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Abstract
This article investigates the finite-time synchronization (FTS) of memristive neural networks (MNNs) with leakage and
mixed delays by using state feedback and adaptive control techniques. The solution of all the systems has been obtained in
the Filippov sense using theories of differential inclusion and set-valued maps. To assure the synchronization of memristive
neural networks, a few sufficient conditions based on the Filippov solution and Lyapunov functional technique rather than the
finite-time stability theorem have been obtained. In order to achieve synchronization within finite time, a discontinuous state
feedback controller has been constructed, and settling time has been determined explicitly. A novel adaptive controller has
been constructed to minimize the control gain. The numerical examples authenticate the efficacy of the theoretic outcomes.
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1 Introduction

The last few decades have witnessed at growing attention
of the researchers toward the study of neural networks. This
is due to its wide range of applications. Nowadays, memris-
tors become quite useful devices in electronic appliances due
to their non-volatile characteristics, i.e., ability to preserve
memory without power. A memristor is a type of electronic
device that regulates or confines the flow of electric current
in a circuit and memorizes the previously flowed current
through it. Basically, memristor is an acronym for mem-
ory resistor having memory effect and firstly perceived by
Chua [1] in 1971. Chua demonstrated the relation between
magnetic flux and electric charge. He also concluded that
memristor would be the fourth essential component of a cir-
cuit. However, due to the nascent nanotechnology at that time
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the physical implementation of it was quite challenging. In
addition, synapses are very essential component of neural
networks, since theymay store information and execute com-
putation in a variety of ways. It is necessary to remember
how they have previously operated with respect to presynap-
tic input and postsynaptic actions. In 2008, StanleyWilliams
and his team developed the practical memristor [2]. Themost
intriguing feature of the memristor is that it remembers the
prior direction of the passage of electric charge in the past.
Thus, the memristor may completely replicate the synaptic
function in artificial neural networks (ANNs) [2].

The human brain is a highly complex, nonlinear, and
self-organized system that effectively exploits complicated
dynamics to carry out its “computations”. The only way
to accurately imitate its extensive capability is to improve
the hardware emulated. The most promising options to cre-
ate bio-realistic neuromorphic systems are artificial neurons
constructed with active memristors, nonlinear memory com-
ponents with programmable resistance.

Since the memristor mimics the forgetting and remem-
bering (memory) processes in human brains, it is widely
recognized and has potential uses in powerful brain-like com-
puters and future computers. There are various biological
reasons that an inductance term should be included in a neu-
rological system. When inductance is added, the membrane
develops electrical tuning and filtering behaviors. In order to
better emulate the artificial neural networks of the human
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brain; the traditional resistor of self-feedback connection
weights are replaced by the memristor. For instance, com-
parable circuits with an inductance can be used to model the
membrane of a hair cell in the semicircular canals of some
animals [3, 4].

The ordinary resistor of self-feedback connection weights
and the connection weights of primitive neural networks
is replaced by the memristor in order to more accurately
mimic the artificial neural networks of the human brain.
Further, memristive neural networks (MNNs) have more
significance in the study of human brain simulation. It is
also observed that MNNs are more sensitive to the initial
states as compared to other neural networks, which leads
to a more complex chaotic path for MNNs. Therefore, the
findings of MNNs synchronization have been substantially
applied in the domain of science and engineering. In 2008,
the Hewlett-Packard research team produced the first mem-
ristor prototype [5, 6]. The stability of the neural network
is an essential condition for application aspect and received
much more attention of the researchers [7, 8]. However, neu-
ron experiences delay during signal transmission due to finite
processing speed of neurons, which may cause the diver-
gence, oscillation, and even instability of neural networks
[9]. Therefore, time delay should be considered when exam-
ining the dynamics of MNNs. Under some conditions, there
could be either a distribution of propagation delay over a
period of time or a dispersion of conduction velocities along
those pathways, which could lead to distributed delays in
neural networks [10]. There are some remarkable outcomes
published in recent year [11–13] related to the stability anal-
ysis of delayed MNNs.

In 2003, Li and Tian [14] developed the continuous state
feedback controller to resolve the issue of synchronization
by the help of a finite-time control method between two
chaotic systems. Mei et al. [15] derived some effective crite-
ria to analyze the FTS of complex neural networks (CNNs)
through impulsive periodically intermittent control technique
with delayed and non-delayed coupling. Yan et al. [16]
discussed the synchronization in finite-time using decompo-
sitionmethod. They have explained some of the complication
associatedwith it with the help ofMittag-Leffler function and
inequalities.

Time delay is a phenomenon which shows that the future
state of system depends on both its past and current states. It
is frequently used in various fields including biological and
economic systems. In neural networks, the time delay occurs
in the dynamical behavior of the networks and processing
of information storage. Consequently, it makes sense to take
time delay into account while modeling dynamical networks
[17].

Further, the dynamics of delayed MNNs have been exam-
ined by several researchers [18–22]. The FTS of neural
networks (NNs) without settling time was examined by Yang

[23]. However, finite-time results without a settling time are
inexpedient to the engineers in practical applications.

Cao et al. [24] discussed the problem of synchroniza-
tion for delayed memristive neural networks (MNNs) with
mismatch parameters via event-triggered control. They have
used matrix measure approach to derive the criteria of
quasi-synchronization and generalized Halanay inequality.
Wang et al. [25] considered the problem of MNNs with
multi-directional associative memory of finite-time syn-
chronization and constructed nonlinear chaotic models for
finite-time synchronization. Due to its wide range of possible
applications in the field of information sciences and secure
communication; synchronization is a critical dynamical char-
acteristic of neural networks and has equal importance as
the stability of the system [26–28]. Miaadi and Li [29]
investigated the issue of fixed-time stabilization for uncer-
tain impulsive distributed delay neural networks and derived
some new criteria to deal with the impulsive effect on fixed
time stabilization. The stability criteria of delayed MNNs
have been examined by Li and Cao [30]. Further, event-
triggered sample control was used to stabilize MNNs with
communication delays and achieve global asymptotic stabil-
ity in [31].

Generally, the switching parameters of MNN are state-
dependent and always not same if the initial conditions of
the systems are different. Therefore, it is impossible to syn-
chronize MNNs using typical robust analytical approaches
or classical analytical procedures for robust synchronization
of neural networks with mismatched unknown parameters
[32, 33]. Therefore, many researchers are interested to over-
come the hurdle of mismatched parameters and achieve the
synchronization of MNNs, error stability of the system. It
has also emphasized that the majority of published research
work on synchronization of delayed MNNs are asymptotic
and none of them taken into account the synchronization of
MNNs with mixed and leakage delays in finite-time with
mismatched switching parameters. In general, it is necessary
for designed controllers to be straight forward and to lower
control costs. Designing an appropriate controller to achieve
MNNs synchronization in finite-timewithmixed and leakage
delay is a difficult task.

