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Abstract
Nowadays, permanent magnet synchronous machines (PMSMs) are preferred by electric vehicle manufacturers due to their
attractive features, such as low acoustic noise, high torque/power density and higher efficiency and so on. In addition to
these, qualities such as smooth torque production, wide range operation and less malfunctions are expected from electric
vehicles. The realization of these features can be improved with the design of PMSM and their control strategies. In this
study, PMSM control techniques that have been developed and are being developed in recent years in order to overcome the
common challenges such as reduced torque ripples, efficiency optimization and simplified control algorithms are investigated.
Therefore, the paper reviews the state-of-the-art drives in particular attention to smoother output torque, extended drive range,
simplified control algorithms, less model dependency and so on. Also, recently developed techniques in stator and rotor
topologies to reduce torque ripple are briefly reviewed.

Keywords Electric vehicle · PMSM · Torque ripple reduction · Control simplicity

1 Introduction

Electric vehicles (EVs) lead to prevent environmental pollu-
tion by reducing the use of fossil fuels and carbon dioxide
emissions. [1–3]. Therefore, the use of EVs has become quite
widespread and it is desired to be further spreaded. One of
the important components to choose for EVs is the type of
electrical machine to be employed in the vehicle. There are
many studies in the literature for the selection of machines
to be used in EVs [4–6]. In [4], the authors investigated
the use of induction machines (IM), switched reluctance
machines (SRM), brushless DC machines (BLDCM) and
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permanent magnet synchronous machines (PMSM) in EVs.
Each machine type has been studied in detail in terms of
torque ripple, control techniques, etc. As a result, PMSM is
highly preferred by various vehicle manufacturers and can be
an alternative solution for EVs to be produced in the future.
Similarly, the pros and cons of using IM, PMSM and SRMs
in EV applications are presented in [5]. PMSM has been
used in most electric vehicles manufactured between 2010
and 2020. As can be deduced from these studies, PMSM
has been an attractive machine type for EV applications with
their promising features.

PMSMs are superior to other machines due to their better
operational performance, such as theirwide speed range, high
efficiency, high power density, [7–9]. Robust control tech-
niques should be applied to them in order to properly utilize
from their superior features. Conventionally, field oriented
control (FOC) technique is used for the control of PMSMs
[10–13]. In addition, the direct torque control (DTC) tech-
nique is also widely used for PMSM control [14–17]. FOC
techniques are based on the principle of controlling -dq axis
currents by using Park and Clark transformations. Unlike
FOC, the control variables are torque and the amplitude of
the stator flux vector in DTC drives. There are several stud-
ies in the literature that compare these techniques with each
other and technical details are also given in [18, 19].Recently,
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model predictive control (MPC) [20–22] and deadbeat pre-
dictive control (DBPC) techniques [23–25], which can be
built on both FOC and DTC, are also used in the literature.
It is based on predicting the next state of the system in both
MPCandDBPC techniques. The next state is predicted based
on the machine models in discrete time. Some of the reasons
why many different control techniques have been developed
in the literature are the necessity of reducing the torque ripple
for smooth torque production, increasing the battery utiliza-
tion providing control simplicity and ensuring high efficiency
operation. The control strategies developed in the literature in
terms of solving aforementioned problems in real-life experi-
ments have been reviewed from this perspective in this paper.

PMSMs can be divided into two groups, as surface-
mounted PMSM (SPM) and interior-mounted PMSM (IPM)
[26, 27]. The difference between SPM and IPM is the
machine saliency ratio. Therefore, while IPMs are capable of
producing reluctance torque, SPMs produce torque that can
only be obtained from magnets. Due to the reluctance torque
component, there is a difference in the determination of ref-
erence values of SPM and IPM drives [28]. Although FOC
and DTC techniques are used for both types of PMSM, a
different strategy should be applied in generating commands
for efficient operation. Hence, while the -d axis current is
kept at zero and the control is provided with the -q axis
current for SPMs, the maximum torque per amper (MTPA)
strategy should be applied for IPMs in the constant torque
region (CTR) [29–31]. In the constant power region (CPR), a
field weakening (FW) strategy is developed for bothmachine
types, and high-speed operation is performed by weakening
the flux value [32, 33]. In both MTPA and FW strategies,
it is necessary to generate commands based on the math-
ematical equations [34, 35] or pre-prepared look up tables
(LUTs) [36]. Actually, a series of experiments is required
in preparing LUTs or mathematically pre-calculated values
must be defined in the processor. It can be deduced that
usingmathematical equations and LUT-based techniques are
both a computation based on machine parameters. In addi-
tion, different methods designed to perform MTPA and FW
operations regardless of parameters such as signal injection
methods, search-based techniques, and feedback FW tech-
nique are discussed in this paper.

The command values to be produced based on the MTPA
and FW equations (current values for FOC, the amplitude of
the stator flux vector for the DTC technique) directly affect
the performance of the system. The torque demanded by
the drive may differ from the calculated value due to mal-
functions in the processor or due to computational burden
and memory problems. In this case, the performance of the
vehicle may decrease. Hence, the determination of command
values is an important challenge. Since the calculations in the
MTPA and FW strategies directly use the machine param-
eters, it is crucial to know the parameters of the machine

accurately [37]. Also, model-based drive algorithms need
to know the machine parameters, such as MPC or DBPC.
Therefore, model-independent drives have been developed
using the parameter estimation techniques in the literature
[38–40]. Parameter estimation techniques are also discussed
in the paper.

