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Abstract
We propose a delayed predator–prey model with the Allee effect and individual harvesting of each species. Comparatively,
fewer analyses are made to explore the impacts of harvesting efforts on population fluctuation due to time delay. Thus, our
focus is on whether the harvesting effort can stabilize or destabilize the model system if the unexploited system is unstable
or stable, respectively. Prey and predator harvesting has different influences on the delayed system. Prey harvesting has
only stabilizing effect, whereas predator harvesting has both stabilizing and destabilizing effects. In addition, for any fixed
delay, both prey and predator harvesting gives harvesting-induced switching to the system. For harvesting of either species,
the delay-induced switching region and switching times increase with the increase of the Allee threshold. We observe that
maximum sustainable yield (MSY) does not exist for prey harvesting, but for predator harvesting, where the pre-harvested
system is stable, the system moves to stable stock at the MSY level for a smaller time delay, which does not hold for a larger
time delay.

Keywords Predator–prey · Time delay · Allee effect · Harvesting · Stability switching · MSY

1 Introduction

In theoretical ecology, the thrust of research areas is to
understand species interaction and determine the cause of
population fluctuation. Mathematical modeling is a powerful
tool for describing such interactions and reasons for oscil-
lation. Many single species and multi-species models lead
the rules and sustainability of fishery management. Based
on mathematical models for managing the fisheries, several
tools like maximum sustainable yield (MSY) policy [1–3],

T. K. Kar and P. Debnath contributed equally to this work.

B Bidhan Bhunia
bidhanbhunia2016@gmail.com

Tapan Kumar Kar
tkar1117@gmail.com

Papiya Debnath
debpapiya@gmail.com

1 Department of Mathematics, Indian Institute of Engineering
Science and Technology, Shibpur, Howrah, West Bengal
711103, India

2 Department of Basic Science and Humanities, Techno
International New Town, Rajarhat, Kolkata, West Bengal
700156, India

marine-protected areas (MPAs) [4, 5], maximum economic
yield (MEY) policy [6], ecosystem-based fishery manage-
ment [7], balancing yield and resilience [8, 9], pretty good
yield (PGY) policy [10] had been developed from time to
time. Some more contributions can be found in [11–15],
describing the population’s persistence with a global steady
state.

Environmental fluctuation, the inhumanactivity of human-
ity, and the inherent interaction of species are the leading
cause of coexisting population in a non-equilibrium state.
In ecology, two things are essential to analyze the dynamical
nature one is oscillations and the other is chaos. Rosenzweig-
MacArthur prey-predator model may show fluctuations,
but the tri-trophic food chain model experiences chaotic
dynamical behavior [16–18]. This kind of oscillation and
chaotic dynamical behavior makes the model more realis-
tic with Holling-type II functional response. Tromeur and
Loeuille[8], Ghosh et al.[19] showed fluctuations might be
removed from the Rosenzweig-MacArthur model with the
harvesting of either prey or predator harvesting. Ghosh et al.
[19] also showed that the system is stable when a predator
is harvested at the optimum level. Another critical study on
the tri-trophic food chain model showed that top predator
harvesting might cause instability of the system [20].
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The Allee effect has been considered as one of the central
and critical issues in population and community ecology. It is
widely recognized that theAllee effectwill likely increase the
extinction risk in low-density populations. Because of this,
the Allee effect has received more attention from ecologists
and mathematicians. This effect occurs because of several
environmental and biological factors, due to mate finding,
[21], social dysfunction at small population sizes, inbreed-
ing depression [22], predator avoidance of defense, and food
exploitation. The researcher pays attention to the impacts
of Allee’s effects on the dynamics of the population over the
last decades. In population dynamics, the impact of the Allee
effect on stability analysis is studied by researchers from time
to time. These impacts are two types: destabilizing effect
[23–25] and stabilizing effect [26–32]. Gonzalez-Olivares et
al. [33] considered a model to represent the impacts of prey
growth by the Allee effect and Beddington-DeAngelis-type
functional response. Theyobserved that the equilibriumpoint
might change from stable to unstable or unstable to stable.
When we add the termAllee effect in a model, it may happen
that the population will reach a steady state in the long run,
keeping the equilibrium point stable ( [34, 35]). Even though
various species exhibit Allee effects, its underlying mecha-
nism remains unclear. Because of this reason, determining
which factors regulate or induce the Allee effect continues
to be an important subject in the field of both theoretical and
experimental research [36]. Our objective here is not to study
which factor can cause the Allee effect or which species has
the Allee effect but to evoke the importance of Allee dynam-
ics and its potential consequences in population dynamical
models in the presence of delay and harvesting.