In Cauchy problem ẋ(t) � g(x(t)),∀ t ≥ 0, x(0) � x0
the measurability of function g is not enough to guarantee
the existence of solutions. This can be fixed by substitut-
ing the function g with its Filippov regularization G, i.e.,
the differential inclusion ẋ(t) ∈ G(x(t)), is always solvable.
The set-valued maps are said to be Filippov representable if
they can be obtained from Filippov regularization of a sin-
gle valued measurable function. A single-valued map G is
identical to g if the function g is continuous. For the purpose
of getting solutions to discontinuous differential equations,
the Krasovskii and Filippov regularization approaches were
introduced.
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The above discussion has motivated our work to examine
the finite-time synchronization of memristive neural net-
workswithmixed and leakage delays alongwithmismatched
switching parameters. The main contributions of this paper
are as follows:

(a) Derivation of sufficient conditions to assure the syn-
chronization ofMNNswith the help of Filippov solution
andLyapunov functional techniquewithout utilizing the
finite-time stability theorem.

(b) Design discontinuous state feedback controller to guar-
antee the synchronization ofMNNswithin finite settling
time, and consideration of an adaptive control technique
to ensure FTSofmaster–slaveMNNswith lower control
gains.

(c) Explicit estimation of the settling time.

Finally, based on the addressed elaborations, the finite-
time synchronization of memristive neural networks with
mixed and leakage delays via state feedback controller and
adaptive controller has been achieved.Themixed and leakage
delays make the manuscript more complex and compre-
hensive than previous works. To the best of the authors’
knowledge, this work has not been done before.

The rest of the manuscript is organized as follows: some
basic concepts, viz. finite-time control technique, synchro-
nization error systemandmodel description, have been incor-
porated in Sect. 2. The required definitions and conventions
are also provided in Sect. 2. The finite-time synchronization
ofMNNswithmixed and leakage delays is detailed in Sect. 3.
The theoretical outcomes are authenticated with numerical
simulations in Sect. 4. A brief conclusion has been incorpo-
rated into Sect. 5.

2 Preliminaries

In this article, the solution of the MNNs has been considered
in Filippov’s sense. Throughout the paper R represents a
set of real numbers, Rn stands for a real vector space of
dimension n and Rnm stands for collection of n×m matrices;

D+(·) denotes the positive Dini derivative. co[�

�,
�

�] denotes

the closure of the convex hull generated by
�

� and
�

�, where
�

�,
�

� ∈ R. AT represents the transpose matrix of A, and
‖‖1 is the representation of standard 1-norm of a vector or a
matrix. Let us consider Cγ � (C[−γ , 0], Rn) is a Banach
space of continuous functions � : [−γ , 0] → Rn with norm
‖�‖ � sups∈[−γ , 0] ‖�(s)‖ and γ � max{δ, τ , σ } .

Now, first of all we present some basic concepts regarding
set-valued analysis and functional differential inclusions. Let
us consider the Lebesgue measurable space ([0, ω], L) and
an n-dimensional real Euclidean space (Rn , ‖(·)‖), (n > 1)

with induced Euclidean norm || ||. Assume Z ⊆ Rn , initially,
we introduce the following notations:

℘0(Z ) �{C ⊂ Z : C is non - empty }, ℘(Z ) � ℘0(Z ) ∪ {�},
℘g(c)(Z ) �{C ⊂ Z : C is a non - empty closed convex set},
℘χ (c)(Z ) �{A ⊂ X : A is a non - empty compact convex set}.

For convenience, we sometimes denote 2Z � ℘0(Z ). For
a given C ⊂ ℘g(Z ), z ∈ Z , the distance function can be
defined as dist(z, C) � inf{‖z − c‖ : c ∈ C}. The Hausdorff
metric on ℘g(Z ) is defined as [34],

dH (C , D) � max{β(C , D), β(D, C)},

where β(C , D) � sup{dist(x , D) : x ∈ C}, β(B, A) �
sup{dist(y, D) : y ∈ D}.

It is obvious that
(
℘g(Z ), dH

)
is a complete metric space

and a closed subset of it is ℘g(c)(Z ). Suppose Z ⊆ Rn , if
there exists a non-empty set G(z) ⊂ Rn for each z ∈ Z , then
a map z �→ G(z) is said to be a set valued map Z ↪→Rn .
An upper semi-continuous (USC) map is a set valued mapG
with non-empty values at z0 ∈ Z , if β(G(z), G(z0)) → 0 as
z → z0. G(z) is said to have a closed (compact, convex)
image if for each z ∈ Z , G(z) is closed (compact, con-
vex). We say G : [0, ω] → ℘g(Rn) a set-valued map
is measurable, if for all z ∈ Rn , a positive real valued
function t �→ G(z(t)) is measurable, i.e., Graph (G) �
{(t , υ) ∈ [0, ω] × Rn , υ ∈ G(t)} ∈ L × B(Rn) is measur-
able,where L[0, ω] stands for Lebesgue σ -field and B(Rn)
represents a Borel σ -field of Rn

3 Model description

Consider a class of MNNs with mixed and leakage delay
defined as

η̇p(t) � − apηp(t − δp(t)) +
∑n

q�1
bpq (ηp(t)) fq (ηq (t))

+
∑n

q�1
Cpq (ηp(t)) fq (ηq (t − τq (t))

+
n∑

q�1

dpq (ηp(t))

t∫

t−σq (t)

fq (ηq (s))ds + Jp , t ≥ 0, p � 1, 2, ..., n.