Even if existing control algorithms are improved by using
the parameter estimation techniques or making the improve-
ments on MTPA and FW calculations, simplicity of the
control algorithms is also crucial for the drive.Hence, another
criterion to be considered in the evaluation of algorithms
developed in the literature is control simplicity. For example,
the position sensor is removed from the system in order to
achieve the control with less component [41–43]. However,
although sensorless control algorithms provide the benefits
to the system in terms of cost, it is expected that the control
algorithm is not complex and has no disruptive effects on the
drive. In fact, even if a newly improved control algorithm is
simple, if the torque ripple increases, or if it decreases the bat-
tery utilization or makes it model dependent, all features of
that algorithm should be considered with associated cons as
well. Developed control algorithms are also compared with
each other from this perspective.

Section 1 presents the studies performed to reduce torque
ripple in PMSM design and control techniques. Also, the
studies on battery utilization and torque ripple reduction
with modulation techniques are examined. In Sect. 2, stud-
ies in the literature on MTPA and FW calculations related
to the accuracy of system commands have been reviewed.
Model-dependent and model-independent drives and param-
eter estimation techniques in the literature are reviewed in
Sect. 3. In Sect. 4, the control simplicity of the techniques is
discussed.

2 Torque ripple reduction and battery
utilization ratio

Torque ripple reduction can be achieved by two ways:
machine design and improvement of control algorithms.
Also, the increase in the battery utilization ratio is related
to the control. In this section, the state-of-the-art studies on
reducing torque ripple with machine design, current studies
on reducing torque ripple with the improvement of control
algorithms, and control algorithms developed for the increase
in battery utilization ratio are investigated.

2.1 Design approaches for reduced torque ripple

Reducing the torque ripple and increasing the efficiency of
the PMSM first starts with the design of the machine. With
the change of magnetic materials used in the production of
PMSMs, improvements in the stator, and different designs in
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the rotor topology, it is possible to reduce the torque ripple
and increase the efficiency by reducing the losses [44–51].
If the studies on rotor topology and magnet types are exam-
ined, article [44], it is aimed to increase the torque density
and decrease the torque ripple by optimizing magnet pole
shape in the rotor. The magnet pole embrace, magnet height,
and pole arc angle are optimizedwith the help of an optimiza-
tion algorithm. The new machine obtained produced lower
torque ripple under rated torque and speed conditions than
the baseline machine studied. In [45], a combination of V-
type magnet rotor and spoke-type rotor is proposed to obtain
maximum efficiency and low torque ripple without sacri-
ficing torque density. A new Y-type rotor was designed by
taking advantage of the high torque density of the V-type
rotor and the low torque ripple of the spoke-type rotor. As a
result, the similarities of Y-type IPM with the Toyota Prius
machinewere revealed and a hybridmachinewith low torque
ripple and high torque density was designed. In [46], a novel
machine is proposed using a lower cost magnet, which can
have the same torque ripple and average torque as the conven-
tional SPM. While the torque ripple and average torques of
the proposed machine and the conventional SPM are approx-
imately similar, the production cost of the machine has been
reduced. In [47], a high performance machine design has
been proposed by using hybrid magnet types. As a result,
the torque ripple of the proposed machine at the maximum
torqueoperatingpoint is lower than that of the targetmachine.
From this it can be deduced that changing the magnet type
has an effect on the torque ripple. Considering the improved
machine designs related to the stator, in [48], an IPM with
low torque ripple is designed for electric vehicles. Since the
torque ripple is highly dependent on the stator windings, the
winding type is chosen as distributed type to reduce it asmuch
as possible. In [49], the authors carried out work on stator
slots for the prevention of torque ripple and rotor eddy losses.
When comparing open and closed stator slotmachines. It was
observed that the closed slot structure reduces the torque rip-
ple extremely. Also, there are studies in the literature that
have been made to find the optimum number of slots and
poles and that the torque ripple can be reduced to lower lev-
els [50, 51].

2.2 Control strategies for reduced torque ripple

Independent of the control algorithms, the drive design is
performed based on the machine modeling in (1–8). Cur-
rent control loop of various FOC-based control strategies
is given in Fig. 1, torque and stator flux amplitude loop of
DTC-based control strategies are given in Fig. 2. The current
values obtained by applying MTPA and FW strategies are
taken as a reference in order to perform the torque control in
the drives given in Fig. 1. In fact, it is sufficient to provide the
current control loop to observe the difference between these

techniques. The difference in speed-controlled drives is that
command currents are produced only from the error in the
speed information. In other words, there is an external con-
trol loop in speed-controlled drives. For both the FOC-based
techniques given in Fig. 1 and the DTC-based techniques
given in Fig. 2, the speed-controlled drive design has been
carried out using Eq. (8) with the help of a controller.

