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Abstract
This study solves the time-fractional telegraph equations with Dirichlet boundary conditions using a novel and effective
wavelet collocation method based on Taylor wavelets. In the Caputo sense, the fractional derivative idea is used. The Taylor
wavelets are created from the Taylor polynomials. The operational matrices of integration are extracted from the Taylor
wavelets. The Taylor wavelet method (TWM) is developed using these operational integration matrices. According to this
method, the selected telegraph equation is converted into a system of algebraic equations. Newton’s iterative technique solves
the attained system of algebraic equations. The proposed method’s error estimate is provided. The projected method solution
is compared with the numerical solutions of Sinc-Legendre, Legendre, and Fibonacci wavelet collocation methods in terms
of the tables and graphs. The results obtained from the TWM are accurate and efficient. As we know, many PDEs do not
have exact solutions, and some semi-analytical methods work based on controlling parameters, but this technique is free
from controlling parameters. Also, it is easy to implement and consumes less time to execute the programs. The suggested
wavelet-based numerical method is computationally appealing, successful, trustworthy, and resilient.

Keywords Telegraph equation · Dirichlet boundary condition · Taylor wavelets · Collocation points · Operational matrix ·
Newton’s iterative technique
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1 Introduction

Fractional calculus and its applications effectively express
various problems in numerous engineering and scientific
disciplines. Many researchers and scientists have recently
been interested in fractional calculus. It has been found
that fractional models are more precise and efficient than
previously introduced classical models and that fractional
derivative operators play a significant role in describing phys-
ical processes. There aremany types of integral andderivative
operators such as, including Caputo [1], Grünwald-Letnikov
[1], Riemann–Liouville [1], Atangana-Baleanu [2], and
Caputo-Fabrizio (CF) [3]. Numerous classes of fractional
equations have been used in recent years to model a variety
of real phenomena inmechanics, physics, chemistry, biology,
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medicine, economics, and signal processing, including dif-
fusion and wave propagation, viscoelasticity and damping,
image processing, and control systems [4–11]. To simulate
many significant occurrences in these sectors by fractional
calculus, numerous researchers in many fields of physics,
chemistry, biology, mathematics, engineering, and other sci-
ence have extensively examined these phenomena. Recent
research on solved fractional differential equations, which
are time-fractional Korteweg-de Vries equation [12], gener-
alized fractional-order differential equations [13], nonlinear
fractional differential equations [14], fractional Sawada-
Kotera-Ito equation [15], has made it simpler for researchers
to understand fractional calculus.

Oliver Heaviside first proposed the telegraph equation, a
linear second-order hyperbolic partial differential equation
describing the current and voltage on an electricity trans-
mission line with distance and time. The model illustrates
the ability of the wire to reflect electromagnetic waves and
the formation of wave patterns along the wire [16]. The the-
ory applies to high-frequency and direct current transmission
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lines of all frequencies. Initially created to describe tele-
graph wires, the idea also applies to conductors operating at
audio frequencies (telephone lines), radio frequencies, low
frequencies (power lines), and direct current pulses. They
can electrically represent wire radio antennas as shortened
single-conductor transmission lines [17, 18]. The telegraph
equations can also be used to explain a wide range of phe-
nomena in the chemical, physical, and biological sciences,
including acoustic waves in porous media [19], wave propa-
gation in cable transmissions [20], population dynamics [21],
parallel flows inMaxwell fluids [22], hyperbolic heat transfer
[23], and pulsatile blood flow in arteries [24]. The telegraph
equation is frequently applied to studying wave phenomena
and the propagation of electric signals in cable transmission
lines and to simulate reaction–diffusion processes in vari-
ous fields like engineering and biological sciences. There
are numerous applications in wave propagation and signal
analysis, and nobody solved the telegraph equations using
the Taylor wavelet. This motivated us to solve the telegraph
equations by using Taylor wavelets.

The general form of a nonhomogeneous time-fractional
telegraph equation with physical conditions is given by,

(1.1)

∂δX (r , t)

∂tδ
+ a

∂δ−1X (r , t)

∂tδ−1 + bX (r , t)

� c
∂2X (r , t)

∂r2
+ h (r , t) , (r , t) ∈ � × �,

with initial and Dirichlet boundary conditions

X(r , 0) � d1(r), Xt (r , 0) � d2(r), r ∈ �, (1.2)

X(0, t) � g1(t), X(1, t) � g2(t), t ∈ �, (1.3)

where a, b, and c are real constants, � :� [0, 1] and h(r , t)
is a continuous real-valued function. The parameter δ repre-
sents the fractional derivative with 1 < δ ≤ 2. The fractional
telegraph equation becomes the classical telegraph equation
when δ � 2.

The solution of differential and integral equations can
benefit significantly from using wavelets, another basis set,
and highly well-localized functions. Wavelet approaches
are more engaging, precise, and reliable in solving integral
and differential equations. Wavelet methods are increasingly
popular among scholars for resolving partial and fractional
differential equations. The data functions or operators are
divided into frequency constituents using the powerful and
effectivemathematical tool called wavelets. Each constituent
is then analyzed or studiedwith a resolution appropriate to its
scale.Wavelet theory has drawnmuch interest recently due to
its valuable applications in several fields, including numer-
ical analysis, system analysis, signal analysis, and optimal

control [25]. Wavelets are valuable because of their unique
characteristics [26]. In particular, the literature frequently
employs orthogonal wavelets to handle various differential
equations. Several wavelet-based numerical approaches have
been magnificently solved in the literature, including the
following: Fibonacci wavelet approach [27–33], Legendre
wavelet collocation method [34], Hermite wavelet colloca-
tion scheme [34], Chebyshev wavelet collocation method
[34], Laguerre wavelet collocation approach [34], Bernoulli
wavelet scheme [35–38],Haarwaveletmethod [39], Cardinal
B-spline wavelet method [40].

Taylor wavelets are types of continuous wavelets. For the
first time, Taylor wavelets were constructed in [41]. Numer-
ous significant spaces are built on Taylor wavelets, which
are small, spatially oriented oscillating functions. The given
problem can be reduced to a collection of wavelet-based
algebraic equations by estimating the integrals using oper-
ational matrices. This wavelet method has high accuracy and
the ability to use quick algorithms. Compared to Chebyshev,
Legendre, and Bernoulli wavelets, this method is simple and
accurate and has low calculation costs [41]. Taylor wavelets
produced by Taylor polynomials are a new accumulation to
the field of wavelet families. The significance and advantages
of the present work are as follows.

• Wavelets are mathematical functions that cut data into
different frequency components and then study each com-
ponent with a resolution matched to its scale.

