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Abstract
Anti-control of Hopf bifurcation is one of the hot topics in nonlinear dynamics research, which is to make the system generate
or strengthen bifurcation at a prespecified location. The Willamowski–Rössler system is taken as the research object, which
is a nonlinear dynamic system derived from chemical reaction processes. Using the higher-dimensional Hopf bifurcation
theory, the critical value of the Hopf bifurcation of a non-zero equilibrium point is obtained. A state feedback control method
is proposed. With this method, anti-control of Hopf bifurcation for the system is accomplished by a hybrid controller, which is
composed of linear and nonlinear controllers. The relationship between the bifurcation parameter and the control parameters
of the linear controller is obtained. The values of the control parameters of the linear controller are determined by the
bifurcation parameter. Although the critical values of the bifurcation parameters are not determined by the control parameters
of the nonlinear controller, the parameter can change the amplitude of the limit cycle, which is inversely proportional to the
amplitude of the limit cycle. Finally, the theoretical analysis is verified by numerical simulation.

Keywords Willamowski–Rössler system · Hopf bifurcation theory · Anti-control of Hopf bifurcation · State feedback control
method

Mathematics Subject Classification 39A30 · 40A05 · 92D25 · 92C50

1 Introduction

Hopf bifurcation control and anti-control have become
hotspots in nonlinear dynamics. The objective of Hopf bifur-
cation control is to delay the emergence of Hopf bifurcation
by setting linear and nonlinear controllers, to expand the
stable region of the system [1–5]. Anti-control of Hopf
bifurcation is the inverse process of control. Setting the
appropriate controller can make the Hopf bifurcation arise
at the specified or expected position [6–11]. Cheng uses the
Washout-filters method to achieve the anti-control of Hopf
bifurcation for Chen’s system by a delay feedback controller
and analyzes the stability of the system [6]. By using explicit
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criteria, Yang carries out the anti-control of Hopf bifurca-
tion for the three-dimensional Shimizu–Morioka system and
analyzes the stability and bifurcation periodic solution of the
system [7]. Chen sets up the appropriate controller for the
system, which is to arise bifurcation at the expected position.
Based on scour filter a dynamic anti-controller is proposed,
inwhich the limit cycle of the system has oscillation behavior
[8].

Liu studies the anti-control of the Hopf bifurcation for
the four-dimensional Qi system with the linear and nonlin-
ear controllers. By analyzing the characteristics of the Hopf
bifurcation, the parameters of the linear and nonlinear con-
trollers are determined [9]. Zhang analyzes the anti-control
of the vibrating screen systemby using a linear feedback con-
troller. By adjusting the control parameters, the anti-control
of Hopf–Hopf bifurcation can be realized, and the vibra-
tionmechanical efficiency can be improved [10].Wen carries
out the anti-control of Hopf bifurcation for centrifugal speed
regulating system by using a feedback controller. The cor-
rectness of theoretical analysis is verified by simulation [11].