Vd = R ∗ id + d�d

dt
− ω ∗ �q (1)

Vq = R ∗ iq + d�q

dt
+ ω ∗ �d (2)

�d =
∫ [

Vd − R ∗ id + ω ∗ �q
]

(3)

�q =
∫ [

Vq − R ∗ iq − ω ∗ �d
]

(4)

id = �d − �m

Ld
(5)

iq = �q

Lq
(6)

Te = 3 ∗ p

2

[
�m ∗ iq + (

Ld − Lq
)∗id ∗ iq

]
(7)

ωm =
∫

Te − Tm − B ∗ ωm

J
∗ dt (8)

There have been several studies in the literature recently
to reduce torque ripple in PMSMs driven by FOC technique
as can be seen in Fig. 1a [52–55]. In [52], a novel drive is
proposed to reduce the torque ripple of a PMSM used in
compressor applications and to reduce DC link voltage fluc-
tuations. The drive improved to reduce torque ripple has been
validated by experimental results. It has been observed that
the speed-controlled compressor drive reduces speed fluctua-
tions. In article [53], it is aimed to reduce torque disturbance
by working on an extended harmonic state observer. The
design of the extendedharmonic observer is complex because
it includes a closed-loop control system. With the robustness
of the developed harmonic observer and suppression of rip-
ples, the proposed harmonic observer has been verified. It
has been stated that the complexity of the harmonic observer
increases with the increase in the number of harmonics, and
it is mentioned that there may be studies to be focused on
in the future. In [54], a drive in which the -q axis current is
produced by using iterative learning controller and adaptive
sliding mode controller together has been proposed, instead
of the controller in which the iterative learning control and PI
regulator are used in parallel, which are conventionally used
in the speed controller. It has been verified by experimental
results that the proposed speed controller minimizes torque
ripple compared to other controllers.As a result, torque ripple
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Fig. 1 a Simple FOC technique. b FOC Based DPCC technique. c FOC Based MPC technique

is minimized by developing the speed controller. Similarly,
in [55], the authors minimized torque ripple by develop-
ing current loop controllers in a speed-controlled PMSM
drive. In addition, it has been experimentally proven that
the torque ripple is reduced by comparing the conventionally
used PI controllers in the current loop with the linear active

disturbance rejection controller (LADRC) and the proposed
enhanced LADRC.

DTC is developed as an alternative to FOC technique as
can be seen from the schematic of DTC-based different con-
trol techniques in Fig. 2. DTC technique can be divided into
two groups as hysteresis-based DTC (HB-DTC) [17, 56–58]
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Fig. 2 a HB-DTC Technique, b SVM-DTC. c Deadbeat predictive torque and flux controller based DTC. d MPC-based DTC technique

using hysteresis controllers and pulse width modulation-
based DTC (PWM-DTC) [15, 59]. The HB-DTC technique
is used as an alternative to FOC, since it does not use a posi-
tion sensor and reduces the drive cost. But contrary to the
advantage of no position sensor, too much torque ripple is
observed in the drive [59]. In addition, the fact that the switch-
ing frequency is not constant, the torque ripple increases.
PWM-DTC technique has been developed to overcome the
mentioned problems. However, because of the necessity of
using Park and Clark transformations in PWM-DTC tech-
nique, there must be a position sensor [15]. Hence, when
choosing the control strategy, all the features of the drive
such as cost, torque ripple should be taken into account.

Like torque ripple reduction studies in FOC control, the
HB-DTC technique has also been studied on torque ripple
reduction [16, 17, 56, 60]. In [16], it is aimed to achieve
sensorless speed control with a sliding mode controller. In
addition, the conventionally used3-level hysteresis controller
for the torque component is designed as 7-level. It is con-
firmed by simulation results that the proposed drive reduces
torque ripple. In article [56], it has been proven that current
harmonics are suppressed by modifying the switching table
with the proposed method. Hence, suppression of current

harmonics can be effective in directly torque ripple reduc-
tion. A novel duty-based HB-DTC technique is proposed
in [60]. It has been confirmed by experimental results that
the proposed drive provides less torque and flux ripple com-
pared to the conventionally used HB-DTC technique. It has
also been reported that the average switching frequency is
lower. Unlike other studies, matrix converter fed drives using
multidimensional switching table for common mode voltage
minimization has been proposed in [17]. Although the com-
monmode voltage isminimizedwith the proposedmethod, it
is stated that the torque ripple is higher than the conventional
DTC. Therefore, it should be studied by taking into account
the negative effects of a part developed in the control sys-
tem on the drive. In addition, since the HB-DTC technique
produces high torque ripple, PWM-based DTC techniques
developed to deal with this are also widely researched [59,
61, 62].