• The number of terms of the Taylor polynomials Tm(x)
is less than the number of the Legendre and Fibonacci
polynomials terms. It helps to reduce CPU time.

• The developed operational matrix of integration is sparse,
resulting in a reduction in computing time.

• The Taylor wavelet is a function that may be defined at
various scales and has a wide range of uses because of
characteristics including compact support and vanishing
moment.

• Some semi-analytical approaches depend on control-
ling parameters to work, but this TWM is controlling
parameter-free.

• The proposed method is most suitable for studying solu-
tions with discontinuity and sharp edges. We make a
window for the function (at the point of discontinuity and
sharp edges), and then we apply this method to get infor-
mation about such functions.

• No obvious limitations of this strategy are apparent. But,
this approach only works in a limited domain, not a broad
one. We require the employment of transformations to
operate throughout the vast domain.

Due to their superior properties and benefits, Taylor
wavelets gathered the attention of many researchers toward
them.
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We found the following outstanding works about the
Taylor wavelet technique in solving some of the equations
throughout our review of the literature: Bratu-type equations
[41], nonlinear fractional delay and pantograph differential
equations [42], systems of nonlinear fractional differen-
tial equations [43], fractional delay differential equations
[44], generalized Burgers-Huxley equation [45], fractional
integrodifferential equations [46], Lane-Emden equations
[47], Emden–Fowler equations [48], nonlinear coupled reac-
tion–diffusion equation [49], fractional Volterra–Fredholm
integrodifferential equations [50]. These are the recent devel-
opments on the Taylor wavelets.

According to the paragraph that follows, the article is
structured. Section 2 covers the fractional derivative defi-
nition and the preliminaries of Taylor wavelets. Section 3
clarifies the function approximation of Taylor wavelets.
Section 4 describes the functional integration matrix of Tay-
lor wavelets. Section 5 explains the projected method of
TWM. Section 6 denotes the applications of the present
method. Finally, Sect. 7 covers the conclusion of the
manuscript.

2 Preliminaries

2.1 Caputo fractional derivative

The Caputo fractional-order derivative of f (t) ∈ Cμ is
defined by [51],

∂δ f (t)

∂tδ
� 1

�(m − δ)

t∫
0
(t − x)m−δ−1 ∂m f (x)

∂xm
dx ,

for m − 1 < δ ≤ m, where m � �δ� be a positive integer,
t > 0, f (t) ∈ Cm

μ , μ ≥ −1.

2.2 Wavelets and Taylor wavelets

The family of functions known as wavelets are descended
from a single function called the mother wavelet through
dilatation and translation. When the translation parameter q
and the dilation parameter p are continuously variable, we
have the family of continuous wavelets shown in [27].

λp, q(r) � |p|− 1
2 λ

(
r − q

p

)
, p, q ∈ R, p 	� 0.

It introduces the discrete wavelet family as if p � p−k
0 ,

q � nq0 p
−k
0 , p0 > 1, q0 > 1, and k and n are positive

integers.

λk, n(r) �
∣∣∣p−k

0

∣∣∣
−1
2

λ

(
r − nq0 p

−k
0

p−k
0

)
� |p0| k2 λ

(
pk0r − nq0

)
,

where λk, n(r) is a wavelet basis for L2(R).
Taylor wavelets λn,m(r) � λ(k, n, m, r) involve four

arguments; n � 1, 2, . . . , 2k−1, m is the degree of Taylor
polynomials, r is the normalized time, and k is any positive
integer. On the interval [0, 1), Taylor wavelets are defined as
[42–44],

λn,m(r) �
{
2

k−1
2 T̃m

(
2k−1r − n + 1

)
, n−1

2k−1 ≤ r < n
2k−1 ,

0 Otherwise,

with

T̃m(r) � √
2m + 1Tm(r),

where n � 1, 2, . . . , 2k−1 andm � 0, 1, 2, . . . , M−1. The
coefficient

√
2m + 1 is for normality, the dilation parameter

is p � 2−(k−1) and the translation parameter q � (n −
1)2−(k−1). Tm(r) is the Taylor polynomial of degreem and it
can be expressed as Tm(r) � rm . Here, T̃m(r) is the normal
Taylor polynomial of degree m.

3 Function approximation

The Taylor wavelets can be used to expand a function f (r ) ∈
L2[0, 1] as follows:

f (r) �
∞∑
n�1

∞∑
m�0

cn,mλn,m(r).

The above infinite series can be truncated to finite series
for f (r) as

f (r) �
2k−1∑
n�1

M−1∑
m�0

cn,mλn,m(r) � AT λ(r),

where T denotes the transposition and A, λ(r) are 2k−1M×1
matrices given by

AT � [c1, 0, . . . , c1,M−1, c2, 0, . . . , c2,M−1, . . . , c2k−1, 0,

. . . c2k−1,M−1
]
,

λ (r ) � [λ1, 0 (r ) , . . . , λ1,M−1 (r ) , λ2, 0 (r ) ,

. . . λ2,M−1 (r ) , . . . λ2k−1, 0 (r ) , . . . λ2k−1,M−1 (r )]
T .

Let
{
λn,m

}
is a sequence of Taylor wavelets, m �

0, 1, . . . , and n � 1, 2, . . . . The components of the
sequence

{
λn,m

}
span a Taylor space for every fixed n.Hence

L
({

λn,m
}) � L2[0, 1] becomes Banach space.
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Theorem 1 Let X (r , t) in L2(R × R) is a continuous
bounded function defined on [0, 1] × [0, 1], then Taylor
wavelet expansion of X (r , t) is uniformly converges to it.

Proof Let X (r , t) in L2(R × R) be a continuous function
defined on [0, 1] × [0, 1] and bounded by a real number
μ.The approximation of X (r , t) is;

X(r , t) �
∞∑
i�1

∞∑
j�0

ai , jλi , j (r)λi , j (t),

where ai , j � 〈X(r , t), λi , j (r )λi , j (t)〉, and 〈, 〉 repre-
sents inner product.Since λi , j (r )λi , j (t) are functions on
[0, 1].Then,

ai , j � 1∫
0

1∫
0
X(r , t)λi , j (r)λi , j (t)drdt ,

ai , j �
1∫

0

∫
I

X(r , t)2
k−1
2

√
2m + 1Tm

(
2k−1r − n + 1

)
λi , j (t)drdt ,

where I �
[
n−1
2k−1 ,

n
2k−1

]
.Put 2k−1r − n + 1 � x then,

ai , j � 2
k−1
2

√
2m + 1

1∫
0

1∫
0
X

(
x − 1 + n

2k−1 , t

)
Tm

(x)
dx

2k−1 λi , j (t)dt ,

ai , j � 2
−
(
k−1
2

)√
2m + 1

1∫
0

[
1∫
0
X

(
x − 1 + n

2k−1 , t

)
Tm(x)dx

]
λi , j (t)dt ,

Byusing the generalizedmeanvalue theorem for integrals,

ai , j � 2
−
(
k−1
2

)√
2m + 1

1∫
0
X

(
ξ − 1 + n

2k−1 , t

)
λi , j (t)dt

[
1∫
0
Tm(x)dx

]
,

where ξ ∈ (0, 1) and choose
1∫
0
Tm(x)dx � A,

ai , j � A2
−
(
k−1
2

)√
2m + 1

n
2k−1

∫
n−1
2k−1

X

(
ξ − 1 + n

2k−1 , t

)

