead to complexity in controller design and
implementation. MM and OR are two mathematical tools to
simplify the procedure by reducing the nonlinearity and order
complexities, respectively.

Let the high order nonlinear dynamic system is described
by

ẋ � f (x , u)

y � g(x),
(1)

where x ∈ Rn , u ∈ R, and y ∈ R are state, control input, and
output vectors, respectively. f : Rn → Rn and g : Rn → R
are known nonlinear differentiable vector-valued functions
and f is Lipschitz function.

Definition 1 θ is scheduling variable which could be a set
of measurable vectors:x , u, and/or y.
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Definition 2 ψ is named the global operating space coming
from the variable space of θ gridded into N points.

Definition3 ψi represents the operating spaceobtained from

decomposition of ψ into Ns subspaces

(
ψ� Ns

U
i�1

ψi

)
.

Remark 1 Ns � N , where Ns is the number of operating
points and N is the number of global operating points.

Definition 4 (xe, ue, ye) is called an equilibrium point if
f (xe, ue) � 0, ye � g(xe).

Definition 5 {(xe, ue, ye)| f (xe, ue) � 0, ye � g(xe)} is
named equilibrium manifold constructed from the set of
(xe, ue, ye).

N local linear models, called High Order Local Linear
Models (HOLLMs), are obtained via linearizing the high
order nonlinear system described in (1) around operating
points (xei , uei , yei ), i � 1, . . . , N

δ ẋi � Aiδxi + Biδui

δyi � Ciδxi ,
(2)

where Ai � ∂ f /∂x |(xei , uei ), Bi � ∂ f /∂u|(xei , uei ), Ci �
∂g/∂x |(xei , uei ), δxi � x − xei , δui � u − uei , and δyi �
y − yei .

Remark 2 Dichotomy algorithm is implemented to grid ψ

into N operating subspaces [23].

MM as a wise approach to deal with strong nonlinearity in
high order nonlinear systems consists of two steps: decompo-
sition and combination. In decomposition step, N HOLLMs
are obtained according to Remark 2. Then Ns High Order
Nominal Linear Models (HONLMs) are selected so that the
redundancy problem does not happen [24]. Various ways to
find the number and location of HONLMs have been intro-
duced so far, one of which is the selection of the nominal
model based on the gap metric and stability margin. Gap
metric is a criterion to compute gap between two linear mod-
els (G1(s) � M−1

1 (s)N1(s) and G2(s) � M−1
2 (s)N2(s))

in closed-loop sense [25],

δ(G1, G2) � max

(
inf

Q∈H∞

∥∥∥∥∥
[
M1

N1

]
−
[
M2

N2

]
Q

∥∥∥∥∥∞
,

inf
Q∈H∞

∥∥∥∥∥
[
M2

N2

]
−
[
M1

N1

]
Q

∥∥∥∥∥∞

)
. (3)

If δ(G1, G2) is close to theminimum value (δ(G1, G2) ≈
0), linear models behave similarly. This is while they differ in
the close-loop sense if the gapmetric is close to themaximum
value (δ(G1, G2) ≈ 1).

Stabilitymargin is a criterion forHONLMs selection. This
is compared with gap metric to complete model selection
efficiently. The maximum stability margin of a linear model
G is computed as

bopt(G) �
{

inf
L stablizing

∥∥∥∥∥
[
I
L

]
(I + GL)−1

[
I G

]∥∥∥∥∥∞

}−1

�
√
1 −

∥∥∥[N M
]∥∥∥2

H
< 1, (4)

where L is a controller that stabilizesG. ‖.‖H isHankel norm.
There is also a relation between the gapmetric andmaximum
stability margin cited in Theorem 1.

Theorem 1 In [26] Suppose that controller L stabilizes
G. Let � :� {G� : δ(G, G�) < ϒ with G� �
(M(s) + �M)−1(N (s) + �N ), where

[
�M
�N

]
∞

< ε ∈ R,

then L is a robust controller for all G� ∈ � if and only if
ϒ ≤ bopt(G).

Remark 3 The number of HONLMs (Ns) is computable via
Theorem 1.

Remark 4 The local stability is guaranteed according to
Theorem 1.