TheWillamowski–Rössler system is one of themost com-
mon nonlinear reaction systems in chemistry. The system
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state variables represent the elements of chemical reactions.
Each differential equation represents the rate of a chemical
reaction. The system has obvious nonlinear characteristics.
Bodale studies the chaos control of theWillamowski–Rössler
system. Synchronous control is carried out by setting up
a nonlinear controller for the system [12]. Aguda ana-
lyzes the synchronization characteristic and periodicity of
the Willamowski–Rössler system and studies the oscillation
characteristic of the system based on Shi’nikov theory [13].
Sun simulates the process of the Willamowski–Rössler sys-
tem from period-doubling bifurcation to chaos state and then
to period-doubling bifurcation again. The global exponential
synchronization control of the system is realized by a con-
troller [14]. Wu calculates the micromechanical system of
the Willamowski–Rössler system and analyzes the dynamic
characteristics of the noise of the system, as well as the inter-
action among the spatial degree of freedom, the size, and the
internal fluctuation [15]. Chávez investigates the multi-step
reaction mechanism of the Willamowski–Rössler system,
which has oscillatory and chaotic dynamic characteristics.
The condition of the appearance of bifurcation for the system
is studied. The bifurcationwhich can lead to the arisen of sim-
ple or double chaotic characteristics—oscillatory attractor is
verified [16]. Wang studies the chaos control of the Willam-
owski–Rössler system by using the continuous feedback
control method and analyzes the influence of fluctuation on
chaos control. The noise of the continuous feedback control
method is instability [17]. Stucki analyzes the chaotic attrac-
tor and bifurcation of the Willamowski–Rössler system and
studies the steady-state value and other nonlinear characteris-
tics during oscillation [18]. At present, the researches mainly
focus on the chaotic oscillation of the Willamowski–Rössler
system and the analysis of chaos synchronization control of
the system. The study of Hopf bifurcation is rare, especially
the anti-control of Hopf bifurcation. By studying the anti-
control of Hopf bifurcation for the Willamowski–Rössler
system, the stable region of the system can be identified and
expanded. Furthermore, stable chemical reaction rates can
be obtained.

Based on the higher-dimensional Hopf bifurcation, the
Hopf bifurcation characteristic of the Willamowski–Rössler
system is analyzed in this paper. A state feedback control
method is proposed to carry out the anti-control of Hopf
bifurcation for the system. The Hopf bifurcation characteris-
tics can arise at the specified position by changing the control
parameters. The correctness of the theoretical analysis is ver-
ified by simulation.

The paper structure is arranged as follows: In Sect. 2, the
differential equations of the Willamowski–Rössler system
are introduced. In Sect. 3, the dynamical behavior of the
system is investigated by Hopf bifurcation. In Sect. 4, a state
feedback control method is proposed. In Sect. 5, with the
state feedback control method, a hybrid controller is set up

for the system to anti-control of Hopf bifurcation. Finally,
Sect. 6 summarizes this paper.

2 Willamowski–Rössler system

The Willamowski–Rössler system is proposed in reference
[12]. It has the form:

⎧
⎪⎨

⎪⎩

ẋ1 � ax1 − f x21 − bx1x2 − dx1x3
ẋ2 � bx1x2 − cx2
ẋ3 � −dx1x3 + ex3 − gx23

(1)

where x1, x2, x3 are state variables of the system, which
represent the substances in a chemical reaction. a, b, c, d,
e, f , g are positive real parameters, which represent the
reaction speed. When the initial value is (x1, x2, x3)T �
(0.21, 0.01, 0.12)T and the parameters are fixed as
[a, b, c, d, e f , g]T � [30, 1, 10, 1, 16.5, 0.25, 0.5]T , the
system has a chaotic attractor, which is shown in Fig. 1.

3 Hopf bifurcation

When d2 − f g �� 0, b �� 0, g �� 0,the system has six
equilibrium points, given by:

X1 � (0, 0, 0),X2 � ( af , 0, 0),X3 � (0, 0, e
g ),X4 � ( cb ,

ab−c f
b2

, 0),X5 � ( de−ag
d2− f g

, 0, ad−e f
d2− f g

),

X6 �
(
c
b ,

cd2−bde+abg−c f g
b2g

, be−cd
bg

)
.

Each equilibrium point has its own characteristics, which
are equilibrium points with complex dynamic characteris-
tics. Therefore, by analyzing the dynamic characteristics of
anyone non-zero equilibrium point, we can understand the
dynamic characteristics of the system. Taking the non-zero
equilibrium point X6 as the research object, the Hopf bifur-
cation characteristic of the system (1) is analyzed.