(1)

where ηp(t) ∈ R is the state of pth neuron and fq ( ·) is the
activation function. The time delays δp(t), τq (t) and σq (t)
represent the leakage delay, time-varying delay and distribu-
tive delay, respectively. The time delays δp(t), τq (t) and
σq (t) satisfy 0 ≤ δp(t) ≤ δ, δ̇p(t) ≤ hδ , 0 ≤ τp(t) ≤ τ ,
τ̇p(t) ≤ hτ , 0 ≤ σp(t) ≤ σ , σ̇p(t) ≤ hσ , where δ, hδ , τ ,
hτ , σ and hσ are positive constants, Jp is the external input
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and the synaptic connection weights of memristive neural
network can be expressed as:

bpq
(
ηp(t)

) �
⎧
⎨

⎩

�

bpq sgnpq ḟ pq (ηq (t)) − η̇p(t) ≤ 0,
�

bpq sgnpq ḟ pq (ηq (t)) − η̇p(t) > 0

cpq
(
ηp(t)

) �
{

�
c pq sgnpq ḟq (ηq (t − τq (t)) − η̇p(t − τ p(t)) ≤ 0,
�
c pq sgnpq ḟq (ηq (t − τq (t)) − η̇p(t − τ p(t)) > 0

dpq
(
ηp(t)

) �
⎧
⎨

⎩

�

d pq sgnpq
{
fq (ηq (t)) − .

fq (ηq (t − σq (t)))
}

− η̇p(t) ≤ 0,
�

d pq sgnpq
{
fq (ηq (t)) − .

fq (ηq (t − σq (t)))
}

− η̇p(t) > 0

where a p > 0,
�

bpq ,
�

bpq ,
�
c pq ,

�
c pq ,

�

d pq and
�

d pq are

constant quantities, such that
�

b pq 
� �

b pq ,
�
c pq 
� �

c pq and
�

d pq 
� �

d pq p, q � 1, 2, ..., n. The initial condition for
network (1) is given as

ηp(s) � ϕp(s), s ∈ [−γ , 0
]
, p � 1, 2, ..., n,

where ϕp(s) ∈ (C[−γ , 0], R), γ � max{δ, τ , σ } and
0 < δp(t) ≤ δ, 0 < τp(t) ≤ τ , 0 < σp(t) ≤ σ , p � 1, 2,
..., n.

Now, consider the network (1) as a drive system, and the
controlled response of it can be expressed as

ξ̇p(t)

� −apξp(t − δp(t))

+
n∑

q−1

bpq (ξp(t)) fq (ξq (t)) +
n∑

q�1

cpq (ξp(t)) fq (ξq (t − τq (t)))

+
n∑

q�1

dpq (ξp(t)

t∫

t−σq (t)

f (s)ds + Jp + u p(t), (2)

Here, u p(t) is the control input, the initial condition of
network (2) is given as.

ξp(s) � ψp(s), s ∈ [−γ , 0], p � 1, 2, .., n, where
ψp(s) ∈ (C[−γ , 0], R), γ � max{δ, τ , σ } and 0 <

δp(t) ≤ δ, 0 < τp(t) ≤ τ , 0 < σp(t) ≤ σ , p � 1, 2, ..., n.
Since a memristive neural network is a state-dependent

nonlinear family of systems and exhibits nonlinear behavior,
coexisting solutions, jumping solutions and transient chaos.
Therefore, systems (1) and (2) become discontinuous, and
the existence of a solution cannot be guaranteed in the tra-
ditional manner. Thus, theories of differential inclusions and
set-valued maps along with Filippov framework have been
used to transform systems (1) and (2) into traditional neural
networks.

Definition 1 (Filippov regularization [35]) The Filippov
regularization of a measurable function g(η) at η ∈ Rn ,
which is allowed to be discontinuous at η, can be expressed
as:

G(η) � ∩
λ>0

∩
μ(�)�0

co[g(B(η, λ)\�)],

where B(η, λ) � {z : ‖ z − η ‖ ≤ λ}, and μ is
Lebesgue measure. Suppose a � max(a1, a2, a3, . . . an),

b̃pq � min

{
�

b pq ,
�

b pq

}
, bpq � max

{
�

bpq ,
�

bpq

}
,

c̃pq � min
{

�
c pq ,

�
c pq

}
, cpq � max

{
�
c pq ,

�
c pq

}
, d̃pq �

min

{
�

d pq ,
�

d pq

}
and d pq � max

{
�

d pq ,
�

d pq

}
.

The concept behind the Filippov regularization is that the
relaxed dynamics should not involve with the sets of mea-
sure zero. The theories of differential inclusion and Filippov
regularization yields:

η̇p(t) ∈ −apηp
(
t − δp(t)

)

+
n∑

q�1

co
[
b̃pq , bpq

]
fq (ηq (t)) +

n∑

q�1

co
[
c̃ pq , cpq

]
fq (ηq

(
t − τq (t)

)

+
n∑

q�1

co
[
d̃pq , d pq

] t∫

t−σq (t)

fq
(
ηq (s)

)
ds

+ Jp , ∀t ≥ 0, p, q � 1, 2, . . . , n.

The measurable selection theorem [36, 37] implies that

there exist measurable functions �
η01
pq ∈ co

[
b̃pq , bpq

]
,

�
η02
pq ∈ co

[
c̃pq , cpq

]
, �η03

pq ∈ co
[
d̃pq , d pq

]
as

η̇p(t)

� −apηp(t − δp(t))

+
n∑

q�1

�η01
pq fq (ηq (t)) +

n∑

q�1

�η02
pq fq (ηq (t − τq(t))

+
n∑

q�1

�η03
pq

t∫

t−σq (t)

fq (ηq (s))ds + Jp,

∀t ≥ 0, p, q � 1, 2, . . . , n. (3)

Similarly, for network (2) there existmeasurable functions
�

ξ01
pq ∈ co [b̃pq , bpq ],�

ξ02
pq ∈ co[c̃pq , cpq ], �

ξ03
pq ∈ co [d̃pq ,

d pq ] such that:

ξ̇p(t)

� −apξp(t − δp(t))

+
n∑

j�1

�ξ01
pq fq (ξq (t)) +

n∑

q�1

�ξ02
pq fq (ξq (t − τq(t))

+
n∑

q�1

�ξ03
pq

t∫

t−σq (t)

fq (ξq (s))ds + Jp,

∀t ≥ 0, p, q � 1, 2, . . . , n. (4)
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Now, the synaptic weights of the MNNs (1) and (2) have
been converted into state independent switching parameters
with the help of Filippov regularization” [35] and measur-
able selection theorem [36, 37]. The bounded and Lipchitz
continuous feedback functions ofMNNs are commonly used
in electronic applications.

Consider a vector function f ∈ C(Rn , Rn), where
f (η) � ( f1(η1), f2(η2), f3(η3), . . . , fn(ηn)) and η � (η1,
η2, ..., ηn).