Model predictive control (MPC) and deadbeat predictive
control (DBPC) techniques are also widely used in the lit-
erature. MPC and DBPC techniques can be applied to both
FOC and DTC techniques as can be seen from Figs. 1 and 2
[22, 25, 61, 63–65]. The MPC technique basically has a cost
function that finds the optimal voltage vectors for the inverter.
By minimizing the cost function, the error is reduced and the
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Fig. 3 Stator and rotor oriented coordinate system

switching signals are selected accordingly. In DBPC, deriva-
tive expressions in machine equations are defined in discrete
time, and control is provided by using predictive technique.
Themain purpose of these techniques is to remove the PI con-
trollers from the drive whose parameters need to be adjusted
in the system. However, the system’s computational burden
[64] and torque ripple increase [66, 67] in drives using MPC
orDBPC techniques. In [61], the novel deadbeatDTCdrive is
proposed, reducing the computational burden and torque rip-
ple.When comparing conventional PI-basedDTC technique,
conventional deadbeat DTC technique and proposed drive in
the study, it is an important result that torque ripple and cur-
rent distortions are more in PI-based DTC. Also, the torque
ripple of the novel deadbeat DTC drive proposed in the study
is lower than that of the drive using FOC, PI-based DTC, and
conventional deadbeat DTC. In [63], a drive is designed to
suppress the current harmonics of the FOC-based deadbeat
controller. By performing tests of the designed drive at dif-
ferent speeds, it has been shown that the current harmonics
decrease when the proposed drive is applied. Although the
torque ripple comparison is not made in the scenario where
the proposed technique is applied and not applied, the low
total harmonic distortion in the currents directly reduces the
torque ripple. A drive with a low computational burden has
been proposed by using the stator-oriented coordinate system
(-xy frame) instead of the rotor-oriented coordinate system
(-dq frame) for the calculation of the deadbeat controller built
on the DTC in [64]. The -dq and -xy frame difference can be
seen in Fig. 3. The lower torque ripple and lower computa-
tional burden in the proposed drive have been confirmed by
experimental results.

In [22], it is aimed to reduce torque ripple, current distor-
tions and switching frequency by performing a novel particle
swarm optimization (PSO) algorithm-based optimization on
theweighting factors of the cost functionminimized inMPC.
It has been verified by experimental results that the drive
operated with the adjusted factors with the proposed PSO
algorithm produces less torque ripple. Similarly, in [65], the
weighting factors are optimized with genetic algorithm and
artificial neural networks in theMPCdrive. Experimental and

simulation studies have confirmed that current distortions,
hence torque ripple, decrease. Also, the modulated model
predictive control technique (MMPC) has been presented in
the literature. Due to the fact that the switching frequency
is not constant in the MPC technique and the torque rip-
ple is high. In [68] MPC and MMPC are compared with
each other. Total harmonic distortions (THD) in the stator
currents are calculated in both techniques in response to dif-
ferent torque commands. The current distortion of the drive
using theMMPC technique has turned out to be dramatically
low.Accordingly, the torque ripple of a drive constructedwith
theMMPC technique is considerably lower than the one con-
structed with the MPC technique. Techniques developed to
provide control simplicity, and torque ripple of the MMPC
technique are available in the literature [69, 70].

2.3 Torque ripple reduction with improved PWM
strategies and battery utilization rate

Following the review of control strategies and the discussion
of reducing torque ripple with different control techniques,
the drive’s switching strategy also needs to be specifically
addressed in order to achieve lower torque ripple. The high
frequency operation of the power switches in the inverter
structure reduces the torque ripple and increases the inverter
losses.Determining the optimumoperating conditions for the
inverter by considering the trade-off between the two cases
is also an important subject of study. PWM signal genera-
tor is required for inverter regardless of whether it is FOC-
or DTC-based drive. As mentioned in the control strategies
section, considering that PWM-DTC is better than HB-DTC
andMMPC is better thanMPC in terms of torque and current
ripples, it reveals the importance of the PWM strategy.

The sinusoidal PWM (SPWM) technique, which is the
most basic PWM technique, is widely used in the litera-
ture [71, 72]. However, it is not a superior strategy due to
low battery utilization ratio, high switching losses and high
current distortions for machine drive systems. The third har-
monic injection PWM (THIPWM) strategy is an alternative
technique to increase the battery utilization level [73]. Even
though theTHIPWMstrategy is a PWMstrategy based on the
SPWM strategy, its battery utilization ratio is about 15,5%
higher than SPWM. Due to the high switching losses of the
THIPWM strategy and the high THD ratio, the space vector
PWM (SVPWM) strategy has been developed. Space vec-
tor PWM (SVPWM) strategy is frequently used in recent
machine drives due to its superior features, such as high bat-
tery utilization ratio, low switching losses, and low THD
ratios [7, 74]. Also, studies have been carried out to increase
the battery utilization ratio, to decrease the computational
burden [75], and to reduce the switching losses of SVPWM
in the literature [76]. In [75], an SVPWM method has been
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proposed to change the medium vector with a fixed 30° sec-
tor angle by increasing the number of SVPWM sectors to
12. The proposed SVPWM technique for two inverters has
been tested in a dual three-phase PMSM system. As a result
of the real-time experiments, it has been revealed that the
computational burden is less, and it produces less current
harmonics compared to the 6-phase conventional SVPWM.
Similar to the work in [75], duty cycle optimization was car-
ried out in order to develop the SVPWM strategy in the dual
PMSM drive in [76]. It is more complex as there are only
eight voltage vectors for SVPWM in 3-phase PMSMs, while
dual PMSMs have 64 voltage vectors. However, the average
switching frequency has been reduced with the duty cycle
optimization technique, which has been verified by real-time
experiments. Normally, in the SVPWM strategy, zero vec-
tors are active during the waiting times in each PWM period,
while in the proposed technique, the waiting times of the
zero vectors are optimized, and the switching frequency is
reduced. Therefore, torque ripple and inverter losses are also
reduced.