2
k−1
2

√
2m + 1Tm

(
2k−1t − n + 1

)
dt ,

ai , j � A(2m + 1)

n
2k−1

∫
n−1
2k−1

X
(

ξ−1+n
2k−1 , t

)
Tm
(
2k−1t − n + 1

)
dt ,

Put 2k−1t − n + 1 � s then,

ai , j � A(2m + 1)
1∫
0
X

(
ξ − 1 + n

2k−1 ,
s − 1 + n

2k−1

)
Tm(s)

ds

2k−1 ,

ai , j � A(2m + 1)2−k+1
1∫
0
X
(

ξ−1+n
2k−1 , s−1+n

2k−1

)
Tm(s)ds,

Again, using the generalized mean value theorem for inte-
grals,

ai , j � A2−k+1X

(
ξ − 1 + n

2k−1 ,
ξ1 − 1 + n

2k−1

)
1∫
0
Pm(s)ds,

where ξ1 ∈ (0, 1) and
1∫
0
Pm(s)ds � B then

ai , j � AB (2m + 1) 2−k+1X

(
ξ − 1 + n

2k−1 ,
ξ1 − 1 + n

2k−1

)
,

∀ξ , ξ1 ∈ (0, 1)

So,

∣∣ai , j ∣∣ �
∣∣∣AB(2m + 1)2−k+1

∣∣∣
∣∣∣∣X
(

ξ − 1 + n

2k−1 ,
ξ1 − 1 + n

2k−1

)∣∣∣∣,
Since X is bounded by μ,

∣∣ai , j ∣∣ � |A||B||2m + 1|
∣∣∣2−k+1

∣∣∣μ.

Hence
∑∞

i�1
∑∞

j�0 ai , j is convergent.Therefore, the Tay-
lor wavelet expansion of X (r , t) converges uniformly.

Theorem 2 [27] Let the Taylor wavelet sequence
{λkn,m(t)}∞k�1which are continuous functions defined in L

2(R)
in t on [a, b] converges to the function λ(t) in L2(R) uni-
formly in t on [a, b]. Then λ(t) is continuous in L2(R) in t
on [a, b].

Theorem 3 [27] Let the Taylor wavelet sequence
{λkn,m(t)}∞k�1 converges itself in L2(R) uniformly in t on
[a, b]. Then, there is a function λ(t) that is continuous in
L2(R) in t on [a, b] and limk→∞λkn,m(t) � λ(t)∀t ∈ [a, b].

Theorem4 [28]Let {ri � ti/i � 1, 2, . . . , 2k−1M2} be any
set of 2i−1

2k M2 distinct points in [a, b] and X(r , t) ∈ c[a, b],
where c[a, b] is a set of all continuous functions defined in
[a, b]. X(r , t) be the solution of the given partial differential
equation; then there is exactly one linear combination �(r ,
t) of polynomial-based wavelet functions that satisfy the.

X(ri , ti ) � �(ri , ti ) ∀i � 1, 2, . . . , 2k−1M2.
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4 Operational matrix of integration

At k � 1 and M � 6, the Taylor wavelet basis is obtained as
below:

λ1, 0(r) � 1,

λ1, 1(r) � √
3r ,

λ1, 2(r) � √
5r2,

λ1, 3(r) � √
7r3,

λ1, 4(r) � 3r4,

λ1, 5(r) � √
11r5,

λ1, 6(r) � √
13r6,

λ1, 7(r) � √
15r7.

Integrating the above basis concerning r limit from 0 to
r , the Taylor wavelet bases are then expressed as a linear
combination as:

r∫
0
λ1, 0(r)dr �

[
0 1√

3
0 0 0 0

]
λ6(r),

r∫
0
λ1, 1(r)dr �

[
0 0

√
3

2
√
5
0 0 0

]
λ6(r),

r∫
0
λ1, 2(r)dr �

[
0 0 0

√
5

3
√
7
0 0
]
λ6(r),

r∫
0
λ1, 3(r)dr �

[
0 0 0 0

√
7

12 0
]
λ6(r),

r∫
0
λ1, 4(r)dr �

[
0 0 0 0 0 3

5
√
11

]
λ6(r),

r∫
0
λ1, 5(r)dr �

[
0 0 0 0 0 0

]
λ6(r) +

√
11

6
√
13

λ1, 6(r).

And

λ6(r) � [λ1, 0(r), λ1, 1(r), λ1, 2(r), λ1, 3(r), λ1, 4(r), λ1, 5(r)
]T

.

Hence,

r∫
0
λ(r)dr � B6×6λ6(r) + λ6(r), (4.1)

where

B6×6 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1√
3

0 0 0 0

0 0
√
3

2
√
5

0 0 0

0 0 0
√
5

3
√
7

0 0

0 0 0 0
√
7

12 0
0 0 0 0 0 3

5
√
11

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and λ6(r) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0√

11
6
√
13

λ1, 6(r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. The generalized first integration of n-

wavelet basis at k � 1 is defined as:

r∫
0
λ(r)dr � Bn×nλ(r) + λn(r),

where

Bn×n �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1√
3

0 0 0 · · · 0 0

0 0
√
3

2
√
5

0 0 · · · 0 0

0 0 0
√
5

3
√
7

0 · · · 0 0

0 0 0 0
√
7

12 · · · 0 0
...

...
...

...
. . .