(A1): The bounded activation function can be considered
as:

� :� {
f (·) : f p ∈ C(R, R), ∃Pp > 0,

∣∣ f p(ξp)
∣∣ < Pp, ∀ξp ∈ R, p � 1, 2, ..., n

}
,

where Pp, p � 1, 2, ..., n are the saturation constants.
(A2): The Lipchitz type activation function can be con-

sidered as.
℘ :�

{
g(·) : gp ∈ C(R, R), ∃l p > 0,

|gp(ηp) − gp(ξp)| < l p|ηp − ξp|, ∀ξp ∈ R, p � 1, 2,

..., n
}
,where �p, p � 1, 2, ..., n are the Lipchitz constants.

4 Finite-time synchronization

In our context, synchronization implies the convergence
between the states of the drive and response systems. Gener-
ally, two different kinds of synchronization occur, infinite
time synchronization such as asymptotic or exponential
synchronization, and finite-time synchronization. The trajec-
tories of the drive and response system must remain exactly
the same after a specified amount of time, known as the “set-
tling time” subjected to finite time synchronization, contrary
to asymptotic or exponential synchronization.

Here, we have constructed two different kinds of con-
trollers in such away that the drive and response networks are
synchronized infinite time. Firstly, a state feedback controller
has been used to handle the finite-time synchronization prob-
lem, and then, an adaptive controller has been constructed to
moderate the control gains. Meanwhile, a few mathemati-
cal arguments have been derived that yield certain adequate
conditions for the synchronization between memristive neu-
ral networks (1) and (2) in finite time.

Definition 2 The network (2) is said to be finite-time syn-
chronized with (1) by designing a suitable controller u p(t),
p � 1, 2, ..., n; there exists a time instant t∗ (depending
upon the initial conditions) such that lim

t→t∗
‖ξ (t) − η(t)‖1 � 0

and ‖ξ (t) − η(t)‖1 ≡ 0 for t > t∗ and η(t) � (η1(t), η2(t),
..., ηn(t))T ,ξ (t) � (ξ1(t), ξ2(t), ..., ξn(t))T .

Let us define the error ep(t) � ξp(t) − ηp(t), p � 1, 2,
..., n yields

ėp(t) � − apep
(
t − δp(t)

)

+
n∑

q�1

�ξ01
pq gq

(
eq (t)

)
+

n∑

q�1

�ξ02
pq gq

(
eq (t − τq (t)

)

+
n∑

q�1

�ξ03
pq

t∫

t−σq (t)

gq
(
eq (s)

)
ds

− aq fq
(
ηp(t − δp(t)

)
+

n∑

q�1

(
�ξ01
pq − �η01

pq

)
fq
(
ηq (t)

)

+
n∑

q�1

(
�ξ02
pq − �η02

pq

)
fq
(
ηq
(
t − τq (t)

))

+
n∑

q�1

(
�ξ03
pq − �η03

pq

) t∫

t−σq (t)

fq
(
ηq (s)

)
ds + u p(t), (5)

where gq (eq (.)) � fq (ξq (.) − fq (ηq (.)), q � 1, 2, ..., n.
The networks (1) and (2) are highly sensitive to the ini-

tial conditions due to which �
ξ01
pq � �

η01
pq , �

ξ02
pq � �

η02
pq and

�
ξ03
pq � �

η03
pq need not be true. Thus, we have to construct an

appropriate controller to overcome the hurdle of mismatched
parameters. Now, define a controller function such as

u p(t) � −rp(ep(t)) − δpsgn(ep(t)) (6)

Theorem 1 Let us suppose conditions (A1) and (A2) hold,
then the controlled network (2) can be synchronized with
network (1) under controller (6) in finite-time if the control
gains rp and κp satisfy the following conditions:

rp � a p

1 − hδ

+
n∑

q�1

(

bpq +
a pq

1 − hτ

+
d pq σ

1 − hσ

)

lq , (7)

and

κp �
n∑

q�1

∣∣
∣∣
�

bpq − �

bpq

∣∣
∣∣ +
∣
∣∣
�
c pq − �

c pq

∣
∣∣ +
∣∣
∣∣
�

d pq − �

d pq

∣∣
∣∣σ)pq + ς , (8)

where ς is a positive constant,
∣
∣bpq

∣
∣ �

∣∣
∣∣
�

b pq − �

bpq

∣∣
∣∣,
∣
∣cpq

∣
∣ �

∣∣∣
�
c pq − �

c pq

∣∣∣,
∣∣d pq

∣∣ �
∣∣∣∣
�

d pq − �

d pq

∣∣∣∣ and the settling time can

be estimated as

T �
n∑

p�1

∣∣ep(0)
∣∣ +

n∑

p�1

ai
1 − hδ

0∫

−δp(0)

∣∣ep(s)
∣∣ ds

+
n∑

p�1

n∑

q�1

ci j
1 − hτ

0∫

−τq (0)

∣∣gq (eq (s))
∣∣ ds

+
n∑

p�1

n∑

q�1

di j
1 − hσ

0∫

−σq (0)

0∫

θ

∣∣gq (eq (s))
∣∣ ds dθ − γ ,
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where δ̇p(t) ≤ hδ , τ̇p(t) ≤ hτ , σ̇p(t) ≤ hσ , γ �
max{δ, τ , σ } , δp(t) ≤ δ, τp(t) ≤ τ , σp(t) ≤ σ , and

ep(s) � ϕp(s) − ψp(s), s ∈ [−γ , 0], p, q � 1, 2, ..., n.

Proof Let us consider a Lyapunov functional candidate as:

(9)V (t) � v1(t) + v2(t) + v3(t) + v4(t),

where v1(t) �
n∑

p�1

∣∣ep(t)
∣∣, v2(t) �

n∑

p�1

ap
1−hδ

t∫

t−δp(t)

∣
∣ep(s)

∣
∣ ds, v3(t) �

n∑

p�1

n∑

q�1

cpq
1−hτ

t∫

t−τq (t)

∣
∣gq (eq (s))

∣
∣ds, v4(t) �

n∑

p�1

n∑

q�1

d pq
1−hσ

0∫

−σq (t)

t∫

t+θ

∣∣gq (eq (s)))
∣∣ ds dθ and δ̇p(t) ≤ hδ ,

τ̇p(t) ≤ hτ , σ̇p(t) ≤ hσ .
The “signum function” is defined as

sgn(ν) �

⎧
⎪⎨

⎪⎩

1, ν > 0
0, ν � 0
−1, ν < 0

, sgnpq (ν) �
{

1, p 
� q
−1, p � q

.