There are also studies in the literature to increase the
drive range by improved battery utilization ratio. The bat-
tery utilization ratio can be increased by developing PWM
techniques [77] or developing overmodulation strategies for
any FOC [78–80] and DTC [81] driven PMSMs. The con-
ventionally used carrier-based PWM technique have been
improvedwith the idea of a virtual duty axis.APWMstrategy
with a lower switching frequency and a lower computational
burden have been developed in [77]. Also, the overmodu-
lation strategy has been adapted to be more robust in the
operations in the overmodulation region for the PWM strat-
egy. Thanks to the overmodulation strategy, it was observed
that the DC bus utilization ratio increased compared to the
carrier-based PWM technique used conventionally. Over-
modulation strategies are applied to take full advantage of
the voltage hexagon as can be seen in Fig. 4. In this way, it is
desired to maximize battery utilization. However, dynamic
overmodulation strategies have been presented in the litera-
ture according to operating conditions as long as themachine
is in operation.

In [78], it is proposed to compensate for the variations
depending on the rotor position in the overmodulation strat-
egy so that the control performance can be well maintained
rather than maximizing the voltage usage. Experimental
results have confirmed that control performance is perma-
nently maintained in the over-modulation region regardless
of rotor position. [79] discusses an overmodulation strategy
on suppressing voltage jumps and current harmonics when
operating in the overmodulation region at high speeds. The
regions outside the voltage hexagon are divided into sub-
regions and different durations are generated for each region.
Then, the sector and T0, T1, T2 are determined and switching
signals are generated. The proposed strategy has increased

Fig. 4 Voltage hexagon

DC bus utilization ratio and modulation index. This strat-
egy has been validated by real-time experiments on SPM
machines where voltage drop and current harmonics are sup-
pressed.DCbus utilization ratio has been increased in [80] by
using the double voltage vector technique instead of the vir-
tual voltage vector technique,which is conventionally used to
drive 5-phase PMSMs in MPC-based drives where the con-
trol variables are currents (FOC). It is presented that while
the DC bus utilization ratio is limited in the virtual voltage
vector technique, it is fully used in the proposed technique.
In [81], it was aimed to reduce torque ripple and increase DC
bus utilization ratio by optimizing the switching table in the
HB-DTC technique. As a result of simulation and real-time
experiments, it was observed that torque ripple decreased
and DC bus utilization was improved. Also, it has been men-
tioned that this drive is suitable for electric vehicles with low
torque ripple and high DC bus utilization.

3 Accuracy of command

This section will focus on the techniques required to achieve
the speed or torque demanded from the drives with maxi-
mumefficiency inPMSMconstant torque and constant power
region operations. Firstly, theMTPAstrategy used to increase
efficiency in IPM machines is detailed. Then, the FW tech-
nique, which is used for bothmachine types at high speeds, is
discussed. These techniques play an important role in deter-
mining drive commands, and well-designed MTPA and FW
strategies greatly affect drive efficiency. Figure 5 shows how
the MTPA and FW strategies are implemented in both FOC-
based and DTC-based drives. Torque input is applied to the
MTPA and FW block in Fig. 5. If the drive is speed con-
trolled, the torque value obtained from the outer control loop
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Fig. 5 Implementation of MTPA and FW strategies

is used. Using the -dq axis currents obtained after the cal-
culations, the stator flux amplitude required for the DTC is
obtained by machine equations.

3.1 MTPA strategies

It has been shown in detail in [28] that the conventionally used
Id = 0 control technique is inefficient due to the different -
dq axis inductances in IPMmachines. Higher torque capacity
can be achieved by accurate control of the reluctance torque
component, which depends on the inductance in the torque
equation.Also, according to [28], the commands according to
Id = 0 puts themachine in the FW region earlier and reduces
the use of torque capacity. Therefore, the implementation
of the MTPA strategy on IPM machines is vital for drive
efficiency. The purpose of applying the MTPA strategy is to
minimize the copper losses by calculating the optimum Id
and Iq currents corresponding to the torque demanded from
the system. Therefore, the β angle equation given in (10)
must be solved in such a way as to provide the minimum
current. After obtaining the β angle, Id and Iq currents are
obtained by using Eqs. (9, 11, 12). However, although the
equation is correct in theory, since the motor parameters also
depend on Id and Iq currents, this equation may deviate from
the optimumangle depending on parameter variations in real-
time applications.

Id = −Is ∗ sin β Iq = Is ∗ cosβ |Is | =
√
I 2d + I 2q (9)

β = sin−1

⎛
⎝−�m +

√
�m

2 + 8
(
Lq − Ld

)2
Is2

4
(
Lq − Ld

)
Is

⎞
⎠ (10)

Id = �m

2
(
Lq − Ld

) −
√√√√ �m

2

4
(
Lq − Ld

)2 + Iq2 (11)

Iq =
(
3p

2

)−1 Te
�m − Id

(
Lq − Ld

) (12)

In the implementation of MTPA strategies, it can be
divided into four categories as mathematical equations [74,
82], look-up table (LUT)-[36, 83] based methods, signal
injection [84–86] and search algorithms [87, 88]. The main
reason for categorizing MTPA strategies in this way and
developing these techniques is to provide simplicity of con-
trol, and to find the accurate MTPA trajectory by eliminating
model dependence.