Remark 5 Ns operating point(s) and N global operating
points construct HONLM(s) and HOLLMs, respectively.

In combination, the second step in MM approach,
HONLMs are combined via weighting functions (ωi ∈ R
to describe the nonlinear system as

ẋ �
Ns∑
i�1

ωi (Ai xi + Biui − Ai xei − Bi uei )/
Ns∑
i�1

ωi (k)

y �
Ns∑
i�1

ωi (Ci xi + g(xei ) − Ci xei − Diuei )/
Ns∑
i�1

ωi (k)

. (5)

The simpler model could be obtained provided that OR
approach is performed along with MM, i.e., each HONLMs
described in (2) could be reduced via common reduction
methods to construct ReducedOrderNominal LinearModels
(RONLMs) [11, 27]

·
δ x̂i � Âiδ x̂i + B̂iδui
δyi � Ĉiδ x̂i

, i � 1, . . . , Ns , (6)

where x̂i ∈ Rnri (nri < n) represent reduced states and Âi ∈
Rnri ×nri , B̂i ∈ Rnri , Ĉi ∈ R1×nri .

The following technical lemmas are essential in our future
discussions.

Lemma 1 Let M and N be real constant matrices of appro-
priate dimensions and P be a positive matrix. Then for any
ε > 0 we have.
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MT PN + NT PM ≤ εMT PM + ε−1NT PN . (7)

Proof The following condition satisfies the conclusion of
Lemma 1.
(√

εMT − 1√
ε
NT
)
P

(√
εM − 1√

ε
N

)
≥ 0 (8)

Lemma 2 (Schur complements) [28]. Consider constant
matrices �1, �2, and �3, where �1 � �T

1 and �2 � �T
2 ,

then.

�2 > 0, �1 − �T
3 �−1

2 �3 < 0, (9)

if only if

[
�1 �T

3
�3 −�1

]
< 0.

Proof See [28].

3 Proposedmethod

In order to cope with both strong nonlinearity and high order
characteristics in high order nonlinear systems, combination
of MM and OR would be a wise choice. In this view, RMM
control is simply designed for such systems. To do this, at
first RONLMs are obtained and then the local controllers are
designed, each of them is able to stabilize its own RONLM
according toTheorem1,whereby the local stability is guaran-
teed as mentioned in Remark 4 [12], while nonlinear system
will not be necessarily stable. Indeed, the local stability does
not guarantee the global one.

3.1 Closed-loop stability analysis via LMI

Whenever a high order nonlinear system is described by
RONLMs, it means that the model selection and simplifi-
cation has been successfully done. This is the time to design
the RMMcontroller. In this regard, each RONLMs described
in (6) are discretized as

xi (k + 1) � Âdi xi (k) + B̂di ui (k)
yi (k) � Ĉdi xi (k)

, i � 1, . . . , Ns , (10)

where Âdi ∈ Rnri ×nri , B̂di ∈ Rnri ×1, Ĉdi ∈ R1×nri . Then, the
nonlinear system can be described using weighting functions
as follows

x(k + 1) �
∑Ns

i�1 ωi (k)
(
Âdi xi (k) + B̂di ui (k) + f̃i (x(k))

)
∑Ns

i�1 ωi (k)
,

(11)

where

f̃i (x(k)) � f (x(k), u(k)) − Âdi xi (k) + B̂di ui (k),

and f̃i (x(k)) ∈ Rnri is a Lipschitz nonlinear function.
In order to guarantee the global stability for the nonlinear

system, the closed-loop system can be obtained by substi-
tuting the control law, which is described as ui � Li xi (k),
i � 1, . . . Ns , in (11) as

x(k + 1) �
∑Ns

i�1 ωi (k)
((

Âdi + B̂di Li

)
xi (k) + f̃i (x(k))

)
∑Ns

i�1 ωi (k)
.