The upper right Dini derivative of Lyapunov functional
V (t) can be expressed as

D+(V (t)) � D+(v1(t)) + v̇2(t) + v̇3(t) + v̇4(t) (10)

Now the upper right Dini derivative of v1(t) can be
expressed as:

D+(v1(t)) �sgnT (e(t)(ė(t))

�
n∑

p�1

sgnT
(
ep(t)

)
⎧
⎨

⎩
−apep

(
t − δp(t)

)
+

n∑

q�1

�ξ01
pq gq

(
eq (t)

)
+

n∑

q�1

�ξ02
pq gq

(
eq
(
t − τq (t)

))

+
n∑

q�1

�ξ03
pq

t∫

t−σq (t)

gq
(
eq (s)

)
ds +

n∑

q�1

(
�ξ01
pq − �η01

pq

)
fq
(
ηq (t)

)
+

n∑

q�1

(�ξ02
pq − �η02

pq ) fq
(
ηp
(
t − τq (t)

))

+
n∑

q�1

(
�ξ03
pq − �η03

pq

) t∫

t−σq (t)

fq (ηq (s))ds − rp(ep(t)) − δpsign(ep(t))

⎫
⎪⎬

⎪⎭
(11)

Assumption (A2) yields:

�
ξ01
pq sgn

T (eq (t)
)
gq
(
eq (t)

) ≤ bpqlq
∣
∣eq (t)

∣
∣,

�
ξ02
pq sgn

T gq
(
eq
(
t − τq (t)

)) ≤ cpq
∣
∣gq

(
eq
(
t − τq (t)

))∣∣,

�
ξ03
pq sgn

T (eq (t)
)

t∫

t−σq (t)

gq
(
eq (s)

)
ds ≤ d pq

t∫

t−σq (t)

∣
∣gq

(
eq (s)

)∣∣,

−apsgn
T (eq (t)

)
ep
(
t − δp(t)

) ≤ a p
∣∣ep

(
t − δp(t)

)∣∣.

Let us suppose

�p �
⎧
⎨

⎩

n∑

q�1

(
�ξ01
pq − �η01

pq

)
fq
(
ηq (t)

)

+
n∑

q�1

(
�ξ02
pq − �η02

pq

)
fq
(
t − τq (t)

)

+
n∑

q�1

(
�ξ03
pq − �η03

pq

) t∫

t−σq (t)

fq
(
ηq (s)

)
ds

⎫
⎪⎬

⎪⎭
.

Assumption (A1) yields:

sgnT (ep(t))�p ≤
n∑

q�1

(∣∣∣∣
�

b pq − �

b pq

∣∣∣∣ +
∣∣∣
�
c pq − �

c pq

∣∣∣ +
∣∣∣∣
�

d pq − �

d pq

∣∣∣∣σ
)
Pq ,

sgnT ep(t)
{

− rp(ep(t)) − δp sign (ep(t))
}

≤ −rp
∣∣ep(t)

∣∣− δp(t).
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Combining the above inequalities with (11), one has

D+(v1(t)) ≤
n∑

p�1

a p
∣∣ep
(
t − δp(t)

)∣∣

+
n∑

p�1

n∑

q�1

⎧
⎪⎨

⎪⎩
bpq lq

∣∣eq (t)
∣∣ + cpq

∣∣gq
(
eq
(
t − τq (t)

))∣∣ + d pq

t∫

t−σq (t)

∣∣gq
(
eq (s)

)∣∣ds

⎫
⎪⎬

⎪⎭

−
n∑

p�1

(
κp + rp

∣
∣ep(t)

∣
∣)

+
n∑

p�1

n∑

q�1

(∣∣∣∣
�

b pq − �

b pq

∣∣∣∣ +
∣∣∣
�
c pq − �

c pq

∣∣∣ +
∣∣∣∣
�

d pq − �

d pq

∣∣∣∣σ
)
Pp (12)

Let us define an indicator function as follows:

μp �
{
1 if ep(t) 
� 0,
0 if ep(t) � 0

(13)

By combining (12) and (13), D+(v1(t)) in terms of indi-
cator function can be expressed as

D+(v1(t)) ≤
n∑

p�1

a p
∣∣ep(t − δp(t))

∣∣ +
n∑

q�1

⎧
⎪⎨

⎪⎩
bpqlq

∣∣eq (t)
∣∣ + cpq

∣∣gq (eq (t − τq (t)))
∣∣ + d pq

t∫

t−σq (t)

∣∣gq (eq (s))
∣∣ds

⎫
⎪⎬

⎪⎭

−
n∑

p�1

(
κpμp + rp

∣∣ep(t)
∣∣) +

n∑

p�1

n∑

q�1

(∣∣∣
∣
�

bpq − �

b pq

∣∣∣
∣ +
∣∣
∣
�
c pq − �

c pq

∣∣
∣ +
∣∣∣
∣
�

d pq − �

d pq

∣∣∣
∣σ
)
Pqμp. (14)

v̇2(t) can be expressed as

v̇2(t) ≤
n∑

q�1

ai
1 − hδ

∣∣eq(t)
∣∣− aq

∣∣eq
(
t − δq (t)

)∣∣, (15)

v̇3(t) can be expressed as

v̇3(t) ≤
n∑

p�1

n∑

q�1

cpq
1 − hτ

∣∣gq
(
eq(t)

)∣∣− cpq
∣∣gq
(
t − τq(t)

)∣∣,

(16)

v̇4(t) can be expressed as

v̇4(t) ≤
n∑

p�1

n∑

q�1

d pqσ

1 − hσ

∣
∣gq

(
eq (t)

)∣∣− d pq

t∫

t−σq (t)

∣
∣gq

(
eq (s)

)∣∣ds,

(17)

Combining inequalities (13)–(17), we obtain

D+(V (t)) ≤
n∑

p�1

(

−rp +

∣
∣a p

∣
∣

1 − hδ

)
∣
∣ep(t)

∣
∣− κpμp

+
n∑

p�1

n∑

q�1

(
∣
∣bpq

∣
∣ +

∣
∣cpq

∣
∣

1 − hτ

+

∣
∣d pq

∣
∣

1 − hσ

)

lq
∣
∣(eq (t))

∣
∣

+
n∑

p�1

n∑

q�1

(∣∣∣
∣
�

bpq − �

b pq

∣
∣∣
∣ +
∣
∣∣
�
c pq − �

c pq

∣
∣∣ +
∣
∣∣
∣
�

d pq − �

d pq

∣
∣∣
∣σ
)
Pqμp .