Delay differential equation model is constructed as a
well-accounted strategy of modeling with the activity of
stage-specific for which dynamics significantly changed of
population interaction. A large number of literature studies
observes that incubation time, gestation period, maturation
time, and reaction time as biological processes are the main
reason behind the insertion of time-delay parameter in prey-
predator models and other kinds of population interaction
models. To make the models’ dynamics much more realistic,
we incorporate time delay in biological models, which may
destabilize the equilibrium points and reach to limit cycle,
experiencing oscillation to grow and develop the dynamics of
models. Some of the initial work with insertion of time delay
is studied by Freedman, and Gopalsamy [37], Nicholson
[38], Hutchinson [39] in theoretical ecology. Many authors
extended their studies with a time delay in biological systems
[40–44]. Their contribution leads to stability of equilibrium
point globally, Hopf-bifurcation occurrence, in which delay
length stability will stay. Although delay uses to model with
multiple interactions of species dynamics [45, 46], it is also
used in epidemiology, eco-epidemiology [47–49].

Many authors have studied the time delay model in
prey-predator and food chain systems. In the predator–prey
system, usually, three kinds of delay are introduced: (i) at
prey-specific growth, (ii) at the functional response of the
predator, and (iii) at the interacting function of the preda-
tor equation. Gourley and Kuang [50] observed that delay
could cause oscillations in the stage-structure prey-predator
model. Ho and Ou [51] showed the stability switching on the
Lotka-Volterra-type predator–preymodel. Banerjee et al.[52]
discussed a prey-predator model with two-delay and Allee
effects. They clarified the occurrence of sub-critical Hopf-
bifurcation subjected to the time delay for simultaneous
appearance of predator competition and Allee factor. Ana-
cleto and Vidal [53] find the simultaneous influence of time
delays and Allee effect in a discreet delay (at logistic term)
dynamical model with Holling type-II functional response.
They observed that delaymight cause community extinction,
coexistence, and population oscillations. They also showed
the direction of Hopf-bifurcation and the occurrence of sta-
bility switching around the coexisting equilibrium.

Harvesting of population components strongly influences
the evolution of the dynamical system. May et al. [3] give
the notion of two kinds of harvesting (a) constant yield har-
vesting and (b) constant effort harvesting. Huang et al. [54]
studied the Leslie-Gower-type prey-predator model with the
constant yield on predator species. Xiao and Jennings [55]
studied a ratio-dependent prey-predator model with constant
effort harvesting. Incorporation of harvesting efforts in pop-
ulation dynamics was also studied by Kar and Chaudhuri
[56], Kar [57], Kar and Ghorai [58], Meng et al. [59] and ref-
erences therein. Kar and Pahari[60] studied a predator–prey
model to address the harvesting impacts on the delay model
with Beddington-DeAngelis-type functional response. Mar-
tin and Ruan[61] studied predator–prey systems with delay
and constant rate harvesting, showing instability, and oscilla-
tion via Hopf-bifurcation leads to switching stability due to
delay. Barman andGhosh [62] studied a predator–preymodel
with Holling type II functional response and individual har-
vesting. They showed that the increment of the time delay
parameter could not conserve the system’s stability. They
denied the statement of Martin and Ruan [61] that a para-
metric condition exists for which time delay does not change
the asymptotic stability behavior of the interior steady state.
Also, Meng and Li [63] proposed a delayed phytoplankton
and zooplankton model with the Allee effect and combined
harvesting of both species. They studied the optimal har-
vesting policy using harvesting effort as a control parameter.
They have also studied the direction of Hopf bifurcation of
the system using time delay as the bifurcation parameter.

Thus from the above literature survey, we observe that for
each time delay, the Allee effect and harvesting substantially
impact the dynamics of interacting species. It motivates us
to construct and analyze the explicit impact of harvesting on
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a delayed predator–prey model with the Allee effect. Many
researchers used time delay as a control parameter to study
the dynamics of the delayed predator–prey system. But, the
time delay is the internal criterion of the model, and the har-
vesting effort is an external process user can regulate this
fishing effort. In ecology, the time delay can change in a
very slow timescale rather than fish effort regulation. Hence
harvesting effort varies in terms of invariant time delay.

Thus in this paper, we intend to address the following
issues:

i whether a predator–prey model with the Allee effect
shows only stability switching caused by time delay.

ii whether the harvesting effort can stabilize or destabilize
the model system if the unexploited system is unstable
or stable, respectively.

iii whether there is any influence of the Allee threshold on
prey (or predator) dynamics.

iv whether prey or predator harvesting at the MSY level
always gives a stable, steady state.

