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Abstract
This paper investigates a fuzzy control method based on the cuckoo optimization algorithm (COA) strategy to enhance
the lateral dynamics of the vehicle under uncertain vehicle model parameters. The direct yaw control system has a two-
layer control structure. A corrective yaw moment (Mz) is obtained in the upper layer by optimizing the fuzzy controller’s
input–output weights and membership functions based on COA. In the lower layer, the corrective yaw moment is converted
into braking torque, which is applied to the left or right rear wheels depending on the distribution algorithm. Simulations of
three scenarios under various road conditions were conducted to ensure the robustness of the proposed control strategy against
changes in road conditions. A nonlinear 8-DoF dynamic model for the vehicle with a Dugoff tire model is used for computer
simulations on MATLAB. Simulation results during a single lane change and J-turn maneuvers on a dry and rainy road
compared the performance of the suggested optimal fuzzy controller with the non-optimal fuzzy controller. The simulation
results showed that the proposed control system improved the stability and handling of the system’s tracking performance in
various maneuvers.

Keywords Vehicle lateral stability · Direct yaw control · Fuzzy control · Cuckoo optimization algorithm

1 Introduction

Nowadays, fears of environmental pollution and high fuel
prices are the interest of researchers in alternative energy
sources. These fears led to the development of hybrid elec-
tric vehicles (HEVs) with the benefits of electric traction
engines in terms of providing rapid acceleration and internal
combustion engines in terms of good work at fixed speeds.
This technology leads to a reduction in fuel consumption and
gas emissions from vehicle exhausts [1].

With the recent focus by many vehicle manufacturers on
hybrid vehicles, the stability and handling of these vehicles
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have become an exciting research area. When the tires reach
their physical limit of adhesion, the vehicle may move in a
different direction than intended when turning [2]. Although
the antilock braking system (ABS) can avoid wheel lock-
ing during braking and the traction control system (TCS)
can avoid steering wheel spin during acceleration, they can-
not actively control the directional movement of the vehicle.
Hence, the critical need to enhance the vehicle’s stability and
handling performance [3, 4]. Therefore, the primary moti-
vation of this paper lies in enhancing the lateral stability
of HEVs during cornering. The direct yaw control (DYC)
system is therefore built to track the intended vehicle yaw
rate, which limits the vehicle sideslip angle. The DYC sys-
tem produces corrective yaw moment by differential braking
between the left and right tires [5].

Utilizing this hydraulic braking technology has the sig-
nificant drawback of impairing longitudinal dynamics and
reducing longitudinal vehicle velocity. Since it is easy to con-
trol both the driving and braking torque of an electric motor,
this type of vehicle has two electric motors built into the rear
wheels. The two motors on each side of the vehicle produce
opposite forces, which creates the corrective yaw moment,
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which makes the vehicle stable by controlling the torque of
each motor separately [6, 7].

There is a great deal of literature covering vehicle yaw
stability control. Model predictive control [8], sliding mode
control [9], adaptive control [10], optimal control [11], robust
control [12]. The desired yaw moment was calculated using
all of them. Kang et al. [13] developed a driving control
algorithm for a four-wheel drive electric vehicle with two
independent controllers of braking and torque of the front
and rear drive motors to enhance vehicle handling. In [14],
Mashadi and Majidi devised a multilayer sliding mode con-
troller that integrates the active front steering (AFS) andDYC
systems to generate the final braking torque via two electric
motors in the rear wheels based on the corrective steering
angle and yawmoment. Feng et al. [15] proposed amultilayer
hierarchical approach for improving the stability of vehicles
during corners by employing four-wheel differential brak-
ing. The upper-level control tracks the desired vehiclemotion
based on the sliding mode control theory by calculating the
desired yaw moment and longitudinal forces. At the lower
layer, operator commands are distributed optimally. Kazemi
et al. [16, 17] used the yaw rate error and its derivative to
get the required yaw moment. Their research uses a neural
network to produce the standard yaw rate. Additionally, they
suggested a fuzzy control technique in which the slip ratio
error and its derivative serve as fuzzy slip controller inputs
to protect the tire from saturation.

The fuzzy control method is based on human expertise,
is simple to design and implement, and has outstanding
control performance due to its structure, low computational
complexity, and simplicity. Additionally, fuzzy logic control
(FLC) can benefit uncertain nonlinear systems [18]. There-
fore, fuzzy control is a powerful technology that can be
applied to various applications, such as the operation and
control of electric power systems [19], robotics [20, 21],
gyroscopes [22, 23], industrial process control [24, 25], and
image processing [26]. This type of control has recently
attracted the attention of researchers and designers in the
field of vehicle control, and several studies on fuzzy control
devices for vehicle stability control have been published in
the scientific literature related to vehicle systems. Boada et al.
[27] used a fuzzy control strategy to improve a vehicle’s lat-
eral stability in different road conditions. There are two levels
to the proposed control structure.A corrective yawmoment is
designed through the upper control layer, converted into brak-
ing torque, and distributed to the front wheels in the lower
control layer. Zhang et al. [28] applied an adaptive fuzzy-
PID control to obtain the corrective yaw moment. Although
the fuzzy-PID controller is self-tuned, its response to input
steering angle changes has not been robust, resulting in sig-
nificant yaw rate and sideslip angle oscillations. Li et al. [29]
used PID and fuzzy logic methods for the DYC system. All
control strategies were designed using the 2-DOF vehicle,