(18)

Let ωp � a p
1−hδ

+
n∑

q�1

(
bq +

a pq
1−hq

+ d pq σ

1−hσ

)
lq and apply

the given condition (8), one can express D+(V (t)) as

D+(V (t)) ≤
n∑

p�1

(−rp + ωp
)∣∣ep(t)

∣∣− ς

n∑

p�1

μp. (19)

If ‖e(t)‖1 
� 0 and condition (7) holds, then the inequality
(19) can be expressed as

D+(V (t)) ≤ −ς

n∑

p�1

μp, p � 1, 2, ..., n. (20)

From above inequality (20) and (9), there exists a non-
negative constant V ∗ as follows:

lim
t→∞ V (t) � V ∗ and V (t) ≡ V ∗, ∀t ≥ 0 (21)

The integration of Eq. (21) from 0 to ∞ yields

V (t) − V (0) ≤ − ς

n∑

p�1

μp (t − 1) (22)

Now, two possibilities may arise, either ‖e(t)‖1 � 0 or
‖e(t)‖1 
� 0.

Case I when ‖e(t)‖1 �
n∑

p�1

∣∣ep(t)
∣∣ � 0, ∀ t ≥ 0, there

is nothing to prove and the finite-time synchronization has
been established between networks (1) and (2).

Case II when ‖e(t)‖1 �
n∑

p�1

∣∣ep(t)
∣∣ 
� 0, there exist p0 ∈

{ 1, 2, ... , n} such that ∣∣ep0 (t)
∣∣ > 0 ∀ t ≥ 0, which implies

that − ς
n∑

p�1
μp < 0 and lim

t→∞ V (t) � −∞.
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This is a contradiction of Eq. (21), so there exist t∗ ∈ (0,
∞) such that

lim
t→t∗

V (t) � V ∗ and V (t) ≡ V ∗, ∀t ≥ t∗ (23)

Now, we have to prove that ‖e(t)‖1 � 0, ∀ t ≥ t∗. Firstly,
we claim that ‖e(t∗)‖1 � 0. Since norm- ‖(·)‖1 is a positive
continuous function, if ‖e(t)‖1 
� 0, then there exists a con-
stant λ > 0 such that ‖e(t)‖1 > 0, t ∈ [t∗, t∗ + λ] which
implies that there exist at least one p01 ∈ { 1, 2, ..., n} such
that

∣∣ep01 (t)
∣∣ > 0, ∀ t ∈ [t∗, t∗ + λ]. We can conclude from

the previous analysis that the derivative of Lyapunov func-
tion is negative definite, i.e., V̇ (t) < 0, ∀ t ∈ [t∗, t∗ + λ],
which contradicts Eq. (21). Hence ‖e(t∗)‖1 � 0.

Now, it is required to prove ‖e(t)‖1 � 0, ∀ t > t∗. If
possible suppose that ‖e(t)‖1 
� 0, for some t1 > t∗. Let
us define tα � sup{ t ∈ [t∗, t1] : ‖e(t)‖1 � 0}, then there
exist a t2 ∈ (tα , t1] such that ‖e(t)‖1 is monotonic increasing
∀ t ∈ (tα , t2]. This also implies that the Lyapunov function
is also monotonic increasing, i.e., V̇ (t) > 0. On the other
side ‖e(t)‖1 > 0,∀ t ∈ (tα , t2] then for some p02 ∈ { 1, 2,
... , n}, ∣∣ep02 (t)

∣
∣ > 0, ∀ t ∈ (tα , t2]. This again implies

that V̇ (t) < 0, ∀ t ∈ (tα , t2], which is a contradiction.
Therefore, finite-time synchronization has been established
between networks (1) and (2) through the controller (6) and
condition (23) holds.

5 Settling time

For the settling time, we have to show that V ∗ � 0. Now
suppose if V ∗ > 0, then vk(t∗) > 0, for some k, k ∈ { 1, 2,
3, 4}. If v1(t∗) > 0, then there exist p03 ∈ { 1, 2, ..., n} such
that

∣∣ep03 (t)
∣∣ > 0 and V̇ (t) < 0, which is a contradiction of

Eq. (21).

If v2(t∗) > 0, i.e.,
n∑

p�1

ap
1−hδ

t∗∫

t∗−δq (t∗)

∣∣ep(s)
∣∣ds > 0, there

exist t4 ∈ [t∗ − δ, t∗] and a constant β1 > 0, such
that ‖e(t)‖1 > 0, ∀ t ∈ [t4 − β1, t4 + β1], which con-
tradicts the Eq. (21), hence v2(t∗) � 0. If v3(t∗) > 0,

i.e.,
n∑

p�1

n∑

q�1

cpq
1−hτ

t∗∫

t∗−τq (t∗)

∣∣gq (eq (s))
∣∣ds > 0, there exist

t5 ∈ [t∗ − τ , t∗] and a constant β2 > 0, such that
‖ g(e(t)) ‖1 > 0,∀ t ∈ [t4−β2, t4+β2]. Now the assumption
(A1) yields ‖ e(t) ‖1 > 0, ∀ t ∈ [t4 − β2, t4 + β2], which
contradicts the Eq. (21), hence v3(t∗) � 0. If v4(t∗) > 0,

i.e.,
n∑

p�1

n∑

q�1

d pq
1−hσ

0∫

−σq (t∗)

t∗∫

t∗+θ

∣∣gq (eq (s)))
∣∣dsdθ > 0, apply

the assumption (A1) to the above inequality, there exist
a t6 ∈ [t∗ − σ , t∗] and a constant β3 > 0 such that

‖ e(t) ‖1 > 0, ∀ t ∈ [t6 − β3, t6 + β3]. This is the viola-
tion of Eq. (21). Hence, V ∗ � 0.

From the above discussion, we can conclude that if
‖ e(t∗ − γ ) ‖1 � 0, then ‖ e(t∗) ‖1 � 0, where γ �
max{δ, τ , σ } .

In order to estimate the settling time, suppose that when
‖ e(t) ‖1 
� 0, then

V̇ (t) < −ς (24)

The integration of the above inequality (24) from 0 to t∗
yields

V (t∗) − V (0) < −ς t∗, t∗ <
V (0)

ς
(25)

Therefore, ‖ e(T ) ‖1 � 0 and ‖ e(t) ‖1 � 0,∀ t >

T .where T � (t∗ − γ ), T ≤ V (0)
ς

− γ , and γ �
max{δ, τ , σ } .

