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Abstract
This paper investigates bifurcations analysis and resonances in a discrete-time prey-predator model analytically and numeri-
cally as well. The local stability conditions of all the fixed points in the system are determined. Here, codim-1 and codim-2
bifurcation including multiple and generic bifurcations in the discrete model are explored. The model undergoes fold bifur-
cation, flip bifurcation, Neimark–Sacker bifurcation and resonances 1:2, 1:3, 1:4 at different fixed points. Using the critical
normal form theorem and bifurcation theory, normal form coefficients are calculated for each bifurcation. The different bifur-
cation curves of fixed points are drawn which validate the analytical findings. The numerical simulation gives a wide range of
periodic cycles including codim-1 bifurcation and resonance curves in the system. The results in this manuscript reveal that
the dynamics of the discrete-time model in both single-parameter and two-parameter spaces are inherently rich and complex.
The resonance bifurcation in the discrete-time map indicates that both species coincide till order 4 in stable periodic cycles
near some critical parametric values.

Keywords Fold bifurcation · Flip bifurcation · Neimark–Sacker bifurcation · Resonance bifurcation · Bifurcation curve

1 Introduction

In ecology, the interaction between distinct species causes
conflict, cooperation and consumption. The prey-predator
system is themost fundamental linkage among them. Almost
a century ago, the predator and prey populations had many
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variations based on their experimental evidence. As well as
describing nonlinear ecosystem interactions such as compe-
tition, scavenging, and mutualism, the Lotka–Volterra model
provides a general framework for other kinds of nonlin-
ear interactions. The study of the dynamical behaviors of
prey-predator models has drawn the attention of many math-
ematical ecologists [1–6].

The investigation of the prey-predator model in both
cases discrete and continuous-time is a matter of interest
[7–12]. For discrete-time model, the population includes
non-overlapping generation i.e. population density is very
low. These kinds of models are explained well by differ-
ence equation [13–16]. The discrete system can produce
more realistic dynamics than the corresponding continuous
counterparts [17–20]. Therefore many authors investigated
discrete-time models and determined the interesting dynam-
ical behavior including a wide range of bifurcation [21–25].

Maynard Smith [26] first studied the Lotka–Volterra
discrete-time predator–prey system which was further inves-
tigated by Levine [27] and Liu and Xiao [28]. The discrete
model exhibits complex dynamical behavior including flip
bifurcation, fold bifurcation, and Neimark–Sacker bifur-
cation. In another investigation, the discrete version of
the predator–prey model with Holling type-II functional
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response was studied by Hadelar and Gerstmann [29]. Also,
Li and Zhang [30] gave a detailed discussion for codimen-
sion one bifurcation and parametric restriction for stability.
A discrete predator–prey model with Holling type-II func-
tional response was investigated for bifurcation and chaotic
dynamics [31]. In recent work, Singh and Deolia studied
a discretized Leslie-Gower predator–prey model in which
the system exhibits codimension-1 bifurcation including flip
bifurcation, fold bifurcation, and Neimark–Sacker bifurca-
tion [32]. There are several investigations in which the
discrete models show interesting dynamics including bifur-
cation and chaos [33–38].

In the previous decade, the bifurcation for higher codi-
mension has played a significant role in discrete-timemodels
because it reveals more complicated dynamical behavior.
Resonance bifurcations are the most crucial higher codimen-
sion bifurcation in nonlinear systems. At first Kuznetsov [39]
gave the theory of codimension two resonance bifurcations.
The resonance bifurcations such as 1:1(R1), 1:2(R2), 1:3(R3)
and 1:4(R4) may be determined by using the critical nor-
mal form coefficient (CNFC) method. Other researchers also
explored resonances bifurcation of codim-2 in the discrete-
time model, see Kuznetsov and Meijer [40], Alidousti et
al. [41], Eskandari and Alidousti [42, 43], Ghaziani et al.
[44], Naik et al.[45, 46] etc. Eskandari and Alidousti [43]
explored codim-2 bifurcation viz. generalizedflip bifurcation
and strong resonances in a discrete predator–prey system.
Alidousti et al. [41] studied a discretized Bonhoeffer-van der
Pol oscillator system and determined codim-2 bifurcation. In
another study, the codimension-two resonance bifurcations
is reported in Bazykin-Berezovskaya two species discrete
model with Allee effect [47]. A discretized version of the
two-species model with mixed functional responses was
discussed by Naik et al. [48]. They resulted in a detailed
bifurcation phenomenon and control of chaos.

A functional response in ecology refers to the intake
rate for the predator as a function of prey density. Due
to the implementation of a particular type of functional
response, the dynamical behavior of the predator–preymodel
is affected [49]. As discussed in [50], there are generally
three types of functional response in dynamical systems: lin-
ear (type-I), hyperbolic (type-II), and sigmoidal (type-III).
There is a direct connection between the prey density and
the predator consumption rate in the Holling type-I func-
tional response.

Let M(θ) and Q(θ) be the prey and predator popula-
tion densities, respectively. Then prey-predator model with
Holling type-I functional response in prey is represented as
[51]

dM(θ)

dθ
= M(θ)(a1 − b1M(θ) − c1Q(θ))

dQ(θ)

dθ
= Q(θ)(c1d1M(θ) − f ). (1)

The maximum per capita growth rate for prey population is
represented by a1. The strength for intra-specific competition
among prey populations is denoted by b1. The parameter c1
represents the strength of intra-species competition between
predator and prey. The conversion rate of prey species into
predators is denoted by d1 and the per capita death rate of
predator species is described by f . All involved parameters
are taken as positive.