. . . 0 0

0 0 0 0 0 0
√
2(n−2)+1

(n−1)
√
2(n−2)+3

0

0 0 0 0 0 · · · 0
√
2(n−1)+1

n
√
2(n−1)+3

0 0 0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

λn(r) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
...√

2n−1
n
√
2n+1

λ1, n(r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Integrating the basis once again, we attain the following;

r∫
0

r∫
0
λ1, 0(r)dr �

[
0 0 1

2
√
5
0 0 0

]
λ6(r),

r∫
0

r∫
0
λ1, 1(r)dr �

[
0 0 0 1

2
√
21

0 0
]
λ6(r),

r∫
0

r∫
0
λ1, 2(r)dr �

[
0 0 0 0

√
5

36 0
]
λ6(r),

r∫
0

r∫
0
λ1, 3(r)dr �

[
0 0 0 0 0

√
7

20
√
11

]
λ6(r),

r∫
0

r∫
0
λ1, 4(r)dr �

[
0 0 0 0 0 0

]
λ6(r) +

1

10
√
13

λ1, 6(r),
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Fig. 1 The exact solution,
approximate solution for
different values of k and M , and
an absolute error, for example,
6.1

r∫
0

r∫
0
λ1, 5(r)dr �

[
0 0 0 0 0 0

]
λ6(r) +

√
11

42
√
15

λ1, 7(r).

Hence,

r∫
0

r∫
0
λ(r)dr � B

′
6×6λ6(r) + λ′

6(r), (4.2)

where

B
′
6×6 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
2
√
5

0 0 0

0 0 0 1
2
√
21

0 0

0 0 0 0
√
5

36 0

0 0 0 0 0
√
7

20
√
11

0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

−
λ′

6(r) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

1
10

√
13

λ1, 6(r)√
11

42
√
15

λ1, 7(r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The Taylor wavelet basis is examined at k � 2 and M � 6
as follows:

λ1, 0(r) � √
2

λ1, 1(r) � 2
√
6r

λ1, 2(r) � 4
√
10r2

λ1, 3(r) � 8
√
14r3

λ1, 4(r) � 48
√
2r4

λ1, 5(r) � 32
√
22r5

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

0 ≤ r <
1

2
,

λ2, 0(r) � √
2

λ2, 1(r) � √
6(−1 + 2r )

λ2, 2(r) � √
10(1 − 2r )2

λ2, 3(r) � √
14(−1 + 2r )3

λ2, 4(r) � 3
√
2(1 − 2r )4

λ2, 5(r) � √
22(−1 + 2r )5

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

1

2
≤ r < 1.

Integrating the above basis concerning r limit from
0 to r , the Taylor wavelet bases are then expressed as a linear
combination as:

r∫
0
λ(r)dr � B12×12λ12(r) + λ12(r), (4.3)

where

λ12 (r ) � [λ1, 0 (r ) , λ1, 1 (r ) , λ1, 2 (r ) , λ1, 3 (r ) ,

λ1, 4 (r ) , λ1, 5 (r ) , λ2, 0 (r ) , λ2, 1 (r ) ,

λ2, 2 (r ) , λ2, 3 (r ) , λ2, 4 (r ) , λ2, 5 (r )]
T .

123



2172 M. Mulimani, K. S

Fig. 2 Present method solution at
k � 1, M � 7, and different
values of δ, for example, 6.1

Table 1 The present method
solution for r � 0.1, k � 1,
M � 4, and at different values of
δ, for example, 6.1. (CPU time:
0.582 sec)

t TWM

δ � 1.1 δ � 1.3 δ � 1.5 δ � 1.7 δ � 1.9

0.1 −0.00853383 −0.00853255 −0.00853402 −0.00854092 −0.00855599

0.2 −0.01712786 −0.01712588 −0.01713031 −0.01714612 −0.01717690

0.3 −0.02578208 −0.02578000 −0.02578887 −0.02581560 −0.02586270

0.4 −0.03449651 −0.03449489 −0.03450969 −0.03454935 −0.03461342

0.5 −0.04327113 −0.04327058 −0.04329278 −0.04334738 −0.04342904

0.6 −0.05210594 −0.05210704 −0.05213813 −0.05220969 −0.05230956

0.7 −0.06100096 −0.06100429 −0.06104575 −0.06113628 −0.06125499

0.8 −0.06995617 −0.06996232 −0.07001563 −0.07012714 −0.07026533

0.9 −0.07897157 −0.07898113 −0.07904778 −0.07918228 −0.07934057

B12×12 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
2
√
3

0 0 0 0 0 0 0 0 0 0

0 0

√
3
5
4 0 0 0 0 0 0 0 0 0

0 0 0

√
5
7
6 0 0 0 0 0 0 0 0

0 0 0 0
√
7

24 0 0 0 0 0 0 0
0 0 0 0 0 3

10
√
11

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

2
√
3 0 0 0 0

0 0 0 0 0 0 0 0

√
3
5
4 0 0 0

0 0 0 0 0 0 0 0 0

√
5
7
6 0 0

0 0 0 0 0 0 0 0 0 0
√
7

24 0
0 0 0 0 0 0 0 0 0 0 0 3

10
√
11

0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

λ12(r) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0√

11
13

12 λ1, 6(r)

0
0
0
0
0√

11
13

12 λ2, 6(r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Fig. 3 Present method solution at
t � 0.1 and different values of δ,
for example, 6.1

The generalized first integration of n-wavelet basis at k �
2 is defined as:

r∫
0
λ(r)dr � B2n×2nλ(r) + λ2n(r),

where

B2n×2n �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
2
√
3

0 0 0 · · · 0 0 0 0 0 0 0 0 0 0

0 0

√
3
5
4 0 0 · · · 0 0 0 0 0 0 0 0 0 0

0 0 0

√
5
7
6 0 · · · 0 0 0 0 0 0 0 0 0 0

0 0 0 0
√
7

24 · · · 0 0 0 0 0 0 0 0 0 0
...

...
...

...
. . .

. . . 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
√
2(n−2)+1

(2n−1)
√
2(n−2)+3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
√
2(n−1)+1

2n
√
2(n−1)+3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

2
√
3

0 0 0 . . . 0 0

0 0 0 0 0 0 0 0 0 0

√
3
5
4 0 0 . . . 0 0

0 0 0 0 0 0 0 0 0 0 0

√
5
7
6 0 . . . 0 0

0 0 0 0 0 0 0 0 0 0 0 0
√
7

24 . . . 0 0

0 0 0 0 0 0 0 0
...

...
...

...
. . .

. . .
√
2(n−2)+1

(2n−1)
√
2(n−2)+3

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√
2(n−1)+1

2n
√
2(n−1)+3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 4 Present method solution at
r � 0.1 and different values of δ,
for example, 6.1

and λ2n(r) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
...√

2n−1
2n

√
2n+1

λ1, n(r)

0
0
0
0
0
...√

2n−1
2n

√
2n+1

λ2, n(r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similarly, the second integration can be written as:

r∫
0

r∫
0
λ(r)drdr � B

′
12×12λ12(r) + λ′

12(r), (4.4)

where

λ12(r) � [λ1, 0(r), λ1, 1(r), λ1, 2(r), λ1, 3(r), λ1, 4(r),

λ1, 5(r), λ2, 0(r), λ2, 1(r), λ2, 2(r), λ2, 3(r),

λ2, 4(r), λ2, 5(r)
]T

.