An efficient FOC-based drive was created by solving
MTPA mathematical equations with Newton Raphson iter-
ation method in [74]. The main purpose of the study is to
compare the computational burden of two drives with a look-
up table (LUT)-based MTPA and an MTPA strategy with
Newton Raphson iteration method. As a result of simulation
studies, it has been confirmed that the computational bur-
den of look-up table LUT-based MTPA is lower. It has been
investigated that more than one SPM machine can be con-
trolled with a single inverter in [82]. Also, each machine is
operated in isolation from each other and there is no power
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flow between them. One machine is closed loop controlled,
other machines are open loop controlled and detailed calcu-
lations are made to ensure synchronization between them.
In finding the MTPA point, the Id current has been obtained
by using the Langrange Multiplier method by writing the
equations through the Joule losses. The subject of parameter
variations poses a problem and is stated in the conclusion as
future studies.

In [36], current measurement sensors have been removed
from the drive, aiming for a low-cost and simpler drive
design. MTPA calculations are performed with voltages and
applied with a LUT in order to reduce the computational
burden. It has been stated that the proposed method can
also be implemented with the online solution of the given
quadratic equation. As a result of real-time experiments, the
effectiveness of the system designed without using current
sensors has been verified. In [83], drives with Id = 0 control,
LUT-based MTPA and virtual signal injection-based MTPA
strategy have been compared for electric vehicleswith partic-
ular attention to noise and vibration. From the experimental
results, it is deduced that the efficiency can be increased
and noise can also be improved in EVs where virtual sig-
nal injection-based MTPA strategy is applied.

The online solution of mathematical equations for MTPA
or the application of LUT-based MTPA strategies are not
robust techniques due to nonlinear machine parameters.
MTPA strategies protected against changing parameters have
been achieved by the use of signal injection and search algo-
rithms. Signal injection techniques can be divided into two
groups as real signal injection and virtual signal injection.
Since the real signal injection techniques increase the drive
losses and reduce the efficiency as the signal is applied exter-
nally. So, virtual signal injection has been developed, where
the signal injection is performed by making mathematical
calculations. However, the real signal injection method pro-
posed in [84] findsMTPA points better than the virtual signal
injection method. In addition, virtual signal injection meth-
ods increase the computational burden. Hence, the choice
should bemade according towhat compromiseswill bemade
in the methods to be used.

If [83] is reconsidered, the drive with virtual signal injec-
tion is more efficient and noiseless than Id = 0 controlled
and LUT-based MTPA-based drive, and real signal injection
also increases losses and causes low efficiency. Certainly,
studies continue for the improvement of virtual signal injec-
tion in the literature. For example, in [85], the performance of
the drive is increased by estimating inductance values using
a parameter estimation technique of the machine parame-
ters it uses based on virtual signal injection. The virtual
signal injection technique developed in [86] estimates the
derivative expressions of the machine parameters. With the
proposed technique, it can automatically compensate for the
error caused by these derivative terms before enabling the

virtual signal injection. Thus, the drive successfully achieves
the MTPA operation even if the machine parameters are
unknown.

Another technique used to find the MTPA trajectory is
search algorithms. Since there is parameter dependence in the
calculation of the reference value of the stator flux amplitude
in the hysteresis-based direct torque control drive system,
it is aimed to find the MTPA points with the extreme seek-
ing control (ESC) technique in [87]. A new ESC with signal
injection and the use of filters has been proposed. Since PI is
used while applying ESC, the values of the control parame-
ters are important. For this reason, the setting of parameters
in the closed-loop control used in the reference selection of
the ESC is also emphasized. The results of the flux observer
and the ESC have been plotted and compared, and it has
been observed that the drive was working correctly. It is con-
firmed by the results to be a robust HB-DTC drive against
parameter changes. In [88], perturbation and observation
techniques have been applied to find MTPA points with-
out parameter errors in the control of dual machines with
a mono inverter. MTPA is successfully found by arranging
the θd angle generated from machine equations using per-
turbation and observation algorithms. In the instantaneous
change of machine speed and load torque, the algorithm is
provided to perform continuous perturbation with a pertur-
bation step, whose convergence rate is determined to be very
low. A parameter-independent MTPA scheme has been val-
idated by simulation studies and real-time experiments.

3.2 FW strategies

PMSMs generally have two different operating regions: con-
stant torque region (CTR) and constant power region (CPR).
The machine is driven in the most efficient way by using
different strategies for two different operation regions. CTR
is the operating region below the base speed of the machine
and in this region the machine is controlled using the MTPA
strategiesmentioned in the previous section. If themachine is
operating above the base speed value, the machine is driven
by applying a field weakening (FW) strategy by reducing
the amplitude of the -d axis current [89] or flux component.
The machine used in electric vehicle is expected to provide
the desired torque from the vehicle in a wide speed range.
Ensuring the control of the machine only in the CTR is not
sufficient for electric vehicle applications, as it causes the
entire capacity of the machine not to be used. In order to
the torque and speed capacity of the machine to be used effi-
ciently,MTPA and FW strategies must be applied in the drive
for wide operating region.