The non-dimensionalized form of (1) can be obtainedwith
the help of the following transformation for reducing param-
eters:

x(t) = a1d1M(θ)

f
, y(t) = c1Q(θ)

f
and t = f θ.

The non-dimensionalized version of (1) is written as

dx(t)

dt
= x(t)(a − βx(t) − y(t))

dy(t)

dt
= y(t)(cx(t) − 1) (2)

where a = a1
f
, β = b1

a1d1
, c = c1

a1
.

Here we deploy a piecewise constant argument approach to
discretize the model (2) [7, 23, 52]:

xn+1 = xn exp (a − βxn − yn)

yn+1 = yn exp (cxn − 1). (3)

Here xn and yn denote prey population and predator popula-
tion respectively.
The model (3) can be rewritten in form of a map

F :
(
x
y

)
→

(
x exp (a − βx − y)

y exp (cx − 1)

)
(4)

where all involve parameters a, β and c are positive.
Elsadany and Matouk discussed the local stability of

equilibria and Neimark–Sacker bifurcation in a fractional-
ordered model of (2) [51]. In another work, Lin et al. [53]
studied local stability, flip bifurcation and Neimarck–Sacker
bifurcation in a discrete version of themodel (2). The authors
attempted to control the chaos by using control techniques.
But as far as our knowledge, the exploration of codim-2 res-
onance bifurcations in the above model is missing. The most
variation between our results and the studied ones is for us
to investigate all codimension two resonances bifurcations
including 1:2(R2), 1:3(R3) and 1:4(R4) for different param-
eters in the map (4). This map is a good illustration of two
species interaction for non-overlapping generations.
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This study obtains the normal form coefficients to confirm
the nondegeneracy of codim-1 and codim-2 bifurcations in
themodel. The advantage of this technique is that it can avoid
the conversion of the linear part of the system into Jordan
form. Section3 discusses codim-1 bifurcation such as fold
bifurcation, period-doubling (flip) bifurcation and Neimark–
Sacker bifurcation on varying one parameter. Section 3.2
examines various codim-2 bifurcations including 1:2 reso-
nance(R2), 1:3 resonance(R3), and 1:4 resonance(R4) in the
model when two parameters are varied. Section4 presents a
detailed numerical study usingMATCONTM. Section5 out-
lines a brief conclusion.

2 Fixed point and stability analysis

Let (x∗, y∗) be any fixed point of the discrete map (4) in a
region D = {(x, y) : x, y ∈ R

2+} such that

x∗ exp (a − βx∗ − y∗) = x∗

y∗ exp (cx∗ − 1) = y∗.

The trivial fixed point E∗
1 (x

∗
1 , y

∗
1 ) = (0, 0) always exists

and two other fixed points E∗
2 (x

∗
2 , y

∗
2 ) and E∗

3 (x
∗
3 , y

∗
3 ) are as

follows:

E∗
2 (x

∗
2 , y

∗
2 ) =

(
a

β
, 0

)
,

E∗
3 (x

∗
3 , y

∗
3 ) =

(
1

c
,
ac − β

c

)
.

The two eigenvalues are | �1 |=| ea |> 1 and | �2 |=| 1
e

|<
1 for Jacobian matrix J (E∗

1 ). Therefore the trivial fixed point
E∗
1 is a saddle point.
Similarly, the Jacobian matrix J (E∗

2 ) gives eigenvalues

�1 = 1 − a and �2 = e
ac−β

β . Table 1 summarizes the local
stability of semi-positive fixed point E∗

2 .
Let P(�) be a characteristic polynomial of associated

variational matrix J (E∗
3 ):

P(�) = �2 − trace(J )� + det(J ),

where

trace(J ) =2 − β

c
,

det(J ) =1 − β

c
+ ac − β

c
.

Then

P(1) = ac − β

c
> 0, P(−1) = 4 − 2β

c
+ ac − β

c
> 0,

when β < ac.
As P(1) > 0 and�1 and�2 be two roots of characteristic

equation P(�) = 0,we summarize the stability of fixedpoint
E∗
3 in Table 2 (from lemma 2.2 in [16]).

3 Bifurcation analysis

The map (4) can be rewritten as

(
x
y

)
→ F(x, y, μ) =

(
x exp (a − βx − y)

y exp (cx − 1)

)

where μ = (a, β, c).
The corresponding Jacobian matrix J at arbitrary fixed

point (x∗, y∗) is

J(x∗, y∗, μ)

=
(

(1 − βx∗) exp (a − βx∗ − y∗) −x∗ exp (a − βx∗ − y∗)
cy∗ exp (cx∗ − 1) exp (cx∗ − 1)

)
.

Let us consider a smooth map F

F(X) =AX + 1

2
B(X , X) + 1

6
C(X , X , X) + O(||X ||4)

where A = J and B and C are multi linear functions corre-
sponding to (4), discussed in [40].