B′12×12 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
8
√
5

0 0 0 0 0 0 0 0 0

0 0 0 1
8
√
21

0 0 0 0 0 0 0 0

0 0 0 0
√
5

144 0 0 0 0 0 0 0

0 0 0 0 0

√
7
11

80 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

8
√
5

0 0 0

0 0 0 0 0 0 0 0 0 1
8
√
21

0 0

0 0 0 0 0 0 0 0 0 0
√
5

144 0

0 0 0 0 0 0 0 0 0 0 0

√
7
11

80
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

−
λ′

12(r) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

1
40

√
13

λ1, 6(r)√
11
15

168 λ1, 7(r)

0
0
0
0

1
40

√
13

λ2, 6(r)√
11
15

168 λ2, 7(r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similarly, we can generate matrices for our convenience.
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Table 2 The comparison of absolute errors of the projected method with different methods at different values of k, M , and t � 1, δ � 2, for
example, 6.1. (CPU time: 0.652 sec)

r Taylor wavelet Fibonacci wavelet [53] Legendre wavelet [52] Sinc-Legendre [54]

k � 1, M � 3 k � 2, M � 4 k � 2, M � 3 k � 2, M � 5 k � 2, M � 4 n � 3, m � 7

0.1 1.7347 × 10−18 8.6736 × 10−19 8.3267 × 10−17 1.0714 × 10−18 1.3877 × 10−17 1.6932 × 10−4

0.2 0 1.7347 × 10−18 2.2204 × 10−16 2.2204 × 10−18 2.7755 × 10−17 1.0916 × 10−3

0.3 6.9388 × 10−18 0 4.2896 × 10−15 2.1957 × 10−18 5.5511 × 10−17 1.0749 × 10−3

0.4 0 1.7347 × 10−18 2.7756 × 10−17 1.5266 × 10−17 2.7755 × 10−17 1.0102 × 10−3

0.5 6.9388 × 10−18 0 2.7756 × 10−17 2.4182 × 10−17 2.7755 × 10−17 9.9270 × 10−4

0.6 1.3877 × 10−17 1.7347 × 10−18 2.7756 × 10−17 1.9429 × 10−18 8.3266 × 10−17 1.0102 × 10−3

0.7 1.7347 × 10−17 5.2041 × 10−18 1.3878 × 10−16 1.8041 × 10−18 8.3266 × 10−17 1.0749 × 10−3

0.8 3.4694 × 10−18 0 1.3878 × 10−16 2.5258 × 10−17 5.5511 × 10−17 1.0916 × 10−3

0.9 1.2143 × 10−17 6.0715 × 10−18 9.7145 × 10−17 4.1737 × 10−17 5.5511 × 10−17 7.6032 × 10−4

Fig. 5 Present method solution at
different values of t , for example,
6.1

5 Method of solution

The primary goal of this part is to introduce a novel method
based on Taylor wavelets for solving the telegraph equation.
Consider the fractional PDE of the following type:

∂δX(r , t)

∂tδ
+ a

∂δ−1X(r , t)

∂tδ−1 + bX(r , t) � c
∂2X(r , t)

∂r2
+ h(r , t),

(5.1)

where r , t are the independent variables and X is a depen-
dent variable with the given physical conditions.

X(r , 0) � L1(r), X(0, t) � L2(t), X(c, t) � L3(t), (5.2)

where c be any constant, L1(r), L2(t), and L3(t) are the
real-valued and continuous functions. Let’s assume,

∂3X(r , t)

∂r2∂t
≈ λT (r)Qλ(t). (5.3)

where λT (r) � [
λ1, 0(r), . . . , λ1,M−1(r), . . . , λ2k−1, 0

(r ), . . . , λ2k−1,M−1(r )
]
,

Q � [
bi , j
]
be 2k−1M × 2k−1M unknown matrix such

that i , j � 1, . . . , 2k−1M .

λ (t) � [λ1, 0 (t) , . . . , λ1,M−1 (t) , . . . ,

λ2k−1, 0(t), . . . , λ2k−1,M−1(t)
]T ,

By integrating Eq. (5.3) concerning to t from limit 0 to t .

∂2X(r , t)

∂r2
� ∂2X(r , 0)

∂r2
+ λT (r)Q

[
Bλ(t)+

−
λ(t)

]
, (5.4)
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Fig. 6 Present method solution at
different values of r , for
example, 6.1

Fig. 7 The exact solution,
approximate solution for
different values of k and M , and
an absolute error, for example,
6.2

Now integrate Eq. (5.4) twice concerning to r from 0 to r .

(5.5)

∂X (r , t)

∂r
� ∂X (0, t)

∂r
+

∂X (r , 0)

∂r
− ∂X (0, 0)

∂r

+

[
Bλ (r ) +

−
λ (r )

]T
Q

[
Bλ (t) +

−
λ(t)

]
,

(5.6)

X (r , t) � X (0, t) + X (r , 0)

− X (0, 0) + r

[
∂X (0, t)

∂r
− ∂X (0, 0)

∂r

]

+

[
B′λ (r) +

−
λ (r)

′]T
Q

[
Bλ (t)+

−
λ(t)

]
,
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Fig. 8 Present method solution at
k � 2, M � 3, and different
values of δ, for example, 6.2

Table 3 The present method
solution at r � 0.1, k � 1,
M � 4, and for different values
of δ, for example, 6.2. (CPU
time: 0.571 sec)

t TWM

δ � 1.1 δ � 1.3 δ � 1.5 δ � 1.7 δ � 1.9

0.1 0.10077545 0.10086582 0.10099690 0.10121141 0.10152947

0.2 0.19243336 0.19286587 0.19332289 0.19386331 0.19445694

0.3 0.28497373 0.28600014 0.28697798 0.28795569 0.28878241

0.4 0.37839657 0.38026865 0.38196217 0.38348855 0.38450588

0.5 0.47270186 0.47567139 0.47827544 0.48046190 0.48162735

0.6 0.56788962 0.57220835 0.57591781 0.57887572 0.58014681

0.7 0.66395984 0.66987954 0.67488927 0.67873003 0.68006428

0.8 0.76091251 0.76868496 0.77518983 0.78002483 0.78137974

0.9 0.85874765 0.86862461 0.87681948 0.88276010 0.88409321

Put r � c in Eq. (5.6) along with the given physical con-
ditions in Eq. (5.2). We attain,

L3(t) � L2(t) + L1(c) − L1(0) + c

[
∂X(0, t)

∂r
− ∂X(0, 0)

∂r

]

+ lim
r→c

[
B′λ(r) +

−
λ(r)