When the machine is operated above the base speed, the
MTPA strategy cannot meet the current and voltage limits
[90]. Therefore, the FW strategy should be used in CPR to
meet current and voltage limits. The FW strategy, which is
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implemented with a feedback control loop using the mea-
surements of the reference voltages from the inverter output,
is called feedback FW, and the method that calculates the
FW flux or -dq axis currents through the equations based on
the machine model is called feed-forward FW [33]. In the
feedback FW strategy, it is not dependent on the machine
parameters, as the calculation is performed with the refer-
ence voltages at the inverter output. However, since a control
system is created, it has problems such as adjusting its param-
eters and determining the bandwidth. Unlike the feedback
FW strategy, the feed-forward FW strategy is directly depen-
dent on machine parameters as it is model based. Therefore,
the inability to specify the parameters correctly will result in
poor performance in FW operations. In [91], a feed-forward
torque controller is proposed by mentioning that the torque
of the machine and the reference torquemay differ from each
other due to the error in the angle in the sensorless PMSM
drive. Particularly since this difference will cause instabil-
ities in the FW region, the FW region has been improved
in the study. The robustness of the proposed method has
been verified by simulation and experimental study results by
applying both the feedback FW strategy and the LUT-based
FW strategy. A deadbeat current controlled drive is designed
for 5-phase PMSM using a modified SVPWM scheme in
[92]. In the solution of the machine equations in the feed-
forward FW strategy, the -d axis current has been obtained
by using the gradient descent optimization technique. Since
the voltage limit is set manually in the conventionally used
FW strategies, it causes the wrong limit in the FW region and
this causes harmonic formation. This problem was solved
by optimizing the -d axis current online with the gradient
descent method. In [93], the operation is carried out in the
FW region by applying the feedback FW strategy. In order
to develop the feedback FW strategy, without the need for
DC voltage measurement, the modulation index is obtained
with the help of filtering over Sa , Sb, Sc switching signals
and the maximum modulation index is determined as 1, and
the error between them is fed to the PI regulator and the Id
reference is created. It has been confirmed by experimental
studies that the transition performance in the FW region is
smooth. However, a missing aspect of the study is the modu-
lation index is calculated by ignoring the nonlinearity of the
inverter.

4 Model dependency and control simplicity
of drive

4.1 Model dependency

It can be seen from (1–8) that -dq axis inductances, flux
linkage and stator resistance values are used in machine
equations. Hence, it can be seen that directly depends on

the parameters FOC technique, DTC technique, and since
it discretizes the machine equations for MPC and deadbeat
technique from (13–23). In addition to these, the calcula-
tion of commands to be requested from the drive, namely
MTPA and FW strategies, is also based on parameters. As
mentioned, the parts developed both in the MTPA and FW
strategies and inside the controller are depicted in Fig. 6.
Therefore, Ld , Lq , �m and Rs values must be correctly
defined in the drive. However, the machine parameters
change instantaneously with magnetic saturation, tempera-
ture and similar effects. Either these parameters need to be
measured, stored, and used by real-time experiments, or these
parameters need to be tracked with parameter estimation
techniques. In this study, a brief review ismade on the numer-
ical online parameter estimation techniques,which have been
widely used in recent years.

Recursive least square (RLS) [37, 38, 94], model refer-
ence adaptive system (MRAS) [85, 95], LuenbergerObserver
(LO) [96], and extended Kalman filter (EKF) [97, 98] are
widely used techniques for online parameter estimation. In
[37], Ld , Lq and �m parameters have been estimated with
the recursive least square estimation technique in order to
make the MTPA strategy and decoupling compensation in
the FOC parameter independent, and the gap between the
reference torque and the actual torque has been closed in the
results. By using the sinusoidal signal injection method, it
is possible to cope with the rank deficiency problem. Simi-
larly, MTPA strategy has been developed by estimating Ld ,
Lq , �m and Rs parameters with RLS technique in order to
improve torque control in [94]. Also, similar to [37], a sinu-
soidal current injection strategy was applied to solve the rank
deficiency problem. In [38], a controller with better perfor-
mance has been obtained by estimating Ld , Lq , �m and Rs

parameters with RLS in order to obtain a parameter indepen-
dent drive of a PMSM speed controlled withMPC technique.

Vd = V ∗
d − ωe ∗ �q (13)

Vq = V ∗
q + ωe ∗ �d (14)

�d = Ld ∗ Id + �m (15)

�q = Lq ∗ Iq (16)

|�s | =
√

�d
2 + �q

2 (17)

δ = tan−1�q

�d
(18)

T ∗
e = 3 ∗ p

2
∗ (�d ∗ Iq − �q ∗ Id) (19)

123



Overview of PMSM control strategies in electric vehicles: a review 2103

Fig. 6 Improvement of drive with parameter estimation techniques

�α =
∫

(V α − Rs ∗ Iα)dt (20)

�β =
∫

(V β − Rs ∗ Iβ)dt (21)

|�s | =
√

�α
2 + �β

2 (22)

θ�s = tan−1�β

�α

(23)