Here

B(X ,Y ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

[
(−2β + β2x)x1y1

+(βx − 1)[x2y1 + y2x1] + xx2y2]
exp (a − βx − y)

[
c2yx1y1 + c(x2y1 + y2x1)

]
exp (cx − 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

C(X ,Y , Z) =
(
C1

C2

)

where

C1 =[(3β2 − β3x)x1y1z1 + β(2 − βx)[x2y1z1
+ x1y1z2 + x1y2z1]

+ (1 − βx)[x2y1z2 + x2y2z1

+ x1y2z2] − xx2y2z2] exp (a − βx − y),

C2 =[(c3y)x1y1z1 + c2[x2y1z1
+ x1y1z2 + x1y2z1]] exp (cx − 1)

and X = (x1, x2)T , Y = (y1, y2)T , Z = (z1, z2)T .
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Table 1 Properties of
semi-positive fixed point
E∗
2 (

a
β
, 0)

Conditions Eigenvalues Properties

�1 = 1 − a �2 = e

ac − β

β

0 < a < 2 β < ac | �1 |< 1 �2 < 1 Sink

β > ac �2 > 1 Saddle

β = ac �2 = 1 Non-hyperbolic

a = 2 β > ac | �1 |= 1 �2 < 1 Non-hyperbolic

β > ac �2 > 1 Non-hyperbolic

β = ac �2 = 1 Non-hyperbolic

a > 2 β > ac | �1 |> 1 �2 > 1 Saddle

β < ac �2 < 1 Unstable

β = ac �2 = 1 Non-hyperbolic

Table 2 Properties of a positive fixed point E∗
3 (

1
c ,

ac−β
c )

Conditions Eigenvalues Properties

0 < a ≤ 2
β

a
< c <

2β

a
| �1,2 |< 1 Sink

2 < a < 8
3β

4 + a
< c <

2β

a
| �1,2 |< 1 Sink

a > 2
β

a
< c <

3β

4 + a
| �1 |< 1, | �2 |> 1 or | �1 |> 1, | �2 |< 1 Saddle

0 < a ≤ 8 or a > 8 c >
3β

4 + a
or c >

2β

a
| �1,2 |> 1 Unstable

a �= 8, a > 2 c = 3β

4 + a
�1 = −1, �2 �= ±1 Non-hyperbolic

0 < a < 8 c = 2β

a
| �1,2 |= 1 Non-hyperbolic

3.1 Codimension-1 bifurcations at semi-positive
fixed point (E∗

2)

In this section, fold bifurcation and degenerate flip bifurca-
tion are being determined at fixed point E∗

2 .

3.1.1 Fold bifurcation

Theorem 1 There is an occurrence of non-degenerate fold
bifurcation in the system (4) at E∗

2 (x
∗
2 , y

∗
2 ) when

(i) β = ac, provided a �= 0, 2.

(ii) a = β

c
, provided a �= 0, 2.

(iii) c = β

a
, provided a �= 0, 2.

Proof (i) From Table 2, it can be noted that the associated
Jacobian matrix J (E∗

2 ) has one eigenvalue�1 = 1 and other
eigenvalue �2 �= ±1 when β = ac and a �= 0, 2.

The center manifold at β = ac is taken as

MLP (ν) → qν + m2ν
2 + O(ν3),

M : R → R
2, m2 = (m21,m22)

T (5)

where

Jv = v, J T u = u, 〈u, v〉 = 1

and

v =
⎛
⎝ −1

ac
1

⎞
⎠ , u =

(
0
1

)
.

The restriction of the map (4) on (5) has the following form:

ν → H(ν) = ν + 1

2
âν2 + O(ν3). (6)

For center manifold invariance, it is obtained

F(MLP (ν, μ∗)) = M(H(ν, μ∗)), (7)

where μ∗ = (a, ac, β)T .
Now we calculate the required condition

(J − I2)m2 = 2â − B(v, u, μ∗). (8)
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We apply solvability conditions to the singular system (8), it
is obtained

〈u, 2â − B(v, v, μ∗)〉 = 0,

then

â = 1

a
.

Thus fold bifurcation occurs in the map (6) at E∗
2 .

The critical normal form coefficients (CNFCs) of fold
bifurcation, given in theorem 1, are determined as

(i) when β = ac ⇒ â = 1

a
, provided a �= 0, 2,

(i i) when a = β

c
⇒ â = c

β
, provided a �= 0, 2,

(i i i) when c = β

a
⇒ â = 1

a
, provided a �= 0, 2.

A fold bifurcation implies that a fixed point can never be
destroyed and must exist for all values of a parameter. In
such case, as the parameter changes, the fixed point may lose
its stability. 
�

3.1.2 Period doubling (flip) bifurcation

Theorem 2 Anon-degenerate flip (Period-doubling) bifurca-
tion occurs in the system (4)

(i) at E∗
2 (x

∗
2 , y

∗
2 ) for a = 2 when β �= 2c,

(ii) at E∗
3 (x

∗
3 , y

∗
3 ) for c = 3β

4 + a
when a �= 2, 8.

Proof (i) FromTable 1, it can be observed that corresponding
Jacobian matrix J (E∗

2 ) has eigenvalue �1 = −1 and �2 �=
±1, for β �= 2c.