(12)

Let first Zi �
(
Âdi + B̂di Li

)
xi (k)+ f̃i (x(k)), where Zi ∈

Rnri and then rewrite (12) as,

x(k + 1) �
∑Ns

i�1 ωi (k)Zi∑Ns
i�1 ωi (k)

. (13)

Theorem2 In [29]Consider a discrete systemby x(k + 1) �
f (x(k)), where x(k) ∈ Rn , f (x(k)) : Rn → Rn with f (0) �
0 for all k. Suppose that there is a scalar function V (x(k))
continuous in x(k) so that 1) V (0) � 0, 2) V (x(k)) > 0
for x(k) �� 0, and 3) V (x(k)) → ∞ if ‖x(k)‖→ ∞. Then
the equilibrium state xe � 0 is asymptotically stable with
V (x(k)) as the Lyapunov function, which could be con-
sidered as quadratic form V (x(k)) � xT (k)Px(k), where
P ∈ Rn×n is a positive definite matrix, if �V (x(k)) < 0 for
x(k) �� 0.

�V (x(k)) � V (x(k + 1)) − V (x(k)) � xT (k + 1)Px(k + 1) − xT (k)Px(k)

�
(∑Ns

i�1 ωi (k)ZT
i∑Ns

i�1 ωi (k)

)
P

(∑Ns
i�1 ωi (k)Zi∑Ns
i�1 ωi (k)

)
− xT (k)Px(k) �

∑Ns
i , j�1 ωi (k)ω j (k)

(
ZT
i P Z j − xT (k)Px(k)

)
∑Ns

i , j�1 ωi (k)ω j (k)

�
∑Ns

i�1 ωi (k)2
(
ZT
i P Zi − xT (k)Px(k)

)
+
∑Ns

i< j ωi (k)ω j (k)
(
ZT
i P Z j + ZT

j P Zi − 2xT (k)Px(k)
)

∑Ns
i , j�1 ωi (k)ω j (k)

(14)
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Lemma 3 In [29] If P is a positive definite matrix such that
ZT
i P Zi−xT (k)Px(k) < 0 and ZT

j P Z j−xT (k)Px(k) < 0,

then ZT
i P Z j + ZT

j P Zi − 2xT (k)Px(k) < 0.

Proof Based on [29] ZT
i P Z j +ZT

j P Zi −2xT (k)Px(k) < 0
could be rewritten as follows.

ZT
i PZ j + ZT

j PZi − 2xT (k)Px(k)

� −(Zi − Z j
)T P

(
Zi − Z j

)
+ ZT

i PZi + ZT
j PZ j

− 2xT (k)Px(k) � −(Zi − Z j
)T P

(
Zi − Z j

)
+ ZT

i PZi

− xT (k)Px(k) + ZT
j PZ j − xT (k)Px(k) < 0 (15)

Since P is positive definite matrix, −(Zi − Z j
)T

P
(
Zi − Z j

) ≤ 0, then conclusions of Lemma 3, i.e.,
ZT
i P Zi−xT (k)Px(k) < 0 and ZT

j P Z j−xT (k)Px(k) < 0,
hold.

Theorem 3 In [29] If a common positive definite matrix P
exists such that ZT

i P Zi − P < 0, i � 1, . . . , Ns is satisfied
for all subsystems, then system described in (11) will be
globally asymptotically stable.

Remark 6 If conditions of Theorem 3 hold, then the
Lyapunov function will be decaying for all xi (k), i.e.,
�V (xi (k)) � V (xi (k + 1)) − V (xi (k)) < 0. Consequently,
the closed-loop systems including the nonlinear system and
designed controllers will be globally asymptotically stable.

Theorem 4 Consider the discrete-time systems in (11). The
closed-loop system with V (x(k)) is asymptotically stable if
there exist 1 + Ns positive definite matrixes X and Yi , i � 1,
. . . , Ns and 2Ns + 1 positive constants μ, εi , i � 1, . . . ,
Ns , and Wi , i � 1, . . . , Ns so that the set of following
LMIs holds. Moreover, a desired control law is given by u �∑Ns

i�1 ωi Li xi (k)/
∑Ns

i�1 ωi (k), where Li � Yi X−1.