Note 1 It can be observed that the controlled MNN (2) is
synchronized with MNN (1) with in the estimated settling
time through a discontinuous state feedback controller. The
settling time T � (t∗ − γ ) < t∗ is more applicable and
efficient for practical perspective.

Note 2 It should be observed that the parameter ηp of
the controller (6) has been used to eradicate the mismatch
parameters of the networks and the length of the settling
time can be scaled via parameter ς [see (25)]. Finally, we
can conclude that larger the value of scaling factor ς , faster
will be the synchronization (as shown in Fig. 2).

Generally, the adaptive control technique diminishes con-
trol gains through adaptive law as compared to state feedback
control. Therefore, some criteria have been suggested to
construct adaptive controllers to ensure the synchronization
between MNNs (1) and (2). Design adaptive controller as
follows

u p(t) � − r p(t)ep(t) − κp(t)sgn
(
ep(t)

)
,

ṙ p(t) �υp
∣∣ep(t)

∣∣,

κ̇p(t) �δpμp. (26)

Here, μp is an indicator function defined in the previous
theorem κp,δp are positive constants and sgn

(
ep(t)

)
stands

for signum function for p � 1, 2, ..., n.

Theorem2 The synchronization betweenmemristive neural
networks (1) and (2) can be achieved through adaptive con-
troller (26) within a finite-time provided assumptions (A1)
and (A2) hold.

Proof Consider a Lyapunov–Krasovskii functional as.

V (t) � v1(t) +
n∑

p�2

vp(t)
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where v1(t) � ∑n
p�1

∣∣ep(t)
∣∣ +

∑n
p�1

(rp(t)−ζp)2

2υp
+

(κp(t)−λ̄p)2

2δp
, v2(t) � ∑n

p�1
ap

1−hs

∫ t
t−δ(t)

∣∣ep(δ)
∣∣ds,

v3(t) � ∑n
p�1

∑n
q�1

cpq
1−hτ

∫ t
t−τ (t)

∣
∣gq (eq (s))

∣
∣ds and

v4(t) � ∑n
p�1

∑n
q�1

d pq
1−hσ

∫ 0
−σ

∫ t
t+θ

∣∣gq (eq (s)))
∣∣ ds dθ

Theλ̄p and ζp for p � 1, 2, ..., n are the unknown con-
stants to be determined. After few mathematical steps, the
upper right Dini’s derivative of V (t) can be given as “

D+(V (t)
) ≤

n∑

p�1

⎡

⎣−
(

ap
1 − hδ

+ rp

)
+

n∑

q�1

(

bpq +
cpq

1 − hτ

+
d pq · σ
1 − hσ

)

l p

⎤

⎦
∣∣ep(t)

∣∣

+
n∑

p�1

n∑

q�1

(∣∣∣∣
�

bpq − �

b pq

∣∣∣∣ +
∣∣∣
�
c pq − �

c pq

∣∣∣ +
∣∣∣∣
�

d pq − �

d pq

∣∣∣∣σ − ηp

)
pqμp

+
n∑

p�1

(ηp(t) −λ̄p)μp +
n∑

p�1

(rp(t) − ζp)
∣∣ep(t)

∣∣. (27)

�
n∑

p�1

⎡

⎣− ap
1 − hδ

+
n∑

q�1

(

bpq +
cpq

1 − hτ

+
d pq .σ

1 − hσ

)

lq − ζp

⎤

⎦
∣∣ep(t)

∣∣

+
n∑

p�1

n∑

q�1

(∣∣∣∣
�

b pq − �

bpq

∣∣∣∣ +
∣∣∣
�
c pq − �

c pq

∣∣∣ +
∣∣∣∣
�

d pq − �

d pq

∣∣∣∣σ
)
Pqμp −

n∑

p�1

λ̄pμp. (28)

Let us suppose

ζp � − ap
1 − hδ

+
n∑

q�1

(

bpq +
cpq

1 − hτ

+
d pq · σ
1 − hσ

)

lq ,

and

λ̄p �
n∑

q�1

(∣∣
∣∣
�

b pq − �

bpq

∣∣
∣∣ +
∣∣
∣
�
c pq − �

c pq

∣∣
∣ +
∣∣
∣∣
�

d pq − �

d pq

∣∣
∣∣σ
)
pq − 1.

Substituting the values of ζp and λp in Eq. (28) yields:

D+(V (t)
) ≤ −

n∑

p�1

μp ≤ −1.

The remaining proof of this theorem is the same as the
previous theorem.

Finite-time synchronization has more application in our
daily lives, but from our perspective, the adaptive control
technique is quite useful and easily applicable. In short, we
have a variety of synchronization techniques, and we can
choose them as per our requirements.

Note 3 It is observed that the control gain has been reduced
by the adaptive controller (26) as compared to controller (6).
Theorems 1 and 2 have been derived without using any pub-
lished theorems.

Note 4The settling time of the adaptive controller depends
on the system parameter initial values, the adaptive law
parameters, and the synchronization error. On the other hand,
the settling time cannot be clearly estimated since it is dif-
ficult to quantify the time interval of growing adaptive law
parameters from initial values to theoretical values.

6 Numerical results and discussion

This section authenticates the efficiency of the theoretic
results through the numerical simulation technique. The
numeric values of the parameters used in MNNs (1) and
(2) are as follows: a1 � 3.5, a2 � 5.1, δ1(t) � δ2(t) �
0.2 − 0.1 cos(t), τ1(t) � τ2(t) � 0.5 − 0.1 sin(t), δ � 0.2,
τ � σ � 0.5, σ1(t) � σ2(t) � 0.5 − 0.1 sin(t), γ � 0.5,
hδ � hτ �hσ � 0.1, J1 � exp(−t) + 0.7 cos(t), J2 �
0.5 exp(−t) − 0.3 sin(t), f p(xp) � tanh(xp), p � 1, 2.
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Fig. 1 The phase portrait of theMNNs for different initial conditions, a η(t) � (−0.8, 0.6)T ; b η(t) � (2.0, −1.1)T ; c η(t) � (0.6, 1)T ; d η(t) � (1,
2)T
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b11 (η1(t)) �
{