The centre manifold for the map (4) at a = 2 is

MPD(ν) → qν + m2ν
2 + m3ν

3 + O(ν4),

M : R → R
2, m2 = (m21,m22)

T . (9)

The eigenvectors corresponding to eigenvalue −1 such that

Jv = −v, J T u = −u, 〈u, v〉 = 1

where v =
(
1
0

)
, u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

2

β

⎛
⎜⎝1 + e

(
2c − β

β

)⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

The map (4) can be written in the normal form at critical
parameter

ν → H(ν) = −ν + bPDν3 + O(ν4). (10)

The invariance in the center manifold gives

F(MPD(ν, μ∗)) = M(H(ν, μ∗)). (11)

Now we collect the power of ν up to third order in the above
expansion, we get

(J − I2)m2 = −B(v, v, μ∗), (12)

(J + I2)m3 = 6bPDv − C(v, v, v, μ∗) − 3B(v,m2, μ
∗)
(13)

where μ∗ = (a, β, c) = (2, β.c).

If the system (12) is non-singular, m2 =
(
0
0

)
.

The solvability conditions of (13) yields

〈u , 6bPDv − C(v, v, v, μ∗) − 3B(v,m2, μ
∗)〉 = 0.

We get

bPD = β2

6
.

The period-doubling bifurcation is non-degenerate provided
bPD �= 0.

For bPD > 0, bifurcation is super-critical otherwise sub-
critical bifurcation for bPD < 0.

(ii) The proof is similar line to the theorem 2(i).
The CNFC for period-doubling bifurcation is obtained as

bPD = 32 − 2a3(−1 + β) + 67β + 3(−8 + 5β)

2β(a − 8)(a − 2)2
.

The period-doubling bifurcation is non-degenerate if bPD �=
0. The double period cycle is stable and hence super-critical
bifurcation occurs for bPD > 0. For bPD < 0, the period-2
cycle is unstable i.e. sub-critical bifurcation occurs. 
�

3.1.3 Neimark–Sacker bifurcation

Theorem 3 The map (4) exhibits non-degenerate Neimark–

Sacker bifurcation (NSB) at fixed point E∗
3 for c = 2β

a
,

provided a �= 0, 8 and β < 4c.

Proof It is evident from Table 2, for non-hyperbolicity of

fixed point E∗
3 , c = 2β

a
; a �= 0, 8 and β < 4c. And J (E∗

3 )

have complex conjugate eigenvalues with unit modulus i.e.
| �1,2 |= 1.
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The eigenvalues of the Variation matrix J are �1,2 =
α1 ± iα2 where α1 = 4 − a

4
and α2 = 1

4

√
(8 − a)a.

The non-degeneracy condition�
j
1,2 �= 0 ( j = 1, 2, 3, 4)

are satisfied.

For the map (4), at critical parameter value c = 2β

a
then

the center manifold form is taken as

MNS(ν, ν̄) = qν + ν̄q̄

+
∑

2≤r+s

1

(r + s)!mrsν
rν−s, ν,mrs ∈ C . (14)

And corresponding to both eigenvalues the eigenvectors are
as follows

Jv = eiθ0v, J T u = e−iθ0u, 〈u, v〉 = 1.

The map (4) is restricted to (14) at value c

ν → HNS = eiθ0ν + dNSν|ν|2 + O(ν4), ν ∈ C (15)

where dNS is a complex number.
The invariance in manifold gives

F(MNS(ν, μ∗)) = M(HNS(ν, μ∗)). (16)

On collecting the power of ν up to third order in (16), it is
obtained

(J − e2iθ0 I2)m20 = −B(v, v, μ∗), (17)

(J − I2)m11 = −B(v, v̄, μ∗), (18)

(J − e3iθ0 I2)m30 = −C(v, v, v, μ∗) − 3B(v,m20, μ
∗),
(19)

(J − eiθ0 I2)m21 = 2dNSv − C(v, v, v̄, μ∗)
−B(v̄,m20, μ

∗) − 2B(v,m11, μ
∗)
(20)

where μ∗ =
(
a, β,

2β

a

)
.

For reducing the complexity in computation, we consider
a = 3.5, β = 4.8 and c as a free parameter. The matrix
J (E∗

3 ) gives eigenvalues

�1,2 = 0.125001 ± 0.992158i .

As the systems (17)-(19) are non-singular, they have a unique
solution.

The solutions of systems can be easily obtained as

m20 = −(J − e2iθ I2)
−1B(v, v, μ∗)

⇒ m20 =
( −0.038095007 − 0.418205240i

−0.588668474 + 0.8734819542i

)
,

m11 = −(A − I2)
−1B(v, v̄, μ∗)

⇒ m11 =
(
0
0

)
.

Since the system (20) is singular, we use Fredholm’s solv-
ability condition

〈 u, 2dNSv − C(v, v, v̄, μ∗) − B(v̄,m20, μ
∗)

−2B(v,m11, μ
∗)〉 = 0.

The value of dNS is calculated as

dNS = 1.46954 − 0.653601i .

For Neimark–Sacker bifurcation the first Lyapunov coeffi-
cient gives

cNS = R(e−iθ0dNS) = −0.464781491 < 0.

In the above calculation the value of u, v are taken as

v =
(−0.182292 − 0.206704i

1

)
,

u =
(
0.1179235213 + 2.346524261i
0.500925484 + 0.44165478i

)
.

Since CNS < 0, the Neimark–Sacker bifurcation (NSB) is
super-critical and a closed invariant curve appears which is
stable i.e. both species can fluctuate near critical parameter
values and the stable oscillations may appear. 
�

3.2 Codimension-2 bifurcation analysis

This subsection illustrates codim-2bifurcation analysis along
with strong resonances R2(1:2), R3(1:3) and R4(1:4).