(16)

ψi �

⎡
⎢⎢⎣

−X X ÂT
di + Y T

i B̂T
di X

Âdi X + B̂diYi − X
(1+εi )

0

X 0 − 1(
1+ε−1

i

)
μWi

⎤
⎥⎥⎦

< 0, i � 1, . . . , Ns

Proof In order to obtain (16), the conclusion of Lemma 3 is
rewritten for each RONLM as

�V (xi (k)) � V (xi (k + 1)) − V (xi (k)) < 0,((
Âdi + B̂di Li

)
xi (k) + f̃i (x(k))

)T

P
((

Âdi + B̂di Li

)
xi (k) + f̃i (x(k))

)
− xTi (k)Pxi (k) < 0

xTi (k)
(
Âdi + B̂di Li

)T
P
(
Âdi + B̂di Li

)
xi (k)

+ xTi (k)
(
Âdi + B̂di Li

)T

P f̃i (x(k)) + f̃ Ti (x(k))P
(
Âdi + B̂di Li

)
xi (k) + f̃ Ti (x(k))

P f̃i (x(k)) − xTi (k)Pxi (k) < 0. (17)

By applying Lemma 1 it can be reformulated as follows.

xTi (k)
(
Âdi + B̂di Li

)T

P
(
Âdi + B̂di Li

)
xi (k) + εi x

T
i (k)

(
Âdi + B̂di Li

)T

P
(
Âdi + B̂di Li

)
xi (k) + ε−1

i f̃ Ti (x(k))P f̃i (x(k))

+ f̃ Ti (x(k))P f̃i (x(k)) − xTi (k)Pxi (k) < 0

xTi (k)

(
(1 + εi )

(
Âdi + B̂di Li

)T
P
(
Âdi + B̂di Li

)
− P

)
xi (k)

+
(
1 + ε−1

i

)
f̃ Ti (x(k))P f̃i (x(k)) < 0 (18)

By considering P < λmax I < μI , where λmax is the
maximum eigenvalue of P and μ is its upper bound, (18) is
simplified as

(19)

xTi (k)
(
(1 + εi )

(
Âdi + B̂di Li

)T
P
(
Âdi + B̂di Li

)

− P
)
xi (k) + (1+ ε−1

i )μ f̃ Ti (x (k)) f̃i (x (k)) < 0.

Since f̃i (.) is bounded as the usual Lipschitz conditions

f̃ Ti (x(k)) f̃i (x(k)) ≤ Wi x
T
i (k)xi (k), i � 1, . . . , Ns , (20)

then

xTi (k)

(
(1 + εi )

(
Âdi + B̂di Li

)T
P
(
Âdi + B̂di Li

)
− P

)
xi (k)

+
(
1 + ε−1

i

)
μWi x

T
i (k)xi (k) < 0. (21)

This will be true if

(22)

(1 + εi )
(
Âdi + B̂di Li

)T
P
(
Âdi + B̂di Li

)

− P +
(
1 + ε−1

i

)
μWi < 0.

Now, pre- and post-multiplying (22) by X � P−1 gives

(23)

(1 + εi ) X
(
Âdi + B̂di Li

)T
P
(
Âdi + B̂di Li

)
X

− X +
(
1 + ε−1

i

)
μWi X

2 < 0.

123



2346 P. Rikhtehgar, M. Haeri

HONLM

Reduced multiple-model controller

Multiple models
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RONLM 1
RN RONLM RN

Nominal
controller 1

Nominal
controller

Nominal
controller

HOLLM 1

HL HOLLM HL HOLLM HL

Fig. 1 Schematic diagram of the LMI-based RMM control design

Substituting Yi � Li X into above equation leads to

(24)

(1 + εi )
(
X ÂT

di + Y T
i B̂T

di

)
P
(
Âdi X + B̂diYi

)

− X +
(
1 + ε−1

i

)
μWi X

2 < 0.

Note that, according to Lemma 2 (Schur complements)
(24) becomes

(25)

ψi �

⎡
⎢⎢⎣

−X X ÂT
di + Y T

i B̂T
di X

Âdi X + B̂diYi − X
(1+εi )

0

X 0 − 1(
1+ε−1

i

)
μWi

⎤
⎥⎥⎦

< 0, i � 1, . . . , Ns .

The proof of this theorem is complete.
To get more insight, the LMI-based RMM control scheme

is presented in the following subsection.