which is so far from the actual vehicle model that the ref-
erence steering angle tracking was inaccurate. Furthermore,
only the J-turn maneuver with a constant tire-road friction
coefficient has been considered in this research to evaluate
the proposed control strategy. Haiying et al. [30] applied the
fuzzy logic algorithm for the DYC system to improve vehicle
stability in a straight line under the crosswind. The DYC sys-
tem developed in this article can reduce yaw rate amplitude
and enhance the vehicle’s straight-line stability. However,
the driver’s velocity control is the key to enhancing the vehi-
cle’s safety in crosswinds. Bayar et al. [31] used the fuzzy
controller in order to generate the yaw moment to improve
lateral vehicle stability for hybrid electric vehicles that use
axle electric motors.

Recently, advanced types of fuzzy controllers have been
used in vehicle stability due to the development of fuzzy
controllers. In [32], using non-stationary fuzzy sets,Moham-
madzadeh and Taghavifar presented a novel non-singleton
fuzzy system designed to enhance the estimation perfor-
mance of conventional fuzzy systems and reduce the compu-
tational expense of type 2 fuzzy systems. Under a wide range
of operating conditions and external disturbances, the pro-
posed control strategy has been demonstrated to be effective
for autonomous vehicles to follow paths, despite the inability
to restrict control signals. A fuzzy control method for lateral
dynamic stabilization of autonomous electric vehicle systems
based on adaptive event-triggered dynamic output feedback
interval type-2 (IT-2 T-S) is presented in [33], which takes
into account nonlinear tire dynamics and changes in longi-
tudinal velocity over time. Tian et al. [34] developed a novel
type 3 fuzzy controller that is not based on the mathematical
model of autonomous road vehicles (ARV) but is optimized
online by adaptation rules. Type 3 FLSs with online adap-
tation rules have been proposed to handle uncertainties and
estimation errors estimated by the suggested adaptation laws.
Adaptive supervisors compensate for these uncertainties.
The results show that the ARV tracks the desired trajec-
tory with an acceptable lateral displacement and that the
proposed controller resists changing longitudinal velocity.
Taghieh et al. [35] proposed robust control laws based on a
type 3 fuzzy logic system (IT3FLS) to analyze the path track-
ing control (PFC) problem of an underactive surface vehicle
(USV). Predictive compensations were used to address the
main limitations of the single fuzzy controller regarding the
approximation ability of the uncertainties and external per-
turbations of the complex nonlinearUSV. The results showed
the proposed control strategy’s effectiveness in solving the
PFC problem and improving USV trajectory tracking perfor-
mance in the presence of more complex unknown dynamic
models and external perturbations.

On the other hand, despite the FLC structure’s simplicity,
human experiments cannot synthesize the optimal FLC. Due
to their exceptional ability to address optimization problems
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in various applications, heuristic-inspired algorithms have
garnered significant attention over the past several decades.
Many fuzzy controller optimization methods have been
applied in the literature, such as particle swarm optimization
(PSO) [36], genetic algorithm (GA) [37], bat algorithm [38],
ant algorithm [39], and cuckoo search (CS) [40]. However,
recent studies have shown that (COA) is potentially more
efficient than other algorithms in solving fuzzy controller
parameter optimization problems [41].

Following a review of the literature on FLC param-
eter optimization using the COA algorithm, some work
will be described briefly. Einan et al. [42] proposed a
novel intelligent method for active power controllers in iso-
lated networks using a combination of fuzzy controller and
cuckoo optimization algorithm (COA) techniques to over-
come the phenomenon of drooping under varying weather
conditions. The optimized coefficients in this paper include
fuzzy controller input–output gains. However, optimizing
the fuzzy controller’s membership functions was not consid-
ered. Gabriel et al. [43] presented an optimization procedure
based on the CS algorithm for optimizing the FLC’s mem-
bership function and the rule base for a nonlinear magnetic
levitation system. However, this paper did not notice opti-
mizing the fuzzy controller input–output gains. In [44], a
multi-robot 3D mooring force (MFFC) (pulse, sway, and
yaw) system was developed to dampen the motion of the
moored ship. The COA optimizes the MFFC output fac-
tor to reduce the driving force difference between different
robot actuators caused by the line distribution of mooring
robots along the quay. However, optimizing the fuzzy con-
troller’s membership functions was not considered. In [45],
presented a comparative performance analysis of three pop-
ular metaheuristic algorithms; particle swarm optimization
(PSO), BAT algorithm, and cuckoo search (CS), which are
applied to control a quadrotor system’s attitude by optimizing
the distribution of the singleton output membership func-
tions. However, this paper did not consider the optimization
of input Membership Functions and Input and output gains
of the controller.