3.2.1 1:2 resonance at E∗
3

Theorem 4 The map (4) exhibits 1:2 resonance bifurcation

at fixed point E∗
3 for a = 8 and c = β

4
.

Proof At the fixed point E∗
3 , the corresponding J (E∗

3 ) has
two multipliers �1,2 = −1 when trace(J (E∗

3 )) = −2,

Det(J (E∗
3 )) = 1. It implies that a = 8, c = β

4
.

Here we consider the center manifold form of the map (4)

MR2(ν1, ν2) = q0ν1 + ν2q1
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+
∑

2≤r+s≤3

1

r !s!mrsν
r
1ν

s
2, ν,mrs ∈ C . (21)

The eigenvectors corresponding to both eigenvalues are

Jq0 = −q0, Jq1 = −q1 + q0,

J T p0 = −p0, J T p1 = −p1 + p0,

and

〈p0, q1〉 = 〈p1, q0〉 = 1, 〈p0, q0〉 = 〈p1, q1〉 = 0.

where

q0 =
(

1

−β

2

)
, q1 =

( 1

2
0

)
,

p0 =
⎛
⎝ −2

−4

β

⎞
⎠ , p1 =

⎛
⎝ 0

−2

β

⎞
⎠ .

The map (4) can be restricted as follows:

(
ν1
ν2

)
→ HR2(ν) =

( −ν1 + ν2
−ν2 + CR2ν

3
1 + DR2ν

2
1ν2

)
,

ν = (ν1, ν2) ∈ C . (22)

The invariance condition of the central manifold gives

F(MR2(ν, μ∗)) = MR2(HR2(ν, μ∗)). (23)

On collecting power of ν up to third order in above expansion
(23), we get

(J − I2)m20 = −B(q0, q0, μ
∗)

⇒ m20 =
(
0
0

)
, (24)

(J − I2)m11 = −B(q0, q1, μ
∗) − m20,

⇒ m11 =

⎛
⎜⎜⎜⎝

β

16

−β2

8

⎞
⎟⎟⎟⎠ , (25)

(J − I2)m02 = −B(q1, q1, μ
∗) − 2m11 + m20

⇒ m02 =

⎛
⎜⎜⎜⎝

−3c

4

9β2

8

⎞
⎟⎟⎟⎠ . (26)

The cubic terms of (23) yields

(J + I2)m30 = 6CR2q1 + C(q0, q0, q0, μ
∗)

−3B(q0,m20, μ
∗), (27)

(J + I2)m21 = 2DR2q1 − C(q0, q0, q1, μ
∗)

−2B(q0,m11, μ
∗)

−B(q1,m20, μ
∗) + m30 (28)

(J + I2)m12 = −C(q0, q0, q0, μ
∗) − 2B(q1,m11, μ

∗)
−B(q0,m02, μ

∗)
−m30 + 2m21 (29)

(J + I2)m03 = −C(q1, q1, q1, μ
∗)

−3B(q1,m02, μ
∗) + 3(m12 − m21)

+m30 (30)

where μ∗ =
(
a = 8, β,

β

4

)
.

The solvability condition for the singular system (27) is

〈p0, 6CR2q1 + C(q0, q0, q0, μ
∗) − 3B(q0,m20, μ

∗)〉 = 0

we get

CR2 = 19β + 14β2

48
.

The singular system (28) has a unique solution if

〈p0, 2DR2q1 − C(q0, q0, q1, μ
∗) − 2B(q0,m11, μ

∗)
−B(q1,m20, μ

∗) + m30〉 = 0

since

〈p0,m30〉 = −〈p1, 3B(q0,m20, μ
∗) + C(q0, q0, q0, μ

∗)〉
= −5β

8
.

The third-order coefficient can be calculated as

DR2 = 36β − 19β2

64
.

The non-degeneracy conditions of 1:2 resonance bifurcation
C1 = 4CR2 �= 0 and D1 = −2DR2 − 6CR2 �= 0 are satis-
fied. The sign of C1 indicates the behavior of a fixed point.
If C1 < 0 then there is occurred Niemark-Sacker bifurca-
tion curve and if C1 > 0 then bifurcation is supercritical.
The 1:2 resonance bifurcation scenario is determined by the
coefficient D1. 
�

3.2.2 1:3 resonance at E∗
3

Theorem 5 The system (4) undergoes non-degenerate 1:3
resonance bifurcation at fixed point E∗

3 when a = 6 and

c = β

3
.
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Proof The eigenvalues of Jacobian matrix J (E∗
3 ) are in form

of complex conjugate e± 2π i
3 when trace(J (E∗

3 )) = 1 and

Det(J (E∗
3 )) = 1 with a = 6, c = β

3
.

Now we consider the center manifold form of a map (4)
as

MR3(ν, ν̄) = qν + ν̄q̄

+
∑

2≤r+s

1

(r + s)!mrsν
rν−s, ν,mrs ∈ C . (31)

The eigenvectors corresponding to both eigenvalues are

Jq = e
2π
3 i q, J T p = e− 2π

3 i p, 〈p, q〉 = 1

where q =
⎛
⎝−3 + i

√
3

2β
1

⎞
⎠ , p =

⎛
⎜⎜⎝

iβ
√
3

6
1 + i

√
3

2

⎞
⎟⎟⎠ .