The Jacobi matrix of the system (1) at the equilibrium
point X6 is:

J (X6) �

⎡

⎢
⎢
⎣

− f c
b −c − dc

b
cd2−bde+abg−c f g

bg 0 0

− bde−cd2
bg 0 cd−be

b

⎤

⎥
⎥
⎦ (2)

The characteristic equation of the system (1) is:

λ3 + p1λ
2 + p2λ + p3 � 0 (3)

where p1 � cd
b + c f

b +e, p2 � ac− c2 f
b − c2d f

b2
+ ce f

b + c2d2
bg +

c2d3

b2g
− cde

g − cd2e
bg ,. p3 � ace− ac2d

b + c3d f
b2

− c2e f
b − c3d3

b2g
+

2c2d2e
bg − cde2

g .
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Fig. 1 When a � 30, b � 1, c � 10, d � 1, e � 16.5, f � 0.25, g � 0.5, the chaotic attractor of the system (1)

Based on the Routh–Hurwitz criterion, the conditions for
the existence of Hopf bifurcation at the equilibrium point X6

are as follows:

p1 > 0, p2 > 0, p1 p2 − p3 � 0

Taking the real parameter e as the bifurcation parameter
of the system (1), the critical value of Hopf bifurcation can
be obtained as follows:

e0 � cQ1 +
√
c f Q2

2b
(
d2 − f g

)

where
Q1 � 2d3 − d2 f + f 2g − d f (b + 2g),
Q2 � (

d2 − f g
)[
2bc f (d − 2g) + c f

(
d2 − f g

)
+4ab2g

]
+

b2cd2 f .
When e � e0, the characteristic Eq. (2) of the sys-

tem has a pair of pure imaginary roots λ1, 2 � ±iω0 �
±i

√
Q3 + Q4e0, and a negative real root λ3 � −( cdb + c f

b +
e0).where Q3 � c

b2g

[
ab2g + c

(
d2 − f g

)
(b + d)

]
, Q4 �

c f
b − cd

g − cd2
bg .

From the characteristic Eq. (3), we get

λ′(e) � − λ2 + Q4λ + Q5 − 2cd
g e

3λ2 + 2
(
cd
b + c f

b + e
)
λ + Q3 + Q4e

(4)

where Q5 � ac − c2 f
b + 2c2d2

bg .

Fig. 2 When a � 30, b � 1, c � 10, d � 1, f � 0.25, g � 0.5,the
bifurcation diagram of the system (1)

Substituting the value of pure imaginary root +iω0 and e0
into the Eq. (4).

Re
(
λ′(e)

) � 2(Q3 + Q4)

gT

[

2cde0 + gQ3

+ gQ4(2e0 +
cd + c f

b
) − gQ5

]

�� 0 (5)

Im
(
λ′(e)

) � −2
√
Q3 + e0Q4

gT
[gQ4(Q3 + e0Q4)

−
(
cd + c f

b
+ e0

)

(2cde0 + gQ3 + e0gQ4

− −gQ5)
] �� 0 (6)
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where T � 4(Q3 + Q4e0)

[(
cd+c f

b + e0
)2

+ Q3 + Q4e0

]

.

The transversality is satisfied. According to the higher-
dimensional Hopf bifurcation theory, when e � e0, the Hopf
bifurcation of the system is appeared.

When a � 30,b � 1,c � 10,d � 1, f � 0.25,g � 0.5,
the critical value of Hopf bifurcation is e0 � 14.137 and the
Hopf bifurcation of the system is appeared. The bifurcation
diagram of the system is shown in Fig. 2.

When e � 13.5, the equilibrium point X6 is gradually
stable, as shown in Fig. 3.

When e � 15, the equilibrium point X6 is unstable and
the system has a stable periodic solution, as shown in Fig. 4.

4 State feedback control method

According to the high-dimensional Hopf bifurcation theory,
the n-dimensional dynamic system is defined as:

ẋ � f (x , μ) (7)

where f : Rn+1 → Rn , x ∈ Rn , μ ∈ R. x is the system
state variable. μ is the real parameter of the system. f is
continuously differentiable for x and μ in the domain.