Based on a review of the presented literature, which
showed different applications of vehicle stability control, no
studies were found on cuckoo-based optimal fuzzy control
of hybrid electric vehicle stability to reduce the effect of
parameter changes. This paper aims to use the new method-
ology for FLC parameter optimization using COA, including
the membership functions and the input–output gains of the
fuzzy controller, to tackle the problem of unknown changes
in lateral vehicle dynamics during single lane-change and
J-turn maneuvers at high speeds.

The proposed control system consists of a two-layer struc-
ture. The corrective yaw moment is obtained in the upper
layer by cuckoo-based optimal fuzzy control to track the
desired vehicle’s yaw rate and sideslip angle andmaintain the

sideslip angle at a smaller value than required. In the lower
layer, the yaw moment is directly turned into the braking
torque of the two electric motors built into the rear wheels. A
distribution algorithm applies the braking torque to the rear
wheels to produce the yaw moment required for stability.
Additionally, the controller was tested in several situations
where the vehicle’s mass, the moment of inertia, the tire stiff-
ness, and the road-tire friction coefficient were altered as
uncertainties to produce robust control over the changes in
these parameters.

The main contribution of this study is outlined in the fol-
lowing points:

• Various studies applying the cuckoo algorithm to optimize
fuzzy control parameters have been shown. However, no
studies have been found to optimize both fuzzy controller
membership functions and their input–output gains to gen-
erate the yaw moment control for the lateral stability of
hybrid electric vehicles.

• Tire forces do not occur instantly due to a specific slip ratio
but take time to build up when a force is applied to a tire.
At high speeds and critical maneuvers, such as avoiding
obstacles or hard braking, delays in transmitting forces to
the tires can result in vehicle control loss. For simplicity,
most control research ignores this delay. While this paper
uses a typical dynamical model to express this delay by
applying a first-order delay to the lateral forces.

• Most previous studies considered parametric uncertainties
in vehicle parameters such as total mass, moment of iner-
tia, and tire stiffness. Whereas in this research, the road
tire friction coefficient and those parameterswere included
in the vehicle model as uncertainties to evaluate the per-
formance of the COA in improving vehicle stability in
uncertainties.

Finally, the rest of the paper is organized as follows: Sect. 2
presents the vehicle dynamics model to support the devel-
opment of this research. Section 3 presents the hierarchical
control structure. The simulation results and discussion are
discussed in Sect. 4. Finally, the conclusion is presented in
Sect. 5.

2 Vehicle dynamics model

This section uses two vehicle models: a nonlinear 8-DOF
vehicle to design the optimal fuzzy controller and for results
simulation and a 2-DOF model to generate the desired yaw
rate and sideslip angle.
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Fig. 1 8-DoF vehicle dynamics
model [48]

2.1 8-DOF vehicle model

Figure 1 depicts the general architecture of a nonlinear
8-DOF vehicle model with two additional electric motors
implanted in free-rolling rearwheels. The longitudinal veloc-
ity u, the lateral velocity v, the yaw rate r , and the roll rate
∅̇, according to Fig. 1, can be described as follows [27, 46].

mu̇ � mvr + Fx1 + Fx2 + Fx3 + Fx4 − Faero (1)

mv̇ � −mur − mshs∅̈ + Fy1 + Fy2 + Fy3 + Fy4 (2)

Izzṙ � Ixzs ∅̈ + lf
(
Fy1 + Fy2

) − lr
(
Fy3 + Fy4

)
+ Mz (3)

(4)

Ixxs ∅̈ � −mshsv̇+ Ixzs ṙ−mshsur+msghs sin ∅−K∅∅−C∅∅̇

Mz is the direct yaw moment and can be defined as

Mz � T

2
[(Fx1 + Fx3) − (Fx2 + Fx4)] (5)

The rotational speed of each wheel (ω1, ω2, ω3, ω4) can
be modeled from Fig. 2.

Iwω̇i � −RwFti + Tbi with i � 1, . . . , 4. (6)

Fxi and Fyi are the longitudinal and lateral forces of tires in
the vehiclefixed, respectively. Faero Indicate the aerodynamic
drag forces are by [46, 47]:

Faero � 0.5ρaCdAfu
2 (7)

Table 1 lists the parameters used in the simulation and
equations for vehicle dynamics.

Also,∅ is the roll angle of the vehicle, Tbi are Four-wheel
braking torque.

Fig. 2 Diagram of wheel-free

Tire forces are transferred from a fixed coordinate sys-
tem of the tires to a fixed coordinate system of the vehicle
according to the following equations:

Fxi � Fti cos δi − Fsi sin δi with i � 1, . . . , 4 (8)

Fyi � Fti sin δi + Fsi cos δi with i � 1, . . . , 4 (9)

where δ is the vehicle’s steering angle, and Ft and Fs are the
traction forces and the lateral forces of the tire in the wheel
fixed coordinate system, respectively.

We have made the following assumptions in this paper:

• For simplicity, the moment of inertia for roll and yaw is
ignored.

• The rear steering angles are considered to be zero.
• The front and rear steering angles are impacted by the
rolling motion of the vehicle body owing to suspension
kinematics [47].