In theMTPAstrategy performed using virtual signal injec-
tion in [85], it has been stated that the virtual signal injection
strategy was dependent on Ld , and it has been aimed to
estimate with the MRAS technique. It has been verified by
simulation studies that the developed drive performs bet-
ter in finding the MTPA trajectory. In [95], the Rs , L and
�m parameters obtained using the MRAS technique are fed
into a new strategy in which MRAS and particle swarm
optimization techniques, in which the inertia and damping
coefficient can also be calculated, are used as a hybrid. From
the simulation results, it has been shown that better param-
eter estimation can be made with the new MRAS-based
technique. However, the drive has not been improved by
using the estimated parameters in any part of the drive. In
order to improve the deadbeat current control technique on
the SPM machine, the Rs , L and �m parameters have been
estimated in [96] with the Luenberger observer. In the sim-
ulation and experimental results, when the parameters are
different, there is a gap between the reference current and
the actual current, while successful current control has been
achieved with the applied technique, and the system is made
parameter-independent. In [97], �m and Rs estimation has
been performed with an improved EKF, since the process

noise in classical EKF is made according to Gauss and is not
suitable for nonlinear systems. It has been verified from the
simulation results that the estimation algorithm gives bet-
ter results. In [98], Ld , Lq estimation has been performed
with EKF technique in a dual PMSM system with a single
open phase fault. As a result of experimental studies, it has
been verified that it is a robust prediction algorithm against
the variation of machine torque and speed. In addition, the
strategy is robust since the inverter nonlinearity is also taken
into account in the implementation of EKF. In [99], the �m

parameter of a sensorless controlled IPMSM with MRAS
was estimated by EKF. The controller is made more robust
by estimating the permanent magnet flux value used in sen-
sorless control withMRAS. In addition, EKF andMRAS are
commonly used techniques for sensorless control of PMSM
[100, 101].

4.2 Control simplicity of drive

All the control techniques, command generation strategies,
and parameter estimation techniques mentioned throughout
the paper have been developed to increase control quality and
improve drive performance. In the back-ground of all these
improvements, it is absolutely necessary to consider that the
total computational burden of the drive is not heavy, the cost
is not high, and the strategies are easy to implement. If control
techniques, the accuracy of commands, and parameter esti-
mation techniques are emphasized, control simplicity can be
summarized with the following items.

• Although the HB-DTC technique provides position sen-
sorless control, it makes the drive inefficient of the
components with variable frequency and high torque rip-
ple.
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• The PWM-basedDTC technique has a fixed switching fre-
quency and although the torque ripple is relatively lower,
it has both HB-DTC and PWM-based DTC flux observer
structure. Flux observer is vital in the drive and is parame-
ter dependent. Therefore, it is necessary to use parameter
estimation technique in the drive and the control algorithm
is complex.

• In FOC- and PWM-based DTC, predictive control tech-
niques have been developed because it is difficult to adjust
the parameters of the controllers that will minimize the
errors of -dq axis currents and torque-flux components
in closed loop control. However, in both MPC and dead-
beat control techniques, the drive is directly dependent on
the model, as the next state estimation is made through
machine equations. Eliminating parameter dependency
and improving drive performance makes control more
complex.

• Iteration-based techniques in MTPA strategies increase
the burden of the microprocessor. In LUT-based tech-
niques, memory problems may also be encountered in
the microprocessor. Signal injection techniques increase
the computational burden considerably, but they eliminate
model dependency. If iteration-based techniques andLUT-
based techniques are to be applied, a model-independent
drive should be created using parameter estimation tech-
niques. This will complicate the drive. In the selection of
the MTPA strategy, preference should be made according
to the drives requirements and application area.

• Similar toMTPA, if feed-forward FW is used, the parame-
ter estimation technique should be used to increase control
performance since there ismodel dependency.When using
feedback FW, the PI regulator should be adjusted well.

• Since the parameter estimation techniques given in this
paper are numerical online calculation techniques, they
will impose a computational burden on the microproces-
sor when used. But the use of these techniques is necessary
in order to know the parameters correctly, which is perhaps
the most important topic for the drive. To make a compar-
ison between the techniques, while RLS EKF and LO is
more complex due to matrix calculations, MRAS seems
relatively simple as it consists of comparing the adjustable
model and the reference model and driving the error to
zero with the PI regulator. Which technique to use should
be chosen according to the application area and require-
ments.

5 Conclusion

In this study, state-of-the-art studies about PMSM in recent
years have been reviewed. Unlike the review studies in the
literature, a specific topics is not studied, and it is expressed

what the developed techniques and specific topics correspond
to in real life especially on the electric vehicles. The main
subject of this review is to extend themachine life, extend the
drive range of the vehicle, reduce the computational burden
of the microprocessor to work for a long time, and accord-
ingly simplify the control strategy. Since the long machine
life is highly dependent on the low vibrations. Hence, dif-
ferent control techniques have been developed to reduce
the torque ripple, or the developed control techniques have
been designed in different forms to increase the performance
because the torque ripple is high. Similarly, control strate-
gies are being developed to extend the battery usage in the
vehicle in order to increase the range especially on switching
strategies. Also, the techniques developed can complicate the
drive even if they solve a problem. With this point of view,
the burden of themicroprocessor in the system should also be
considered and the control simplicity should not be ignored.
Studies on PMSM have been reviewed considering the prob-
lems that may arise in real life, and new researchers will have
information about the problems that need to be solved and
their solutions with this paper.
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