−1.3 sgn11 ḟ1(η1(t)) − η̇1(t) ≤ 0
−0.8 sgn11 ḟ1(η1(t)) − η̇1(t) > 0

b12 (η1(t)) �
{

1 sgn12 ḟ2(η2(t)) − η̇1(t) ≤ 0
0.6 sgn12 ḟ2(η2(t)) − η̇1(t) > 0

b21 (η2(t)) �
{
0.5 sgn21 ḟ1(η1(t)) − η̇2(t) ≤ 0
0.3 sgn21 ḟ1(η1(t)) − η̇2(t) > 0

b22 (η2(t)) �
{
0.5 sgn22 ḟ2(η2(t)) − η̇2(t) ≤ 0
0.3 sgn22 ḟ2(η2(t)) − η̇2(t) > 0

c11 (η1(t)) �
{

−3.6 sgn11 ḟ1(η1(t − τ1(t)) − η̇1(t − τ1(t)) ≤ 0
−2.2 sgn11 ḟ1(η1(t − τ1(t)) − η̇1(t − τ1(t)) > 0

c12 (η1(t)) �
{
0.3 sgn12 ḟ2(η2(t − τ2(t)) − η̇1(t − τ1(t)) ≤ 0
0.2 sgn12 ḟ2(η2(t − τ2(t)) − η̇1(t − τ1(t)) > 0

c21 (η2(t)) �
{
0.3 sgn12 ḟ2(η2(t − τ2(t)) − η̇1(t − τ2(t)) ≤ 0
0.2 sgn12 ḟ2(η2(t − τ2(t)) − η̇1(t − τ2(t)) > 0

c22 (η2(t)) �
{

−3.3 sgn22 ḟ2(η2(t − τ2(t)) − η̇2(t − τ2(t)) ≤ 0
−2.8 sgn22 ḟ2(η2(t − τ2(t)) − η̇2(t − τ2(t)) > 0

d11 (η1(t)) �
⎧
⎨

⎩

−0.4 sgn11
{
f1(η1(t)) − .

f1(η1(t − σ1(t)))
}

− η̇1(t) ≤ 0

−0.2 sgn11
{
f1(η1(t)) − .

f1(η1(t − σ1(t)))
}

− η̇1(t) > 0

d12 (η1(t)) �
⎧
⎨

⎩

0.4 sgn12
{
f2(η2(t)) − .

f2(η2(t − σ2(t)))
}

− η̇1(t) ≤ 0

0.3 sgn12
{
f2(η2(t)) − .

f2(η2(t − σ2(t)))
}

− η̇1(t) > 0

d21 (η2(t)) �
⎧
⎨

⎩

0.9 sgn21
{
f1(η1(t)) − .

f1(η1(t − σ1(t)))
}

− η̇2(t) ≤ 0

0.2 sgn21
{
f1(η1(t)) − .

f1(η1(t − σ1(t)))
}

− η̇2(t) > 0

d22 (η2(t)) �
⎧
⎨

⎩

−0.3 sgn22
{
f2(η2(t)) − .

f2(η2(t − σ2(t)))
}

− η̇2(t) ≤ 0

−0.5 sgn22
{
f2(η2(t)) − .

f2(η2(t − σ2(t)))
}

− η̇2(t) > 0

It can be noted that the assumptions (A1) - (A2) are satis-
fiedwith P1 � P2 � l1 � l2 � 1. The numerical simulations
have been carried out via the forward Euler’s method using
MATLAB.

The phase portrait ofMNNs for different initial conditions
is revealed in Fig. 1, which shows that the nature of the tra-
jectories are different for different initial conditions. Hence,
Fig. 1 validates the sensitive dependency of the MNNs on
initial conditions.

Example 1 Here, our goal is to authenticate the findings
of Theorem 1. Few mathematical calculations yields gain
r1 � 2.2, r2 � 4.15 and κ1 � 2.7 + ς , κ2 � 2.2 + ς for all
ς > 0 and MNNs (1) and (2) can be synchronized in finite-
time using controller (6) for initial conditions η(t) � (−0.8,
0.6)T and ξ (t) � (−2.0, 2.2)T , respectively. The graph-
ical presentation of drive and response systems has been
incorporated through (a) and (b) of Fig. 1. The trajectory of
synchronization error ‖ e(t) ‖1 subjected to the controller (6)
for different particular values of ς is shown in Fig. 2, which
validates the discussions of Note: 2, i.e., larger the value of
ς faster will be synchronization. Since the synchronization
between the drive and response MNNs has been obtained

Fig. 2 The phase portrait of synchronization error ‖ e(t) ‖1 subjected to
the controller (6) for ς � 1.0 (blue) and ς � 1.5 (red)

Fig. 3 The phase portrait of synchronization error ‖ e(t) ‖1 subjected to
the adaptive controller (26)

within estimated time, if we choose ς � 1.5, then the esti-
mated settling time is T � 2.8534. It can be observed from
Fig. 2 that the MNNs synchronized at time instant t � 2.21,
i.e., synchronization achieved prior to the estimated settling
time, which reveals the legitimacy of the theoretic outcomes.

Example 2 This example is concerned with the adaptive
control mechanism for the validation of Theorem 2. In order
to synchronize theMNNs via adaptive control technique, the
numeric values of parameters are taken as υ � (0.1, 0.15)T ,
δ � (0.12, 0.1)T along with the initial values of r (t) � (0.3,
0.3)T , κ(t) � (0.2, 0.2)T , and the remaining parameters are
the same as previous one. The trajectories of synchronization
error are depicted in Fig. 3.

The trajectories of the control gains rp(t) and κp(t) for
p � 1, 2 are illustrated in Fig. 4. Note that the obtained
control gains are reduced using the adaptive control tech-
nique and the synchronization time increased as compared
to Fig. 2. This verifies the earlier discussion incorporated in
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Fig. 4 The trajectories of control gains of the adaptive controller (26): a r1(t) and r2(t) b κ1(t) and κ2(t)

note 3. The graphical presentation of trajectories of reduced
control gain is shown in Fig. 4.

7 Conclusion

This article deals with the finite-time synchronization of
MNNs with mixed and leakage delays. Three important
goals have been achieved. Firstly, in order to achieve finite-
time synchronization, a state feedback controller has been
derived.Moreover, tominimize the control gains, an adaptive
controller has been constructed. Secondly, some sufficient
conditions are derived to assure the synchronization of
MNNs with the help of Filippov solution and Lyapunov
functional techniquewithout utilizing the finite-time stability
theorem. The third one is the explicit estimation of settling
time, which is dependent on the initial condition. Finally,
the effectiveness of the proposed approach is authenticated
by numerical simulation. Synchronization between MMNs
has been achieved prior to the estimated settling time. In our
future endeavors, we will study the impact of impulses on the
stability and synchronization of mixed and leakage-delayed
MNNs along with the settling time independent of initial
conditions.
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