Suppose the equilibrium point of the system (7) is Xe �(
Xe
1, X

e
2, · · · , Xe

i , · · · , Xe
n

)
, i ≥ 1. The Jacobian matrix of

the system at Xe is J (Xe, μ). If the conditions are satisfied
[19]:

(1) Jacobian matrix J (Xe, μe) has a pair of pure imaginary
root eigenvalues λ(μe)� ± iω, other eigenvalues have neg-
ative real parts;
(2) When the eigenvalue λ(μe) is nonzero, it crosses the
imaginary axis.

d(Reλ(μ))

dμ

∣
∣
∣
∣
μ�μe

�� 0

The Hopf bifurcation of the system appears at μe.
For the anti-control of Hopf bifurcation, the controller

should be set up to the system. Defined

{
u � u(x , y)
ẏ � h(x , y)

(8)

where y ∈ Rm(1 ≤ m ≤ n) is the new state variable of the
system. The controller u(x , y) and range h(x , y) are contin-
uously differentiable for x and y. The controller is a hybrid
controller, which is composed of linear and nonlinear con-
trollers. Namely

{
u j

(
x j , y j

) � k1 j x j + k2 j
(
x j − Xe

i

)3 − k3 j y j
ẏ � u j

(
x j , y j

) (9)

where Xe
i is the state variable at any equilibrium point of

the system (7). The parameters of the controller are:k1 j �
(k11, k12, · · · , k1m), k2 j � (k21, k22, · · · , k2m), k3 j �
(k31, k32, · · · , k3m).

Then the controlled system is

{
ẋ � f (x , y) + u(x , y)
ẏ � h(x , y)

(10)

whereu(x , y) � (u1(x1, y1), · · · um(xm , ym), 0, · · · , 0)Tn ,h(x , y) �
(u1(x1, y1), · · · um(xm , ym))T .

According to Laplace transform, suppose z j � k1 j x j +

k2 j
(
x j − Xe

)3 as a function of x j . It is substituted into the
second Eq. (9). The results are as follows:

u j (s) � z j (s) − k3 j y j (s) (11)

z j (s) � (
s + k3 j

)
y j (s) (12)

Define

G j (s) � u j (s)

z j (s)
� s

s + k3 j
(13)

Therefore, k3 j is a positive real number.
The controlled system is defined as:

Ẋ � F(X , μ) (14)

where Ẋ � (x , y)T , F � ( f (x , y) + u(x , y), h(x , y))T .
Suppose JC (X , μ) � ∂F(X ,μ)

∂X is the Jacobi matrix of the
controlled system (14).

JC (X , μ) �
[
J (x) + P1(x) P2(x)

P3(x) P4(x)

]

where J (x) is the Jacobi matrix of the original system.
Namely

J (x) � ∂ f (x ,μ)
∂x , P1(x) � ∂u(x , y)

∂x , P2(x) � ∂u(x , y)
∂y ,

P3(x) � ∂h(x , y)
∂x , P4(x) � ∂h(x , y)

∂y .

We define as P1(x) �
[

M 0(n−m)×(n−m)

0(n−m)×(n−m) 0(n−m)×(n−m)

]

,

P2(x) �
[

N
0(n−m)×(n−m)

]

, P3(x) �
[

M 0(n−m)×(n−m)

]
,
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Fig. 3 When a � 30, b � 1, c � 10, d � 1, f � 0.25, g � 0.5 and e � 13.5, sequence diagram and phase diagram of the system (1)
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Fig. 4 When a � 30, b � 1, c � 10, d � 1, f � 0.25, g � 0.5 and e � 15, sequence diagram and phase diagram of the system (1)
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P4(x) � N .where

M

�

⎡

⎢
⎢
⎣

k11 + 3k21
(
x1 − Xe

1

)2 · · · 0
...

. . .
...

0 · · · k1m + 3k2m
(
xm − Xe

m

)2

⎤

⎥
⎥
⎦ ,

N �
⎡

⎢
⎣

k31 · · · 0
...

. . .
...