′]T
Q

[
Bλ(t)+

−
λ(t)

]
,

(5.7)

[
∂X (0, t)

∂r
− ∂X (0, 0)

∂r

]

� 1

c
[L3 (t) − L2 (t) − L1 (c) + L1 (0)

− lim
r→c

[
B′λ (r) +

−
λ(r )

′]T
Q

[
Bλ (t)+

−
λ(t)

]⎤⎦ ,

Substitute Eq. (5.7) in Eqs. (5.5) and (5.6)
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Fig. 9 Present method solution at
t � 0.1 and different values of δ,
for example, 6.2

Fig. 10 Present method solution
at r � 0.1 and different values of
δ, for example, 6.2

Table 4 The comparison of different error norms of the projected method with different methods for k � M � 3 at different values of t and δ � 2,
for example, 6.2. (CPU time: 0.684 sec)

t Taylor wavelet Fibonacci wavelet [53] Legendre wavelet [52] Legendre wavelet [55]

L∞ L2 L∞ L2 L∞ L2 L∞ L2

0.1 1.52 × 10−18 4.90 × 10−19 4.24 × 10−17 3.29 × 10−18 2.22 × 10−16 7.53 × 10−17 4.90 × 10−3 8.64 × 10−4

0.3 5.38 × 10−18 2.66 × 10−19 6.16 × 10−17 1.12 × 10−18 1.11 × 10−16 5.55 × 10−17 1.47 × 10−3 8.06 × 10−4

0.5 3.19 × 10−18 6.78 × 10−19 0 0 1.11 × 10−16 7.85 × 10−17 2.28 × 10−3 1.38 × 10−3

0.7 2.86 × 10−18 3.59 × 10−19 0 0 2.22 × 10−16 1.24 × 10−16 1.17 × 10−3 7.50 × 10−4

0.9 7.27 × 10−18 1.41 × 10−19 3.77 × 10−17 3.55 × 10−18 4.44 × 10−16 2.00 × 10−16 6.45 × 10−3 8.60 × 10−5

1 0 0 0 0 2.22 × 10−16 2.02 × 10−16 0 0
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Fig. 11 Present method solution
at different values of t , for
example, 6.2

Fig. 12 Present method solution
at different values of r , for
example, 6.2

∂X(r , t)

∂r
� ∂L1(r)

∂r
+
1

c
[L3(t) − L2(t) − L1(c) + L1(0)

− lim
r→c

[
B′λ(r) +

−
λ(r)

′]T
Q

[
Bλ(t)+

−
λ(t)

]⎤
⎦

+

[
Bλ(r)+

−
λ(r)

]T
Q

[
Bλ(t)+

−
λ(t)

]
, (5.8)

X(r , t) � L2(t) + L1(r) − L1(0)

+

[
B′λ(r) +

−
λ(r)

′]T
Q

[
Bλ(t)+

−
λ(t)

]

+
r

c
[L3(t) − L2(t) − L1(c) + L1(0)

− lim
r→c

[
B′λ(r) +

−
λ(r )

′]T
Q

[
Bλ(t)+

−
λ(t)

]⎤⎦,
(5.9)

Case I: If δ � 2 in Eq. (5.1), then differentiate Eq. (5.9)
with concerning t . We obtain,

∂2X(r , t)

∂t2
� d2

dt2
L2(t)

+
r

c

d2

dt2
[L3(t) − L2(t) − L1(c) + L1(0)
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Fig. 13 The exact solution,
approximate solution for
different values of k and M , and
an absolute error, for example,
6.3

Fig. 14 Present method solution
at k � 2, M � 5, and different
values of δ, for example, 6.3
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Table 5 The present method
solution at r � 0.1, k � 1,
M � 4, and different values of δ,
for example, 6.3. (CPU time:
0.563 sec)

t TWM

δ � 1.1 δ � 1.3 δ � 1.5 δ � 1.7 δ � 1.9

0.1 0.00482582 0.00192119 0.00076484 0.00030448 0.00012121

0.2 0.02217368 0.01164795 0.00611873 0.00321420 0.00168844

0.3 0.05410514 0.03342620 0.02065073 0.01275804 0.00788193

0.4 0.10188349 0.07062001 0.04894989 0.03392937 0.02351796

0.5 0.16645844 0.12615191 0.09560527 0.07245524 0.05491081

0.6 0.24860198 0.20265862 0.16520591 0.13467472 0.10978590

0.7 0.34896954 0.30257060 0.26234087 0.22746007 0.19721701

0.8 0.46813359 0.42815971 0.39159919 0.35816058 0.32757728

0.9 0.60660411 0.58157048 0.55756995 0.53455988 0.51249941

Fig. 15 Present method solution
at t � 0.1 and different values of
δ, for example, 6.3

Fig. 16 Present method solution
at r � 0.1 and different values of
δ, for example, 6.3
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Table 6 The comparison of absolute errors of the projected method with another method for k � 2, M � 6 at different values of δ, for example,
6.3. (CPU time: 0.670 sec)

(r , t) δ � 1.25 δ � 1.65 δ � 1.95

TWM LWM [52] TWM LWM [52] TWM LWM [52]

(0.1,0.1) 7.4702 × 10−11 6.5614 × 10−6 8.0547 × 10−11 2.3169 × 10−6 7.9591 × 10−12 3.8347 × 10−7

(0.2,0.2) 3.0065 × 10−10 4.1994 × 10−6 3.5402 × 10−10 6.1470 × 10−6 2.2330 × 10−11 2.3887 × 10−6

(0.3,0.3) 6.8052 × 10−10 1.1611 × 10−6 8.6933 × 10−10 6.3832 × 10−6 6.9827 × 10−11 4.4284 × 10−6

(0.4,0.4) 1.2169 × 10−9 6.9869 × 10−6 9.6757 × 10−10 5.2387 × 10−6 1.0527 × 10−10 4.7642 × 10−6

(0.5,0.5) 1.9126 × 10−9 9.0325 × 10−5 2.8214 × 10−9 8.8872 × 10−7 1.9360 × 10−10 1.9802 × 10−6

(0.6,0.6) 2.7705 × 10−9 8.3791 × 10−5 4.3524 × 10−9 1.9476 × 10−6 2.6868 × 10−10 2.0201 × 10−7

(0.7,0.7) 3.7937 × 10−9 6.2152 × 10−5 6.3127 × 10−9 5.0543 × 10−6 5.0108 × 10−10 1.8224 × 10−7

(0.8,0.8) 4.9856 × 10−9 4.4516 × 10−5 8.7452 × 10−9 9.0031 × 10−6 6.5805 × 10−10 2.8284 × 10−6