δ1 � δ2 � δsw + Krsf .∅ (10)
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Table 1 Vehicle and electric motor parameters [14, 27, 46]

Parameter Description Amount

m Total mass of the vehicle (kg) 1298.90

ms Sprung mass of the vehicle (kg) 1167.50

lf Distances from the vehicle’s CG to the
front axles (m)

1

lr Distances from the vehicle’s CG to the
rear axles (m)

1.4540

T Width of the track (m) 1.4360

h Height of the vehicle center of gravity
(m)

0.533

hc Distance from the sprung mass center of
(CG) to the roll axis (m)

0.4572

Izz Yaw moment of inertia (kg m2) 1627

Ixxs Roll moment of inertia (kg m2) 498.90

Ixzs Moment of inertia with concerning and
yaw axes (kg m2)

0

Rw Wheel radius (m) 0.35

Iw Wheel moment of inertia (kg m2) 2.1

Cα Cornering tire stiffness (N/rad) 30,000

Cλ Longitudinal tire stiffness (N/unit slip) 50,000

KRSF Front roll stiffness to the total stiffness
ratio (rad/rad)

0.552

Krsf Roll steer coefficient at the front
(rad/rad)

− 0.2

Krsr Roll steer coefficient at the rear (rad/rad) 0.2

K∅ Roll stiffness coefficient (Nm/rad) 66,185.8

C∅ Roll stiffness damping (Nm/rad/sec) 3511.6

εr Factor of road adhesion (s/m) 0.015

g Gravitational acceleration (m/s2) 9.81

Cd Drag coefficient 0.3

ρa Air density (Kg/m3) 1.206

Af Frontal area (m2) 2.51

RLy The tire relaxation length (m) 0.35

μ Tire-road friction coefficient [0.9,0.5]

Im Rotating inertia of the electric motor (kg
m2)

0.011

Bm Damping coefficient of the electric
motor (Nm s/rad)

0.0012

n The reduction gear ratio 3

δ3 � δ4 � Krsr.∅ (11)

where δsw is the steering angle of the handwheel.

2.2 Tire model

Different tire models, like the Dugoff, Magic Formula, and
Brush models, can be used to explain how tires behave. As
tires’ longitudinal and lateral forces are directly related to the

road factor [5, 49], the Dugoff model was chosen to simulate
the nonlinear tire system.

The following equations give the lateral and longitudinal
tires generated by the Dugoff model:

Fsi � Cαtan(αi )

1 − λi
f (si )i � 1, . . . , 4

Fti � Cλλi

1 − λi
f (si )i � 1, . . . , 4 (12)

Where

f (si ) �
{
si (2 − si ), si < 1
1, si ≥ 1

i � 1, . . . , 4 (13)

And

si �
μFzi

(
1 − εru

√
λ2i + tan2(αi )

)

2
√
C2

λλ2
i + C2

αtan
2(αi )

(1 − λi )i � 1, . . . , 4

(14)

λi and αi are the longitudinal slip ratio and slip angle of
the tire road, respectively, given by the following relations
[14, 50]:

λi �
{

−1 + Rwωi
vxwi

, Rwωi < vxwi

1 − vxwi
Rwωi

, Rwωi ≥ vxwi
with i � 1, . . . , 4

(15)

(16)

αi � δi − tan−1
((

v + dir )/(u − 0.5(−1)i T r
))

i

� 1, . . . , 4di �
{
lf i � 1, 2
lri � 3, 4

The following equations give the longitudinal velocity of
the wheels’ center vxwi :

(17)

vxwi �
(
u − 0.5 (−1)i T r

)
cos δi + (v + dir ) sin δi i

� 1, . . . , 4

Fz is the normal load of each tire given by the following
equations:

(18)

Fzi � mglr
2L

− maxh

2L
− (−1)i Krsf

(
mayh

T
− msghs

T
sin∅

)
i

� 1, 2

Fzi � mgl f
2L

+
maxh

2L

− (−1)i (1 − Krsf )

(
mayh

T
− msghs

T
sin∅

)
i � 3, 4

(19)
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Additionally, ay represents the vehicle’s lateral accelera-
tion, while l represents the vehicle’s longitudinal wheelbase.

Tire force lag also plays a significant role in the lateral
vehicle dynamics during high-acceleration maneuvers, so it
was also applied as a first-order delay [14, 51].

τ Ḟrms + Fs � Fsss (20)

The lateral tire force Frmsss in the steady state during the
time constant τ is given as

τ � RLy/u (21)

Motors embedded in the rear wheels produce the cor-
rective yaw moment by controlling their braking or driving
forces. Considering the reduction gear ratio n between the
wheel and rotor of the electric motor embedded in the rear
wheels, the rotating dynamic of the rear wheels and the rotor
is derived as follows [14, 52]:

Ieqω̇i � nTe − Beqωi − TLi with i � 3, 4 (22)

In this equation, amotor’s electromagnetic torque is called
Te. Ieq is an equivalent moment of inertia, Beq is the equiva-
lent damping factor, and TL is the equivalent load torque of
wheel and rotor, which can be found in the following formu-
las:

Ieq � Iw + n2 Im (23)

Beq � n2Bm (24)

TLi � RwFti (25)

Im and Bm are the rotating inertia of the motor and the
damping coefficient, respectively.