3.2 LMI-based RMM control design algorithm

The RMM control design procedure is presented in an algo-
rithm to handle both order and nonlinearity complexities in
high order nonlinear systems. Figure 1 depicts the proposed
strategy in this paper. As it is shown, the high order nonlin-
ear system’s model is first decomposed into N HOLLMs

(GHL
i , i � 1, . . . , N ) to build High Order Model Bank

(HOMB). Then, MM is applied to select HONLM: GHN
i ,

i � 1, . . . , Ns in each sub-region. Then, OR approach is
employed to construct RONLMs: GRN

i , i � 1, . . . , Ns .
Local controllers are then designed for each RONLM in each
sub-region based on LMI problem to guarantee the closed-
loop stability. Finally, the global controller is constructed via
combination of weighted local controllers. For more detailed
insight, the following algorithm describes how RMM con-
troller is designed.

4 Algorithm. LMI-based RMM control design

A.1. Gridding global operation space: Grid the scheduling
variable (θ ) in global operation space (ψ) to find N
operating points using the dichotomy algorithm [23].

A.2. Linearization and finding HOLLMs: Linearize the
nonlinear system’s model around N operating points
and obtain HOLLMs (GHL

i , i � 1, . . . , N ). In this
way HOMB is constructed.

A.3. Computing gap metric: Compute the gap between all
pairs of N HOLLMs based on (3) (gap � [

δi , j
] �[

δ
(
GRL

i , GRL
j

)]
N×N

).

A.4. Calculating maximum stability margin: Calculate the
maximum stability margin for N HOLLMs according
to (4) (Bopt � [bopt(GRL

i

)]
N×1).

A.5. Set i � 1.
A.6. Set j � i + 1.
A.7. Selecting HONLMs: Select HONLMs (GHN) among

the i th to j th HOLLMs according to the following
criterion.

GHN �
{
GHL

k | min
i≤k≤ j

max
i≤m≤ j

δ
(
GHL

m , GHL
k

)}
(26)

A.8. Finding biggest gap: Find the biggest gap
between GHN and other HOLLM from δ∗ �
max
i≤m≤ j

δ
(
GHN, GHN

m

)
.

A.9. Checking local stability: check local stability based
on Theorem 1. If δ∗ ≤ bopt

(
GHN

)
then set j � j + 1

and back toA7 (include another linearizedmodel into
the current sub-region). Otherwise (bopt

(
GHN

)
<

δ∗), go to A10.
A.10. Classifying sub-region: Set j � j − 1. The j − i + 1

HOLLMs are classified in one sub-region. Find the
HONLM GHN from (26). Set i � j and back to A6.
Repeat the above steps until all N local models are
classified into different sub-regions.

A.11. Order reduction and finding RONLMs: Reduce
HONLMs and obtain RONLMs (GRN

i , i � 1, . . . ,
Ns) based on (6).
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A.12. Designing local controllers: Design local controllers
(Li , i � 1, . . . , Ns) based on LMI for each RONLM
according to (16).

A.13. Constructing global controller: Combine the local
controllers to construct the global one via proper
weighing functions (ωi , i � 1, . . . , Ns).

5 Simulations

In this section, a T1DM system is studied to demonstrate the
effectiveness of the proposedmethod, inwhich anLMI-based
RMM controller is designed to stabilize the closed-loop sys-
tem. Given that T1DM has both strong nonlinearity and high
order features, it could be a wise choice to be examined as
an example of complex nonlinear system. Hovorka model,
which is widely used, is expressed by the following equation
[22],

(27)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q̇1(t) � −FC
01(t) − x1(t)Q1(t) + k12Q2(t)

−FR(t) +UG(t) + EGP0(1 − x3(t))

Q̇2(t) � x1(t)Q1(t) − (k12 + x2(t)) Q2(t)

Ṡ1(t) � u(t) − S1(t)
tmaxI

Ṡ2(t) � S1(t)
tmaxI

− S2(t)
tmaxI

,

İ (t) � S2(t)
VItmaxI

− ke I (t)

ẋ1(t) � −ka1x1(t) + ka1SIT I (t)

ẋ2(t) � −ka2x2(t) + ka2SID I (t)

ẋ3 (t) � −ka3x3(t) + ka3SIE I (t)

where u andUG are external insulin infusion rate in mU/min
and input disturbance in gram, respectively. Here, FC