The map (4) is restricted to the form

ν → HR3(ν) = ei
2π
3 ν+BR3ν̄

2+CR3ν|ν|2+O(ν4), ν ∈ C .

(32)

The center manifold invariance property requires

F(MR3(ν, μ∗)) = MR3(HR3(ν, μ∗)). (33)

We collect quadratic terms of (33) in above expansion, it is
obtained

(J − e
4π
3 i I2)m20 = 2 ¯BR3q̄ − B(q, q, μ∗), (34)

(J − I2)m11 = −B(q, q̄, μ∗), (35)

(J − e
−4π
3 i I2)m02 = 2BR3q − B(q̄, q̄, μ∗), (36)

where μ∗ = (a = 6, β, c = β

3
).

On using the Fredholm condition to the singular system
(37), we get

〈p, 2BR3q − B(q̄, q̄, μ∗)〉 = 0 ⇒ BR3 = −3 − 5
√
3i

12

and

¯BR3 = −3 + 5
√
3i

12
.

Now we collect ν2ν̄-terms in (33) which gives

(J − e
2π
3 i I2)m21 =2cR3q + e− 2π

3 i ¯BR3m02

− 2B(q,m11, μ
∗) − B(q̄,m20, μ

∗)
− C(q, q, q̄, μ∗).

(37)

As the system (37) is singular, it can be solved if

〈p, 2cR3q + e− 2π
3 i ¯BR3m02 − 2B(q,m11, μ

∗)
− B(q̄,m20, μ

∗)
− C(q, q, q̄, μ∗)〉 = 0.

(38)

We get

CR3 = 27 − 15β + (43β − 45)
√
3i

36β
.

The dynamical behavior of the invariant closed curve is deter-
mined by

L = Re

(
1

3

(
e
4π
3 iCR3

|BR3|
− 1

))
.

For |BR3| �= 0 as well as, L =�= 0 the 1:3 resonance bifur-
cation indicates that an invariant curve of period three is
bifurcated from the fixed point near R3 point. 
�

3.2.3 1:4 resonance at E∗
3

Theorem 6 The map (4) shows non-degenerate 1:4 reso-

nance bifurcation at fixed point E∗
3 when a = 4 and c = β

2
.

Proof For 1:4 resonance bifurcation, there is an eigenvalue in
a pair of complex conjugate e± π

2 i in corresponding Jacobian
matrix J (E∗

3 ) when

trace(J (E∗
3 )) = 0 and Det(J (E∗

3 )) = 1

i.e. a = 4 and c = β

2
.

Now we consider the center manifold form of map (4)

MR4(ζ, ζ̄ ) = qζ + ζ̄ q̄

+
∑

2≤r+s

1

(r + s)!mrsζ
rζ−s, ζ,mrs ∈ C . (39)

The eigenvectors corresponding to both eigenvalues give

Jq = e
π
2 i q, J T p = e

−π
2 i p, 〈p, q〉 = 1,

where

q =
⎛
⎝−1 + i

β
1

⎞
⎠ , p =

⎛
⎝ (1 + i)β

2
1

⎞
⎠ .
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We normalize the vector p with respect to q as

p =
⎛
⎜⎝

iβ

2
1 + i

2

⎞
⎟⎠ .

The restriction of the map (4) on (39) at parameters c and a
is

ζ → HR4(ζ ) = iζ + CR4ζ
2ξ̄ + DR4ζ̄

3 + O(ζ 4), ν ∈ C .

(40)

The invariance condition in the center manifold yields

F(MR4(ζ, μ∗)) = MR4(HR4(ζ, μ∗)). (41)

With the above expansion (41), we can determine ζ ’s power
up to the second order

(J + I2)m20 = −B(q, q, μ∗) ⇒ m20 =
⎛
⎝ 1 + 2i

β
−1

⎞
⎠ , (42)

(J − I2)m11 = −B(q, q̄, μ∗) ⇒ m11 =
(
0
0

)
, (43)

(J + I2)m02 = −B(q̄, q̄, μ∗) ⇒ m02 =
(
1 + 2i

−i

)
(44)

where μ∗ = (a = 4, β, c = β

2
).

For getting resonance terms in (41)

(J − e
π
2 i I2)m21 = 2CR4q − C(q, q, q̄, μ∗)

−2B(q,m11, μ
∗) − B(q̄,m20, μ

∗),
(45)

(J − e
π
2 i I2)m03 = 6DR4q − C(q̄, q̄, q̄, μ∗)

−3B(q̄,m02, μ
∗). (46)

The Fredholm solvability conditions of the singular system
(45) and (46) give

〈p, 2CR4q − C(q, q, q̄, μ∗) − 2B(q,m11, μ
∗)

− B(q̄,m20, μ
∗)〉 = 0,

〈p, 6DR4q − C(q̄, q̄, q̄, μ∗) − 3B(q̄,m02, μ
∗)〉 = 0.

We have

CR4 = 3i

8
,

DR4 = (11 − 15β) + (16 − 3β)i

24
.

0.5 1 1.5 2 2.5 3

c

0

1

2

3

4

5

6

x

NS  
PD  

Fig. 1 Bifurcation curve with respect to c

The 1:4 resonance bifurcation curve is determined by

A0 = −iCR4

|DR4| .