0 · · · k3m

⎤

⎥
⎦

The characteristic equation of the Jacobi matrix JC (X , μ)

of the controlled system (14) at the equilibrium point Xe is
obtained as follows:

Q(λ, μe) � q0(μe)λ
n+m + q1(μe)λ

n+m−1 + · · · + qn+m(μe)

(15)

Suppose

Hn �

⎡

⎢
⎢
⎢
⎢
⎣

q1(μe) q0(μe) · · · 0
q3(μe) q2(μe) · · · 0

...
...

. . .
...

q2(n+m)−1(μe) q2(n+m)−2(μe) · · · qn+m (μe)

⎤

⎥
⎥
⎥
⎥
⎦

When the following conditions are met:

⎧
⎪⎪⎨

⎪⎪⎩

qn+m(μe) > 0
�ω(μe) � det[Hi (μe)] > 0, ω � 1, 2, · · · , n + m − 2
d(�n+m−1(μ))

dμ

∣
∣
∣
μ�μe

�� 0

The Hopf bifurcation of the controlled system (14) is
occurred. According to

�n+m−1 (μe) � det
[
Hn+m−1 (μe)

] � 0

the control parameters of the controlled system (14) are deter-
mined.

5 Anti-control of Hopf bifurcation

According to the state feedback control method, a controller
u1(x1, y1) is set for the system (1). The controlled system is
as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 � ax1 − f x21 − bx1x2 − dx1x3
ẋ2 � bx1x2 − cx2+k11x1 + k21(x1 − Xe

11)
3 − k31y

ẋ3 � −dx1x3 + ex3 − gx23
ẏ � k11x1 + k21(x1 − Xe

11)
3 − k31y

(16)

Equilibrium point X ′
6 � (X1, X2, X3, Y4) of the con-

trolled system (16) is

X6′ �
(
c

b
,
cd2 − bde + abg − c f g

b2g
,
be − cd

bg
,
b2ck11 +

(
c − bXe

11

)3
k21

b3k31

)

According to the state feedback control method, each
matrix is as follows:

J
(
X ′
6

) �

⎡

⎢
⎢
⎣

− f c
b −c − dc

b
cd2−bde+abg−c f g

bg 0 0

− bde−cd2
bg 0 cd−be

b

⎤

⎥
⎥
⎦ , P1(x)

�
⎡

⎢
⎣

0 0 0
k11 0 0
0 0 0

⎤

⎥
⎦ , P2(x) �

⎡

⎢
⎣

0
−k31
0

⎤

⎥
⎦

P3(x) �
[

M 0 0 0
]
,P4(x) � N .

The Jacobi matrix of the controlled system (16) at the
equilibrium point X ′

6 is:

Jc
(
X ′
6

) �

⎡

⎢
⎢
⎢
⎢
⎣

− f c
b −c − dc

b 0
cd2−bde+abg−c f g

bg + k11 0 0 −k31

− bde−cd2
bg 0 cd−be

b 0

k11 0 0 −k31

⎤

⎥
⎥
⎥
⎥
⎦

The characteristic equation of the Jacobi matrix Jc
(
X ′
6

)
is

written as

(17)

Q (λ, μe) � q0 (μe) λ
4 + q1 (μe) λ

3

+ q2 (μe) λ
2 + q3 (μe) λ + q4 (μe)

where q0(μe) � 1,q1(μe) � k31+e + c
b ( f − d),

q2 (μe) � 1

b2g

(
bc2d2 + c2d3 − b2cde − bcd2e+ ab2cg

− bc2 f g − c2d f g + bce f g + b2gck11

− bcgdk31 + b2gek31 + bc f gk31)

q3(μe) � 1

b2g

[
ab2gck31 − c

(
c2d3− 2bcd2e

+ b2de2 + abcdg − ab2eg − c2d f g

+ bcgdk11 − b2gek11 + b2dek31 + bcg f k32

+ cdg f k31 − beg f k31 − bcd2k31 − cd3k31 + bd2ek31
)]

,

q4(μe) � ck31(be − cd)
(
bde − cd2 − abg + c f g

)

b2g
.