01(t) and
FR(t) are modeled as

FC
01 (t) �

{
f01
4.5 y if y < 4.5mmol

L
f01 if y ≥ 4.5mmol

L
, FR (t)

�
{
0 if y < 9mmol

L
0.003 (y − 9) VG if y ≥ 9mmol

L
,

where y � Q1/VG is BG level measured as the system out-
put. The saturation nature of FC

01(t) and FR(t) is the main
source of the nonlinearity [1], which has given rise to strong
nonlinearity for this research. As considered insulin-glucose
system is modeled by eight states, the other requirement is
provided. States are mass of glucose in accessible compart-
ment (Q1), mass of glucose in non-accessible compartment

Table 1 T1DM parameters

Parameter Description Value

k12 Transfer rate 0.066(1/min)

ka1 Deactivation rate 0.006(1/min)

ka2 Deactivation rate 0.06(1/min)

ka3 Deactivation rate 0.03(1/min)

ke Insulin elimination
from plasma

0.138(1/min)

VG Glucose distribution
volume

VG � 0.16(L)

VI Insulin distribution
volume

0.12L

tmaxI Time-to-maximum of
absorption of
subcutaneously
injected short-acting
insulin

55(min)

SIT Insulin sensitivity of
distribution/transport

51.2 × 10−4(L/(mUmin))

SID Insulin sensitivity of
disposal

8.2 × 10−4(L/(mUmin))

SIE Insulin sensitivity of
EGP

520 × 10−4(L/(mUmin))

EGP0 EGP extrapolated to
zero insulin
concentration

0.0161(mmol/min)

f01 Non-insulin-dependent
glucose flux

0.0097(mmol/min)

(Q2), insulin absorption in compartment 1 (S1), insulin
absorption in compartment 2 (S2), plasma insulin concen-
tration (I ), effect of insulin on glucose distribution/transport
(x1), effect of insulin on glucose disposal (x2), and effect of
insulin on endogenous glucose production (x3). The model
parameters are described in Table 1.

The main goal, on the one hand, is to regulate BG in the
safe level (70 − 180mg/dL), while input disturbance could
have impact on output. On the other hand, insulin infusion
rate should be acceptable for diabetic patient’s body. So, in
the closed-loop control system i.e., artificial pancreas, BG
should be within the permissible rang even in the presence
of disturbance via acceptable amount of insulin. In the sys-
tem, input disturbance is the meal intake often eaten three
different carbohydrates meal types over a day. Therefore, the
system could be faced various types of carbohydrate such as[
50 60 55

]
g meal disturbances at times

[
7 14 20

]
h [30].

θ is the BG which is able to characterize nonlinear behav-
ior. ψ, global operating space, is divided into two vital terms
during a day: Hypoglycemia and Hyperglycemia. If BG
level is less than 70mg/dL, diabetic patient may become
unconscious called Hypoglycemia. In contrast, dangerously
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Fig. 2 Distance between HOLLMs of the T1DM system

high BG level (y > 180 mg/dL), which is called Hypo-
glycemia, could lead to a diabetic coma. So, in order to
consider bothHypoglycemia andHyperglycemia conditions,
100 ≤ ψ ≤ 400mg/dL is assumed and BG should be reg-
ulated on yd � 100mg/dL. Since the input could able to
inject acceptable rate of insulin, it is not reasonable to define
ψ < 100 mg/dL.

Remark 7 External insulin injection is the only input to keep
BG level in secure level.

According to operating points, N � 6 local linear models
will be obtained by the dichotomy algorithm, all of which
are not vital to maintain BG level in the allowed rang before
and after 2 h of meals. The gap metric values between all
pairs of the local linear models are calculated based on (3)
δmax � 0.4244 and depicted in Fig. 2. In addition, the max-
imum stability margin (bopt � 0.1849) is less than δmax.
Therefore, a single nominal linear model (Ns � 1) would
not be enough to control T1DMproperly. The proposed algo-
rithm is implemented to get more insight to studied system.