2.3 Referencemodel

The 2-DoF vehicle model is used in this paper to calculate
yaw rate and sideslip angle references. Figure 3 shows a 2-
DOF vehicle model that includes lateral and yaw motions
where small letters ( f , r ) indicate the positions of the front
and rear wheels. The proposed hierarchical controller will
track the desired yaw rate. Furthermore, the desired sideslip
angle will be nearly zero.

The following formulas can be used to determine the vehi-
cle’s desired yaw rate and sideslip angle [5, 50]:

rss � u

l + KUSu2
δf (26)

βss � 1

l + KUSu2

(
lr − lf

l

m

2Cαr
u2

)
δf (27)

Fig. 3 Framework of linear 2-DOF vehicle model

KUS is called the vehicle’s understeer coefficient given by
Eq. (28):

KUS � m
(
bCαr − aCα f

)

2lCα f Cαr
(28)

Along with the tire force, it is essential to know that the
desired yaw rate and lateral slip angle cannot be reached
if the tire force exceeds the tire’s physical adhesion limit.
Equations (29) and (30) give the upper limits for the rate of
yaw and the lateral slip angle.

rd � 0.85
μg

u
(29)

βd � arctan(0.02 μg) (30)

The optimal fuzzy controller is designed to maintain a
sideslip angle equal to or less than the desired value while
tracking the desired yaw rate.

3 Proposed controller design

The proposed control system comprises two layers, an upper
layer, and a lower layer. Based on the desired yaw rate (rd)
and sideslip (βd) obtained from the 2-DoF vehicle model,
the appropriate yawmoment (Mz) in the upper layer is deter-
mined based on the optimal fuzzy controller. The lower layer
applies the vehicle’s braking force distribution algorithm
based on the upper layer’s control input. Figure 4 shows the
hierarchical control system proposed.

3.1 High-layer controller design

In this section, due to the nonlinearity of the vehicle, fuzzy
control technology was used to ensure the vehicle’s stability
by tracking the yaw rate and maintaining the slip angle in the
stability area. The cuckoo-based fuzzy controller produces
the external yaw moment as a control input according to the
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Steering 
Wheel Angle

Reference 
Model (2-DOF)

Non-Linear 
Observer

Vehicle Model 
(8-DOF)

Fuzzy Controller

Cuckoo Op�miza�on 
Algorithm

Braking Force 
Distribu�on

Upper-Layer Lower-Layer

Fig. 4 Proposed vehicle control method structure

difference between the reference and the measured yaw rate,
the reference sideslip angle, and the observed sideslip angle.

The yaw rate and sideslip angle are signals sent to the con-
trol system. The gyroscope measures the yaw rate directly,
unlike the sideslip angle, whichmust bemeasured usingGPS
or optical sensors, which is too expensive for typical vehi-
cles. Since the lateral slip angle cannot be measured directly,
it is estimated by a nonlinear observer [53].

3.1.1 Fuzzy controller

The fuzzy logic controller aims to increase lateral stability
by tracking the desired yaw rate and decreasing the sideslip
angle. Therefore, two error variables are applied to the upper-
layer controller to generate the corrective yaw moment as an
output of this level.

The Mamdani fuzzy controller generally consists of four
major components, fuzzification, rule base, inference engine,
and defuzzification [54], as shown in Fig. 5:

Inputs and outputs:
For the DYC controller, the first input of FLC is yaw rate

error (er � r − rd), which represents the error between the
desired and actual yaw rate. The second input of the FLC
is the sideslip angle error (eβ � β − βd), which represents
the error between the desired and actual sideslip angle. The
corrective yawmomentMz is defined as the controller output.

Fuzzification:
The fuzzification interface interprets and compares inputs

with rule bases based on their modification. Input and output
values are converted intomembership variables and linguistic
variables. There arefivemembership functions for eachof the
two input variables, including NB (negative big), NS (nega-
tive small), ZE (zero), PS (positive small), and PB (positive
big). There are seven membership functions for the output

variables, including NB (negative large), NM (negative mid-
dle), NS (negative small), ZE (zero), PS (positive small), PM
(positive middle), and PB (positive large). Figure 2 shows
fuzzy membership functions.

Inference engine:
The inference engine determines what input should be

provided to the plant based on which control rules are appro-
priate at the time. The rule bases in Table 2 are introduced
based on expert knowledge and extensive simulations.

The fuzzy rule base is composed of the following fuzzy
IF-THEN rules [55]:

IF er is (A) and eβ is (B) THEN Mz is (C)
Where (A,B) are fuzzy sets in the input domains, andC is

the output domain’s fuzzy set (Fig. 6).
Defuzzification:
The defuzzification interfaces convert conclusions

reached by the inference engine into inputs for the plant. In
this paper, the center-of-area method was used for defuzzifi-
cation.