When a � 30, b � 1, c � 10, d � 1, f � 0.25,
g � 0.5, the relationship between the bifurcation parameter
e and the control parameters k11, k31 is obtained.
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Fig. 5 Range of bifurcation parameter e

350(e − 23.75)(e − 14.1375)(e − 10)(e− 0.505)

+
(
1.235 × 106 − 80187.5e−10859.4e2 + 656 .25e3

)
k31 − 17.5

×(e + 29.401)
(
e2 − 36.115e + 368.792

)
k231

−17.5(e − 10.034)(e + 10.82)k331 + k211
[250e + (100e − 1000)k31 − 2500]

+[−175(e − 10) × (e− 15.66)(e + 3.876)

+10k31(e − 10.148)(e− 29.25)(e − 5.6)

+10k231(e − 44.856) (e − 10.14)]k11 � 0

By determining the value of the bifurcation parameter e
which Hopf bifurcation occurs at the expected point, the
values of the control parameters k11 and k31 can be deter-
mined. When the bifurcation parameter e < 14.137, the
Hopf bifurcation of the system appears ahead of time and
the stable region decreases. When the bifurcation parameter
e > 14.137, the Hopf bifurcation of the system is delayed,
which expands the stable region. The object of anti-control
of the Hopf bifurcation for theWillamowski–Rössler system
is realized. The relationship between the value range of the
bifurcation parameter e and the control parameters k11 and
k31 is shown in Fig. 5.

When the bifurcation parameter e � 20 and the control
parameter k31 � 0.5, the other control parameter is k11 �
68.823. The bifurcation diagram of the system is shown in
Fig. 6.

When the bifurcation parameter e � 12.5 and the con-
trol parameter k31 � 0.5, the other control parameter is

Fig. 6 When k11 � 68.823,k31 � 0.5, the bifurcation diagram of con-
trolled system (16)

Fig. 7 When k11 � −5.13,k31 � 0.5, the bifurcation diagram of con-
trolled system (16)

k11�−5.13. The bifurcation diagram of the system is shown
in Fig. 7.

Although the control parameter k21 can not change the
bifurcation parameter e, the amplitude of the limit cycle for
the system can be altered by it, as shown in Fig. 8.

From the above analysis, it shows that the control parame-
ter k21 has no effect on the value of the bifurcation parameter
e, but the control parameter k21 has an effect on the ampli-
tude of the bifurcation limit cycle. With increasing the value
of k21, the amplitude of the limit cycle gradually decreases,
which the anti-control of the amplitude of the limit cycle can
be realized.

6 Conclusion

In this paper, we have considered the anti-control of Hopf
bifurcation for the Willamowski-Rössler system. According
to the high dimensional Hopf bifurcation theory, the charac-
teristics ofHopf bifurcation at the non-zero equilibriumpoint
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Fig. 8 Amplitude of limit cycle of controlled system (16) is influenced
by different k21

of the system are analyzed, and the critical value of Hopf
bifurcation is studied. When a � 30, b � 1, c � 10, d � 1,
f � 0.25,g � 0.5, the critical value of the Hopf bifurcation
parameter e of the system is e0 � 14.137.Therefore, when
e < e0, the system is gradually stable. When e > e0,the
system is unstable.

A state feedback control method is proposed. Anti-control
of Hopf bifurcation for the Willamowski- Rössler system
is carried out by setting a hybrid controller, which is com-
posed of linear and nonlinear controllers. The relationship
between the control parameters and the bifurcation parameter
is obtained. By specifying the position of Hopf bifurcation,
the values of the control parameters are determined, and the
purpose of anti-control is realized. Namely, the advance or
delay ofHopf bifurcation is determined by the control param-
eters of the linear controllers, and the amplitude of the limit
cycle is determined by the control parameter of the nonlin-
ear controller. The correctness of the theoretical analysis is
verified by numerical simulation.
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