The coefficient A0 determines the bifurcation scenario near
R4 resonance point on the curve for |DR4| �= 0. The 1:4 res-
onance bifurcation demonstrates that both species coexist till
order 4 in stable periodic cycles near some critical parametric
values. 
�

4 Numerical computation

To validate our analytic findings, we use theMATLAB pack-
age MATCONTM to demonstrate the dynamical behavior of
the map (4) [54, 55].

4.1 Numerical continuation of E∗
3(x

∗
3, y∗

3)

We compute the fixed point E∗
3 . We consider a = 3.5, β =

4.8, and vary c as a bifurcation parameter. MATCONTM
generates the following report:

For NS, x=(0.364583 1.750000 2.742856)
normal form coefficient (NFC) of NS =
-4.647035e-01
For PD, x=(0.520833 1.000000 1.920000)
NFC of PD=1.598668e+00.
From theorem 2, themap (4) demonstrates a period-doubling
bifurcation at positive fixed point E∗

3 . By theorem 3, the
map (4) shows Neimarck–Sacker bifurcation at E∗

3 when
critical parameter c = 2.742856. The period-doubling
point and Neimark–Sacker point are detected in the MAT-
CONTM report by PD and NS respectively, shown in Fig. 1.
Figure2 shows the 3-dimensional bifurcation diagram of
Neimark–Sacker and Period-doubling bifurcations together
and associated maximum Lyapunov exponents (MLE) at
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Fig. 2 3D bifurcation diagram for both Neimark–Sacker and period-doubling and associated MLE

Fig. 3 The Neimark–Sacker bifurcation diagram and and associated MLE

a = 3.5, corresponding to Fig. 1. A Neimark–Sacker bifur-
cation diagram with respect to c and associated maximum
Lyapunov exponents (MLE)is also drawn in Fig. 3 at a = 3.5
and β = 4.8.

The phase plot diagrams are drawn in Fig. 4 for different
values of c corresponding to near NS point, pointed in Fig. 1.
If the value c = 2.741 then the fixed point E∗

3 is a stable
attractor, depicted in Fig. 4a. A closed invariant curve occurs
at c = 2.7428 in Fig. 4b. After NS point the behavior of the

system (4) is drawn in Fig. 4c at c = 2.751. Figure4d shows
the breakdown of a closed curve at c = 2.9. At c = 3.0, a
fractal structure appears in Fig. 4e.

Now, we select the PD point in Fig. 1. The MATCONTM
gives expression as follows

The statements of MATCONTM for a continuation of 2-
cycles are
For PD, x=(0.245707 1.062659 1.801556)
NFC of PD=1.768882e+01
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0.3645822 0.3645826 0.364583 0.3645834 0.3645838

x

1.7499995

1.75

1.7500005

1.750001

1.7500015

1.750002

1.7500025

1.750003

1.7500035

1.750004

1.7500045

y

Fig. 4 Phase plots of map (4) corresponding to NS point in Fig (1). a Attractor before NSB forc = 2.741. b Neimarck–Sacker bifurcation for
c = 2.74286. c Closed invariant curve for c = 2.751. d Breakdown of closed invariant curve for c = 2.9. e Chaotic attractor forc = 3.01
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For PD, x=(0.864445 0.608614 1.801556)
NFC of PD=7.057426e+01.

The continuation of 4-cycle at E∗
3 in fourth iterations:

For PD, x = (0.805153 0.545971
1.748160)
NFC of PD = 3.512630e+02
For PD, x = (0.997368 0.531802
1.748160)
NFC of PD = 9.141226e+02
label for PD, x = (0.1617341 1.118596
1.748160)
NFC of PD = 4.9081175e+02
label for PD, x = (0.323865 0.8206555
1.748160)
NFC PD = 1.140418e+02.

A cascade of 2-cycles and 4-cycles period doubling curves
are drawn in Fig. 5. The corresponding bifurcation diagram
is also shown in Fig6.

4.2 Numerical continuation of codimension-two
bifurcation of E∗

3

Here we present codimension-two bifurcation numerically.
We take β = 4.8 and vary a and c as bifurcation param-

eters. According to theorem 4, there is a 1:2 resonance
point(R2) at a = 8.0 and c = 1.2, as shown in Fig. 7. The
MATCONTM expression is given as
label= R2, x = (0.833333 4.000000
8.000000 1.2000000).
The normal form coefficient(NFC) for R2 is: [C,d] = -
8.520711e−01,-1.704142e+00.

According to theorems 4, 5 and 6, the system (4) under-
goes 1:2, 1:3, and 1:4 resonance bifurcations at fixed point
E∗
3 . These resonance bifurcations, detected by R2, R3, and

R4, are shown in Fig. 8. The MATCONTM gives
label for R4, x = (0.416667 2.000000
4.000000 2.4000000)
NFC of R4: A = -7.442084e-01
label for R3, x = (0.6250000 3.000000
6.000000 1.6000000)
NFC of R3: Re(C_1) = -2.857143e-01
labe for R2, x = (0.833333 4.000000
8.000000 1.2000000)
NFC for
R2:[C,d] = -8.520711e-01,-1.704142e+00.

For the same set of parameters, the 1:2 resonance bifurcation
diagram corresponding to Fig. 8 is shown in Fig. 9 at c = 1.2.