(0.9,0.9) 6.3493 × 10−9 5.5285 × 10−5 1.1693 × 10−8 2.2000 × 10−5 9.0351 × 10−10 1.5856 × 10−5

− lim
r→c

[
B′λ(r) +

−
λ(r)

′]T
Q

[
Bλ(t)+

−
λ(t)

]⎤⎦

+
d2

dt2

⎡
⎣
[
B′λ(r) +

−
λ(r)

′]T
Q

[
Bλ(t)+

−
λ(t)

]⎤⎦,
(5.10)

Nowfit the X , Xt , Xtt , Xr , and Xrr into Eq. (5.1), and dis-
cretise with their respective collocation points in Eq. (5.11).

ri � ti � 2i − 1

2k[M]2
, i � 1, 2, . . . , 2k−1[M]

2
. (5.11)

We solve the systemof algebraic equations using theNew-
ton–Raphson method to ascertain the values of the unknown
coefficients. In Eq. (5.9), substitute the obtained values of
the unknown coefficients to get the deserved approximate
solution for the given PDE.

Case II: Utilizing the notion of Caputo derivative, which
is defined in Sect. 2.1, differentiate Eq. (5.9) fractionally of
order δ ∈ (1, 2) for the given equation. Then we obtain,

∂δX (r , t)

∂tδ
� dδ

dtδ
L2 (t)

+
r

c

dδ

dtδ

[
L3 (t) − L2 (t) − L1 (c) + L1 (0)

− lim
r→c

[
B

′λ (r ) + λ (r )
′]T

Q
[
λB (t) + λ (t)

]]

+
dδ

dtδ

[[
B

′λ (r ) + λ (r )
′]T

Q
[
Bλ (t) + λ (t)

]]

(5.12)

To collocate with the collocation points ri � ti �
2i−1
2k [M]2

, i � 1, 2, . . . , 2k−1[M]
2
, by replacing X , ∂δ−1X(r , t)

∂tδ−1 ,

∂δX(r , t)
∂tδ

, Xr , and Xrr in (5.1). For finding the unknown
coefficients by applying the Newton–Raphson method to the
obtained system of algebraic equations. Substitute the calcu-
lated values for the unknown coefficients in Eq. (5.9), which
produces the desired solution of the proposed method.

6 Numerical experiments

The error norms can be demonstrated as

L2error �
√√√√ n∑

i�1

Z2
i , L∞error � Max(Zi ), 1 ≤ i ≤ n − 1

where Zi (absoluteerror) � Xi (exactsolution) −
Xi (approximatesolution).

We utilized Mathematica 13.2.1 software in a laptop with
the configuration HP-i5, 11th generation, 8 GB RAM, and
512 GB SSD.

Example 6.1 Consider the time-fractional telegraph equa-
tion [52].

∂δX (r , t)

∂tδ
+

∂δ−1X (r , t)

∂tδ−1 + X (r , t)

� ∂2X (r , t)

∂r2
+ h (r , t) , 1 < δ ≤ 2

with initial and Dirichlet boundary conditions

X(r , 0) � 0, Xt (r , 0) � r(r − 1), 0 ≤ r ≤ 1,

X(0, t) � 0, X(1, t) � 0, 0 < t ≤ 1,
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Fig. 17 Present method solution
at different values of t , for
example, 6.3

Fig. 18 Present method solution
at different values of r , for
example, 6.3

where

h(r , t) �
(

�(2)

�(3 − δ)
t2−δ + t

)(
r2 − r

)
− 2t .

The exact solution of this telegraph equation is X(r , t) �(
r2 − r

)
t . The projected technique is the Taylor wavelet

method. Figure 1 represents a 3-dimensional graphical illus-
tration of the exact solution, the projected method solution
for different values of k and M , and the absolute error analy-
sis graph plotted. Figure 2 denotes a 3-dimensional graph of
the current method solution for different values of δ. Table 1

expresses the TWM solution at r � 0.1 and for different val-
ues of δ. Figures 3 and 4 show the graphical demonstration of
the present method solution at t � 0.1 and r � 0.1, respec-
tively, for different values of δ. Table 2 reveals the accuracy of
the method solution is directly proportional to the values of k
and M . The accuracy of the solution increases by increasing
the values of k and M . Table 2 compares the absolute errors
of the presentmethodwith the Legendre [52], Fibonacci [53],
and the Sinc-Legendre wavelet method [54]. Figures 5 and 6
display graphs of the TWM solution for different values of t
and r , respectively.
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Fig. 19 The exact solution,
approximate solution for
different values of k and M , and
an absolute error, for example,
6.4

Fig. 20 Present method solution
at k � 1, M � 8, and different
values of δ, for example, 6.4
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Table 7 The present method
solution at r � 0.1, k � 1,
M � 4, and for different values
of δ, for example, 6.4. (CPU
time: 0.597 sec)

t TWM

δ � 1.1 δ � 1.3 δ � 1.5 δ � 1.7 δ � 1.9

0.1 0.11060487 0.11057248 0.11055204 0.11053914 0.11053100

0.2 0.22253958 0.22212526 0.22182497 0.22160733 0.22144959

0.3 0.33948773 0.33778935 0.33645442 0.33540516 0.33458044

0.4 0.46788356 0.46356089 0.45996203 0.45696579 0.45447127

0.5 0.61703301 0.60869031 0.60142757 0.59510499 0.58960086

0.6 0.79919987 0.78598216 0.77404814 0.76327316 0.75354463

0.7 1.02967355 1.01204421 0.99562866 0.98034332 0.96611038

0.8 1.32682539 1.30750313 1.28902425 1.27135192 1.25445095

0.9 1.71215685 1.69719573 1.68254658 1.66820289 1.65415829

Fig. 21 Present method solution
at t � 0.5 and different values of
δ, for example, 6.4

Fig. 22 Present method solution
at r � 0.5 and different values of
δ, for example, 6.4
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Table 8 The comparison of absolute errors of the projected method with another method for k � 2, M � 6 at different values of δ, for example,
6.4. (CPU time: 0.667 sec)

(r , t) δ � 1.1 δ � 1.5 δ � 1.9

TWM LWM [52] TWM LWM [52] TWM LWM [52]

(0.1,0.1) 1.6751 × 10−15 1.3531 × 10−9 4.1961 × 10−15 1.6883 × 10−8 2.0961 × 10−15 1.7955 × 10−8

(0.2,0.2) 7.1023 × 10−15 1.3283 × 10−9 1.7597 × 10−14 2.6116 × 10−8 8.8237 × 10−15 5.1220 × 10−8

(0.3,0.3) 1.6867 × 10−14 3.2054 × 10−9 4.1336 × 10−14 2.1232 × 10−8 2.0756 × 10−14 8.5286 × 10−8