3.1.2 Optimization

Fuzzy controller design generally depends on user informa-
tion related to system performance understudies, such as the
type and number ofmembership functions, fuzzy rules, or the
number and type of inputs. It often takes a long time to deter-
mine the fuzzy control parameters and evaluate their quality,
requiring many experiments. One of the most effective ways
to find the most convenient control parameters, including
membership function parameters, rules parameters, etc., is
to use optimization algorithms.

Remark An evolution-based algorithm can sometimes move
in the direction of instability if used in an online control sys-
tem. Supposing the algorithm is designed within the range
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Fig. 5 Fuzzy logic controller
structure

Rule base

Inference 
engineFuzzification Defuzzification

Yaw rate error
(er)

Side slip angle  
error
(eβ )

Corrective Yaw 
Moment

(Mz)

Table 2 Fuzzy rules
Output: MZ INPUT (1): er

NB NS ZE PS PB

INPUT (2): eβ

NB PB PB NS NB NB

NS PB PM NS NM NB

ZE PM PS ZE NS NM

PS PB PM PS NM NB

PB PB PS PS NS NB

of controller parameters (input–output gain values and mem-
bership functions). In that case, the algorithmwill not lead to
instability in the system.Thus, the algorithmcanfind the opti-
mal answer within the range of controller parameter changes.

A fuzzy control approach based on an improved opti-
mization algorithm, namely COA, is applied in this paper
to achieve the maximum improvement in lateral vehicle sta-
bility at the upper level of the proposed control strategy.

How the Cuckoo Optimization Algorithm works.
COA is a novel evolutionary optimization algorithm based

on cuckoo lifestyles. These birds have a special lifestyle in
terms of egg-laying and breeding. As a result, the Cuckoo
Optimization Algorithm aims to utilize these special char-
acteristics for solving optimization problems. COA begins
its calculations with initial birds and their eggs. Each initial
cuckoo aims to survive in society, and this is themain point of
inspiration for COA. According to some predefined factors,
each environment has a profit value. Each cuckoo has tomove
toward a better environment to live and let its eggs breed. In
this process, some cuckoos or eggs will be destroyed, and
at each step, the number of cuckoos in the total population
decreases. This procedure continues until there is only one
society where all cuckoos live [56].

Figure 7 shows the COA flowchart. This algorithm starts
with an initial cuckoo population. This population lays eggs
in the hosts’ nests. The eggs that are similar to the hosts may
survive and grow. Others get detected by the host and killed.
Depending on how many cuckoos stay in an area, it may be
possible to determine whether that area is suitable for cuckoo
conservation. Currently, COA is optimizing the position of

the nest to ensure that more eggs survive and can find the
appropriate habitat.

This algorithmmaximizes profit by determining the num-
ber of eggs each cuckoo can lay, variable limits (Varmin

andVarmax), and an “Egg Laying Radius” (ELR) for each
of them as follows:

(31)

ELR � r × Number of current cuckoo′seggs
Total Equation Number of eggs

× (Varmax − Varmin)

The maximum ELR can be changed by adjusting the inte-
ger parameter g.

For grouping the cuckoos, the optimization process uses
K-means clustering. In this case, the cuckoos will move as
much as possible toward the best habitat by calculating the
mean profit value and identifying the best habitat with max-
imum profit. Cuckoos do not fly to their destination habitat
when moving toward a goal point. They only fly part of the
way a percentage of the distance (ζ%) with deviationθ , as
shown in Fig. 8. The parameters ζ and θ are defined as fol-
lows for each cuckoo:

ζ ∼ U (0, 1) (32)

θ ∼ U (−�, �) (33)

where ζ ∼ U (0, 1) means a random number between 0 and
1, and � is a parameter constraining deviations from goal
habitats. For convergence, � of π/6(rad) is sufficient.
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Fig. 6 The membership functions
of the fuzzy controller for: a first
input (eβ ), b second input (er),
c output (MZ )
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3.1.3 Cuckoo-based optimal fuzzy DYC Controller

Themain objective of this section is to reduce the vehicle path
error, which includes minimizing the error in tracking both
the yaw and sideslip angle between the actual and desired
values. So, the objective function to evaluate the optimality
of the decision variables in the process of COA is considered
as the following:

Objective Function � 0.5
∫ ∞

0
er(t)

2dt + 0.5
∫ ∞

0
eβ(t)2dt

(34)

The control systemhas a fuzzy controller at the upper layer
that must be optimized to improve lateral vehicle stability.
The optimization operation includes the following:

(1) The membership functions of the fuzzy controller. These
membership functions are defined as triangular mem-
bership functions, which are characterized by a triangu-
lar shape with a peak at the center and linear slopes on
either side. The left and right values determine the trian-
gle’s width, while the peak value determines its height.
Optimizing the membership function involves automat-
ically finding the optimal values of its parameters to
achieve the desired output behavior.