4.3 Orbits of period 3

We detect the closed region neighborhood of R3 by selecting
the R3 point in Fig. 8, a closed invariant curve seems that

0.5 1 1.5 2 2.5

c

0

0.5

1

1.5

2

2.5

x

PD  

PD  

PD  

PD  

PD  

PD  

PD  

Fig. 5 Cascade of PD-points 2-cycles and 4-cycles

Fig. 6 Period-doubling bifurcation diagram with respect to c corre-
sponding to fig5

0.6 0.8 1 1.2 1.4 1.6 1.8

c

5

10

15

20

25

a

R2  

Fig. 7 1:2 resonance point detect by R2 emanating from PD point

coexists with an unstable fixed point i.e. the Neimark–Sacker
curve, rooted at R3 in the third iteration, is drawn in Fig. 10.
The 1:4 resonance bifurcation diagram is plotted in Fig. 11
corresponding to Fig. 8. The resonance 1:4 indicates that at
the unique fixed point E∗

3 , the closed invariant curve loses its
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0.5 1 1.5 2 2.5

c
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15

20

25

a

R4  

R3  

R2  

Fig. 8 Neimark–Sacker bifurcation including curve of 1:2 resonance
(R2), 1:3 resonance (R3), 1:4 resonance (R4) in (c, a)-space

Fig. 9 1:2 Resonance bifurcation diagram

0.5 1 1.5 2 2.5

c

5

10

15

20

25

a

R4  

R3  

R2  

Fig. 10 Neimark–Sacker curve of third iteration rooted at R3 bifurca-
tion point in (c, a)-space

smoothness and destroys when the saddle cycle of period-4
appears. The trajectory goes to period 4 orbits followed by
chaos.

Fig. 11 1:4 Resonance bifurcation diagram

4.4 Biological interpretation

We studied the complex dynamical behavior of two species
discrete-time model (4), in which, the existence and local
stability of all fixed points are discussed. The map undergoes
codim-1 bifurcation viz., fold bifurcation, flip bifurcation and
Neimark–Sacker bifurcation at positive fixed point. These
bifurcations mean both species (prey-predator) coexist in the
neighborhood of an interior fixed point. Further, we obtained
strong resonance bifurcation R2, R3, and R4 at a coexistence
fixed point.

Biologically, the occurrence of R2 resonance bifurcation
occurs at E∗

3 implies that the discrete model may exhibit
Neimark–Sacker, pitchfork, and heteroclinic bifurcation in
the neighborhood of fixed points. The 1:3 resonance bifur-
cation reveals that an invariant curve of period three is
bifurcated from the fixed point.

Moreover, the R4 resonance bifurcation demonstrates that
both prey and predator coexist till order 4 in stable periodic
cycles in the neighborhood of some critical parametric val-
ues.
Resonance bifurcation reveals the existence of multiple sta-
ble high periodic cycles between prey and predator in the
ecosystem. Also, it furnishes a variety of strategies for the
long-term coexistence of both species.

5 Conclusion

The two-dimensional continuous-time models show local
and global behavior including limit cycles [56–58]. A differ-
ence equation describes interactions among non-overlapping
generations. In this paper, we investigated a predator–prey
discrete-time system with a linear functional response. We
obtained our discretized model by deploying the piecewise
constant argument approach and discussed the local stabil-
ity around each fixed point. The bifurcations of codimension
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one and codimension two in the map (4) by using the criti-
cal normal form coefficient technique are investigated. The
codimension one bifurcation including flip(period-doubling)
bifurcation, fold bifurcation and Neimark–Sacker bifurca-
tion (NSB) and codim-2 bifurcations viz. 1:2 resonance, 1:3
resonance and resonance 1:4 are determined. The numerical
continuation confirms the dynamics of the system around the
fixed point. The occurrence of different types of bifurcations
indicates the dynamical behavior of the discrete systemswith
various complexity from different characteristics. The com-
plex dynamical behavior could be helpful to understand the
dynamics of interactive predator and prey systems. For illus-
tration, the appearance of a fold bifurcation implies that a
fixed point must exist for all values of a parameter and can
never be destroyed i.e. the fixed point may change its stabil-
ity on varying parametric values. Moreover, the occurrence
of flip bifurcation is not desirable in prey-predator models as
it may induce a risk of extinction of either prey or predator
species. The period-doubling bifurcation indicates that the
discrete-time system will vary from a fixed point to a period-
2 cycle when the parameter varies. i.e both species (prey
and predator) may coexist in period-2 cycles under some
conditions. The Neimark–Sacker bifurcation reveals that the
dynamic changes from a stable fixed point to attracting cycles
including periodic windows and chaotic attractors. Biologi-
cally speaking, NSB signifies that both species can fluctuate
near critical parameter value and stable fluctuations seem. If
cNS < 0 then it will certainly continue.

The model may exhibit flip bifurcation, Neimark–Sacker
bifurcation and hetroclinic bifurcation near 1:2 resonance
point. The 1:3 resonance bifurcation indicates that an invari-
ant curve of period three is bifurcated from the fixed point.

Moreover, the 1:4 resonance bifurcation demonstrates that
both species coexist till order 4 in stable periodic cycles
near some critical parametric values. Ecologically, the prey-
predator system coexists up to the fourth order in the stable
high periodic cycle. The prey and predator population can
produce their density and survive mutually. On the invariant
curve, the behavior of the fixed point can be quasi-periodic or
periodic. However, the investigation of higher codimension
bifurcations and chaos control are yet interesting problems.
They may be assessed in future studies.
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