The results of implementing the algorithm are summa-
rized in Table 2. As it is clearly shown, two RONLM are able
to explain the nonlinearity of T1DM. P � 2.1758 in Lya-
punov function is obtained via LMI problem in (16). Now the
question is how to define multiple trajectories in T1DM so
thatMMcould be reasonable. Constant desired andGlucose-
Dependent Desired (GDD) trajectories (for more detail on
desired trajectory see [31]) are very common to complete
control design procedure. The GDD trajectory is considered
to avoid hypoglycemia. InGDD trajectory,which could bring
about less insulin injection, the dummy desired trajectory
(ydd ) is defined to be tracked by designed controller in the
first step, and then BG is controlled in the secure range. The
errors between BG and both yd and ydd are measurable. As

Table 2 Results of proposed method on T1DM

Sub-region 1st 2nd

Included local
models

1–3 4–6

Operating point
(ye, ue)

1st (5.5556, 0.0934) 4th
(13.8889, 0.0528)

Reduced order nr � 1 nr � 1

Nominal model PRN
1 � − 0.2574

s+0.0008024 PRN
2 � − 0.2853

s+0.001316

δmax δmax
(
P∗
2

) � 0.1619 δmax
(
P∗
1

) � 0.1688

MSM bopt (P∗
2 ) � 0.1849 bopt (P∗

1 ) � 0.1713

Controller
parameter (k)

6.0469 × 10−4 0.0013

soon as the error between BG and dummy desired trajec-
tory ( edd (t) � y(t) − ydd ) becomes more than the other one
(ed (t) � y(t) − yd ), switching should be imposed.

Remark 8 Constant desired and GDD trajectories are both
used in the closed-loop control system of T1DM.

Remark 9 In GDD, error signal between BG and current
trajectory is a decision maker to switch both the desired tra-
jectory and the controller.

According to Remark 9, trajectories are defined for each
proposed strategy as follow.

(28)

y1d (t) � 100mg/dL and y2d (t)

�
{
100 mg/dL, edd (t) > ed (t)
300mg/dL, edd (t) ≤ ed (t)

The initial values are considered Q1(0) � 4.5mmol,
Q2(0) � 2.5mmol, S1(0) � 0mU, S2(0) � 0mU,
I (0) � 13mU/L, x1(0) � 0min−1, x2(0) � 0min−1, and
x3(0) � 0min−1. Q1(0) leads to Hyperglycemia (y(0) �
500mg/dL). So, at the outset of the closed-loop process,
y(0) � 500mg/dL, so edd(0) < ed (0). Therefore, ydd would
be the reference until ed (t) < edd (t) when yd will be replaced
by ydd .

The proposed algorithm is implemented and the closed-
loop response under LMI-based RMM controller is depicted
in Fig. 3, where u and uG denote insulin infusion rate and
meal disturbances during a day, respectively. y and u denote
the BG per mg/dL and insulin infusion rate per U/h, respec-
tively. As it can be seen from the figure, during a day and
night two controllers need to track the desired BG so that
the hypoglycemia will not happen. To this goal, two levels
of insulin are injected to diabetic patients to keep them safe
from the probable danger. In the considered system, being at
the safe level is the main goal. The controller must ensure
that the patient’s BG levels are maintained to reduce the risk
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Fig. 3 Closed-loop response of the T1DMunder the proposed approach

of hypoglycemia and hyperglycemia. As it is clear from the
proposed method, not only the normal level is met, but also
stability is achieved even during mealtime consumption.

6 Conclusion

In this paper, a closed-loop stability analysis of an RMM
control algorithm is presented, which is based on LMI. High
order nonlinear systems which are countered complexities
in both order and nonlinearity are examined in this regard.
The LMI-based RMM controller is designed for such sys-
tems so that the closed-loop stability will be guaranteed. In
the proposed algorithm, firstly the model of system is sim-
plified based on MM and OR methods and then controller is
designed according to LMI approach. Two tools, gap metric
and stability margin, benefit us in model selection procedure.
This could provide local stability. In RMM control design
algorithm, local controllers are adjusted to fulfill the closed-
loop stability by solving anLMIproblem. In order to examine
the suggested method, type 1 diabetes mellitus is considered.
One undeniable success is that the analysis of such complex
system, control design and implementationwill be easily per-
formed.
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