(2) The controller’s input–output gains: Input–output scal-
ing gains can significantly affect fuzzy system perfor-
mance regarding response speed and stability as follows:

• Increased input scaling gains may narrow the mem-
bership function; the system may become unstable
and oscillate around the desired output value. In con-
trast, if the input scaling gains are decreased, the
membership functionmaywiden; the systemmay not
be able to respond rapidly to changes in the input or
may not converge to the desired output value.

• Increased output scaling gains will result in more sig-
nificant crisp output values produced by the system
for the same fuzzy output values, which could cause
the system to become unstable and oscillate around
the desired output value. On the other hand, if the
output scaling gains are decreased, the crisp output
values produced by the system will be smaller for
the same fuzzy output values; the system may be too
slow to respond to changes in the input or may not
converge to the desired output value at all.

During the initialization phase, the CS algorithm ini-
tializes a random sample of search space solutions. The
solution’s dimension and the population’s extent must be
specified.

The dimension of the solution NVar is determined by the
overall number of optimization parameters. The FLCdevised
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Fig. 7 Flowchart of cuckoo optimization algorithm [56]
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Fig. 9 Upper-level control diagram

in Sect. 3.1.1 relates these parameters tomapping theMF and
the input–output gains. Here, inputs (yaw rate and sideslip
angle errors) consist of five fuzzy sets, whereas the output
(control signal) consists of nine. Due to the symmetry of
the membership functions depicted in Figs. 9 and 10, the
proposed optimization algorithm should be used to determine
the optimal values of 24 decision variables, including three
input and output gain decision variables, for optimal fuzzy
control. The length of the population is fixed as a value of
NPop=30. The initial random population is expressed as a
NPop×NVar matrix in which each row represents a candidate
dimension solution.

After completing the creation of the matrix, the process of
randomly generating new membership functions and values
for the input and output gains begins, where 3 to 5 solutions
are generated, and these values are used as max and min
limits to devote the solution to each iteration (100 iterations
in this research).

In an optimization algorithm with an upper bound of
Varmax and a lower bound of Varmin for the variables [0.1,
0.9], the solutions are generated within the ELR (Eq. 31),
which is proportional to the solution generation radius factor
of ELR (r � 5).

When the set of generated solutions is placed in the new
environment, it cannot recognize which set it should belong
to. To solve this problem, cuckoos are grouped with theK-
means clustering method (k � 5 seems sufficient). After the
solution groups are formed, the average error value of the
objective function (Eq. 34) is calculated. Theminimumvalue
of (Eq. 34) then determines the target group, so the best habi-
tat for that group is the new home of the migratory cuckoo.
In this research, the movement parameters of each cuckoo
toward the target point were experimentally determined as:
ζ � 5 and θ � π/6 (rad).

123



1140 E. Muhammad et al.

Fig. 10 a Membership functions for two inputs, b membership func-
tions for the output

Table 3 COA parameters

Description Value

Number of optimization variables 24

Variables at the lower bound 0.1

Variables at the upper bound 0.99

Number of cuckoos 30

Number of eggs needed minimum 3

Number of eggs needed maximum 5

clusters number 5

Maximum number of cuckoos 45

Radius coefficient 5

Motion coefficient 5

Maximum iteration 100

4 Simulation results and discussion

A simulation of the 8-DoF vehicle model and the pro-
posed control system is conducted usingMATLAB/Simulink
software. This simulation evaluates the effectiveness of the
control strategy proposed in this paper for improving the
stability and performance of the vehicle based on DYC. Sev-
eral parameters are associated with the vehicle model for
the controlling system, including COA, which are listed in
Tables 1 and 3.Therefore, there are two different maneuvers
(Single lane-change and J-turn), as shown in Fig. 11. The
vehicle parameter uncertainties can be considered as + 10%
in the vehicle mass, + 15% in the moment of inertia, and −
15% in the tire stiffness. Simulation results include yaw rate,
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Fig. 11 Wheel steering angle, a change-line maneuver, b J-turn maneu-
ver
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Fig. 12 Response of the vehicle to single lane-change maneuver on dry
road (μ � 0.9) a yaw rate (rad/s) b sideslip angle(deg)

sideslip angle, braking torque, and corrective yaw moment.
This paper considers the ratio between the angles turned by
the steering wheel and the road wheel to be 20.

4.1 Dry road single lane-changemaneuver

In thismaneuver, the vehicle runs on a dry road at 30m/swith
μ � 0.9. The robustness and effectiveness of the proposed
controller with input steering angle change for this maneuver
are verified by comparing the performance of the optimized
fuzzy controller with the fuzzy controller presented in [27].