(0.4,0.4) 3.1532 × 10−14 2.3944 × 10−9 7.6426 × 10−14 2.2362 × 10−8 3.8346 × 10−14 1.0671 × 10−7

(0.5,0.5) 5.1630 × 10−14 9.5664 × 10−8 1.2374 × 10−13 3.3459 × 10−8 6.1908 × 10−14 9.8781 × 10−8

(0.6,0.6) 7.7667 × 10−14 1.1048 × 10−7 1.8401 × 10−13 2.3240 × 10−7 9.1610 × 10−14 1.0213 × 10−7

(0.7,0.7) 1.1011 × 10−13 4.1133 × 10−8 3.5780 × 10−13 1.9078 × 10−7 1.2745 × 10−13 8.4231 × 10−8

(0.8,0.8) 1.4940 × 10−13 2.3961 × 10−9 5.4548 × 10−13 9.9970 × 10−8 1.6925 × 10−13 5.1459 × 10−8

(0.9,0.9) 1.9593 × 10−13 2.1296 × 10−8 4.9724 × 10−13 3.1380 × 10−8 2.1664 × 10−13 1.8774 × 10−8

Fig. 23 Present method solution
at different values of t , for
example, 6.4

Example 6.2 Consider the time-fractional telegraph equa-
tion [52].

∂δX (r , t)

∂tδ
+

∂δ−1X (r , t)

∂tδ−1 + X (r , t)

� ∂2X (r , t)

∂r2
+ h (r , t) , 1 < δ ≤ 2

with initial and Dirichlet boundary conditions

X(r , 0) � r2, Xt (r , 0) � 1 + r2, 0 ≤ r ≤ 1,

X(0, t) � t , X(1, t) � 1 + t , 0 < t ≤ 1,

where

h(r , t) � �(2)

�(3 − δ)
+ r2 + t − 2.

The exact solution of this telegraph equation is X(r , t) �
r2 + t . Figure 7 gives a 3-dimensional graphical presentation
of the exact solution, approximate solution, and error analy-
sis. Figure 8 is a 3-dimensional graph of the TWM solution
for different δ values. Table 3 confirms the projected tech-
nique solution to the different δ values. Figures 9 and 10
show the graphical judgment of the present method solution
at t � 0.1 and r � 0.1, respectively, for different δ val-
ues. Table 4 compares the L∞ and L2 error norms of the
projected method with the Legendre [52, 55] and Fibonacci
wavelet method [53] at different values of t . Figures 11 and
12 exhibit the graphical interpretation of the current method
solution for different values of t and r , respectively.
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Fig. 24 Present method solution
at different values of r , for
example, 6.4

Example 6.3 Consider the time-fractional telegraph equa-
tion [52].

∂δX (r , t)

∂tδ
+

∂δ−1X (r , t)

∂tδ−1 + X (r , t)

� ∂2X (r , t)

∂r2
+ h (r , t) , 1 < δ ≤ 2

with initial and Dirichlet boundary conditions

X(r , 0) � 0, Xt (r , 0) � 0, 0 ≤ r ≤ 1,

X(0, t) � t2δ , X(1, t) � cos(7)t2δ , 0 < t ≤ 1,

where

h(r , t) �
(

�(2δ + 1)

�(δ + 1)
tδ +

�(2δ + 1)

�(δ + 2)
tδ+1 + 50t2δ

)
cos(7r).

The exact solution of this telegraph equation is X(r , t) �
cos(7r)t2δ . Figure 13 determines the 3-dimensional graphi-
cal comparison of the analytical andTaylorwavelet solutions,
and the absolute error graph is also drawn. Figure 14 confirms
the 3-dimensional graphical illustration of different values of
δ. Table 5 explains the present method solution for different
values of δ. Figures 15 and 16 elucidate the current technique
solution for different values of δ at t � 0.1 and r � 0.1,
respectively. Table 6 compares the present method with the
Legendre wavelet method (LWM) [52] for different points
of δ. Figures 17 and 18 describe the graphical illustration of
the current method solution for different values of t and r ,
respectively.

Example 6.4 Consider the time-fractional telegraph equa-
tion [52].

∂δX (r , t)

∂tδ
+

∂δ−1X (r , t)

∂tδ−1 + X (r , t)

� ∂2X (r , t)

∂r2
+ h (r , t) , 1 < δ ≤ 2

with initial and Dirichlet boundary conditions

X(r , 0) � 0, Xt (r , 0) � er , 0 ≤ r ≤ 1,

X(0, t) � tδ+3 + t , X(1, t) � (tδ+3 + t)e, 0 < t ≤ 1,

where

h(r , t) �
(

�(δ + 4)

�(4)
t3 +

�(δ + 4)

�(5)
t4 +

�(2)

�(3 − δ)
t2−δ

)
er .

The exact solution of this telegraph equation is X(r , t) �
(tδ+3 + t)er . Figure 19 shows a 3-dimensional graphical pre-
sentation of the exact solution, approximate solution, and
error analysis at different values of k and M . Figure 20 is a
3-dimensional graphical diagram of the TWM solution for
different δ values. Table 7 confirms the projected technique
solution to the different δ values. Figures 21 and 22 show
the graphical interpretation of the present method solution
at t � 0.1 and r � 0.1, respectively, for different δ values.
Table 8 compares the present method with LWM [52] for
different points of δ. Figures 23 and 24 exhibit the graphical
representation of the current method solution for different
values of t and r , respectively.
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7 Conclusion

This work developed an effective wavelet method based
on Taylor wavelets to investigate the nonhomogeneous
time-fractional telegraph Eq. (1.1) with Dirichlet boundary
conditions. We took a collocation-based strategy. The novel
technique on Taylor wavelets is applied to four problems.
The approach is quite easy for handling boundary value prob-
lems. The tables and graphs explain the behavior of telegraph
equations and show the method’s accuracy is good com-
pared to other literature methods. A small resolution level
in the suggested method ensures the required precision. By
the tables and graphs, we conclude that the present method’s
accuracy is directly proportional to the values of k and M .
From comparison in the tables, the present technique has
higher precision for similar series terms than other methods.
The effectiveness and adaptability of the suggested method
in comparison to other methods available in the literature
[52–55] and good agreement with the analytical solutions
were demonstrated through numerical experiments. Finally,
we conclude that the TWM is highly robust, straightforward,
and effective in generating numerical solutions to various
fractional partial differential equations-related problems in
physics, mathematics, and engineering. With minor modifi-
cations to the method, the current approach can be extended
to models with higher-order PDEs, higher-order fractional
PDEs, time-delay PDEs, and systems of PDEs.
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