Figure 12 shows the yaw rate and slip angle effects on
the vehicle’s response. In an uncontrolled vehicle, the yaw
rate and sideslip angles are greater than the desired values,
resulting in instability. The performances of the optimal and
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Fig. 13 An evaluation of the
corrective yaw moment and
braking torques on a dry road
(μ � 0.9)by considering single
lane-change maneuver
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Fig. 14 An evaluation of the corrective yawmomentMz for optimal and
non-optimal fuzzy controllers on a dry road (μ � 0.9) by considering
single lane-change maneuver

non-optimal controllers are almost the same. Still, the opti-
mal controller provides better yaw tracking with the slip
angle remaining less than the desired value. Figure 13a, b
also depicts the corrective yaw moment the optimal fuzzy
controller produces and transforms into the required braking
torque to achieve vehicle stability.
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Fig. 15 Comparison of braking torques for the single lane-change
maneuver on the dry road (μ � 0.9): a left braking torque (N m),
b right braking torque (N m)

According to Fig. 14, an optimal fuzzy controller can
produce good tracking performance by spending less cor-
rective yaw moment Mz than a non-optimal fuzzy controller.
Figure 15a, b shows the braking torques of the two control
strategies (for the left and right rear wheels according to this
paper and for the left and right front wheels applied in [27]),
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Fig. 16 Response of the vehicle to J-turn maneuver on rainy road (μ �
0.5) a yaw rate (rad/s) b sideslip angle (deg)

where it appears that the braking torque produced by the
optimal controller is less than the braking torque produced
by the non-optimal controller but with a longer application
time during tracing.

4.2 J-turnmaneuver on rainy road

The vital point in this scenario is that as the coefficient of fric-
tion between the tires and the road decreases, the possibility
of vehicle instability increases. Thus, the effectiveness of the
control system becomes evident. Therefore, the robustness
and effectiveness of the proposed controller with input steer-
ing angle changes are validated by testing the vehicle on a
rainy road with μ � 0.5 at a longitudinal velocity of 20 m/s.

Figure 16a, b shows the yaw rate and slip angle tracking
performance for two cases: the uncontrolled vehicle and the
vehicle controlled with a fuzzy control strategy and a non-
optimal fuzzy control strategy. Figure 16a displays the failure
of the non-optimal fuzzy control system to track the refer-
ence yaw rate by exceeding the sliding angle value by the
desired value, as shown in Fig. 16b. Thus, the vehicle devi-
ates from the required path. While the optimal fuzzy control
strategy offers the ability to track the reference yaw rate and
keep the slip angle smaller than the desired value despite
the increase in overshoot before reaching stability. Thus, the
optimal fuzzy control system improves vehicle stability and
is robust under different road conditions compared to the
non-optimum fuzzy control system. Figure 17a, b shows the
left and right brake torques generated by the corrective yaw

Fig. 17 An evaluation of braking
torques and the corrective yaw
moment Mz (N m) using the
optimal fuzzy controller
for(μ � 0.5): a Rear-left braking
torque (N m), b Rear-right
braking torque (N m)
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Fig. 18 Response of the vehicle to single lane-change maneuver on a
split-μ road (a) yaw rate (rad/s) (b) sideslip angle(deg)

moment Mz using the proposed optimal fuzzy control strat-
egy.

4.3 Single lane-changemaneuver on split-� road

This scenario involves the vehicle moving on a split-μ road
at a longitudinal speed of 20 m/s with a friction coefficient

of 0.8 on the left side and 0.5 on the right side during the test
period.

Figure 18a, b shows the effect of the yaw rate and slip
angle on the vehicle’s response when moving on a split-μ
road in two cases: the uncontrolled vehicle and the vehi-
cle controlled by the optimal fuzzy control strategy. With an
uncontrolled vehicle, we find an unexpected deviation in the
yaw rate and a significant increase in the slip angle due to
changes in the tire-road friction coefficient μ. In contrast,
the optimal fuzzy controller can produce good tracking per-
formance for the reference yaw rate and keep the slip angle
smaller than the desired value despite the presence of some
overshoot by generating a corrective yawmomentMz , which
is transformed into the braking torque of the left and right
rear wheels, as shown in Fig. 19a, b.

5 Conclusion

This paper presents an optimized fuzzy controller by COA
applied to HEVs to improve vehicle stability during criti-
cal driving. The proposed control structure consists of two
layers. The main objective of the upper layer is to generate
an accurate external yaw moment based on the optimization
of the membership functions and the input–output weights

Fig. 19 An evaluation of braking
torques and the corrective yaw
moment Mz (N m) using the
optimal fuzzy controller for a
split-μ road: a Rear-left braking
torque (N m), b Rear-right
braking torque (N m)
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of the fuzzy controller to tackle the problem of unknown
changes in lateral vehicle dynamics during single lane-
change and J-turn maneuvers at high speeds. The lower layer
applies the braking torques to the left or right rear wheels
depending on the corrective yaw moment obtained from the
upper layer.

The proposed method’s efficacy was evaluated with com-
puter simulations onMATLABby simulating three scenarios
in various road conditions using a nonlinear 8-DOF vehicle
model with parameter uncertainties to ensure the robustness
of the proposed control strategy against changes in road
conditions. The simulation results compared the suggested
optimized fuzzy controller’s efficiency to a fuzzy controller’s
in [27] for dry road single lane-change and rainy road J-turn
maneuvers. The results showed that the proposed control sys-
tem tracked the desired yaw rate and kept the sideslip angle
equal to or smaller than the desired value with fewer control
efforts. The most important disadvantages of the proposed
algorithm are computational complexity, premature conver-
gence, and stagnation, which can be considered in future
studies.
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