The paper is organized as follows. Section2 is dedicated
to model formulation, discussion of model dynamics, and
impacts of harvesting on the delayed predator–prey system.
The impact of the Allee threshold for individual exploitation
is discussed. Also, the occurrence of MSY at a stable steady
state is described. Section3 provides some discussions and
concluding remarks.

2 Themodel

For the purpose of responding to the issues stated in intro-
duction section, we consider a predator–prey model with
Holling type-II functional response and the Allee effect in
prey species. Time delay is introduced in the growth term
and is taken as the control parameter for the unexploited sys-
tem.

dN

dt
= r N

(
1 − N (t − τ)

k1

)
(N − k2) − αN P

a + bN
dP

dt
= βαN P

a + bN
− mP (1)

where N (t) and P(t), respectively, denote the prey andpreda-
tor density at time t , τ is the unit of time taken by newborn
to become adult at the present time, r is the intrinsic growth
rate of prey species, k1 is the carrying capacity of prey popu-
lation, k2 is Allee threshold, α is predator consumption rate,
a is a half-saturation constant of prey, b is a half-saturation
constant of the predator, β is a conversion factor, and m is
the death rate of the predator.

2.1 Dynamical analysis

The equilibrium points of system (1) are (0, 0), (k1, 0),
(k2, 0), (N∗, P∗), where N∗ = ma

βα−mb and P∗ = r
αk1

(a +
bN∗)(k1 − N∗)(N∗ − k2).

As we concern with the coexistence of both species, we
derive the conditions of the existence of interior equilibrium.
For the existence of coexisting equilibrium, conditions are
αβ − mb > 0 and k2 < N∗ < k1.

To study the local stability of the system, we perturbed
the system about (N∗, P∗). Using the transformation u =
N − N∗ and v = P − P∗ in (1), we get the linear system as

u̇ =
{
r N∗

(
1 − N∗

k1

)
+ αbN∗P∗

(a + bN )2

}
u − αN∗

a + bN∗ v

−r N∗(N∗ − k2)

k1
u(t − τ)

v̇ = βαaP∗

(a + bN∗)2
u (2)

Above-linearized system leads to the characteristic equation
as

�(λ, τ) = λ2 + a1λ + a2λe
−λτ + a3 = 0 (3)

where

a1 = −
{
r N∗

(
1 − N∗

k1

)
+ αbN∗P∗

(a + bN )2

}
,

a2 = r N∗(N∗ − k2)

k1
,

a3 = aα2βN∗P∗

(a + bN∗)3
. (4)

If the coexisting equilibrium exists, then a1 < 0, a2 >

0, a3 > 0.
Since Eq. (3) is a transcendental type, two cases may arise

for different values of τ , as discussed below.

2.1.1 Case I: � = 0

For τ = 0, Eq. (3) becomes a quadratic equation of λ and
takes the form

λ2 + (a1 + a2)λ + a3 = 0. (5)

Solving Eq. (5), we obtain

λ = −(a1 + a2) ± √{(a1 + a2)2 − 4a3}
2

. (6)

Now, if
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(i) (a1 + a2) > 0 and a3 > 0, then Eq. (5) has roots with
negative real part and the system becomes locally asymptot-
ically stable.

(ii) (a1 + a2) < 0, then the system becomes unstable.

2.1.2 Case II: � �= 0

If τ �= 0, putting λ = iω in Eq. (3), we get

− ω2 + ia1ω + ia2ωe
−iωτ + a3 = 0. (7)

Then separating the real and imaginary parts of Eq. (7), we
obtained

− ω2 + ωa2sin(ωτ) + a3 = 0,

a1ω + a2ωcos(ωτ) = 0. (8)

Squaring and adding two equations of (8), we get

ω4 + (a21 − a22 − 2a3)ω
2 + a23 = 0. (9)

Equation (9) has two positive roots as

ω± =

√√√√−(a21 − a22 − 2a3) ±
√

(a21 − a22 − 2a3)2 − 4a23
2

,

(10)

if the conditions a21 − a22 − 2a3 < 0 and (a21 − a22 − 2a3)2 −
4a23 > 0 are satisfied.

From Eq. (8), we obtain τ±
n (n = 0, 1, 2, ...) correspond-

ing to each ω± as

τ±
n = 1

ω±
arccos

(
−a1
a2

)
+ 2nπ

ω±
, n = 0, 1, 2, 3, ... (11)

From these analyses, we observe that one or more pairs
of eigenvalues must present for which zero real part exists
at τ = τ±

n . Now we will check the changing of the real part
when τ passes through τ±

n . The rate of change of the real part
of eigenvalue at τ±

n is called the transversality condition.
Now,

(
d(Reλ)

dτ

)−1

|τ=τ±
n

= ω4 − a23
ω2{(ω2 − a3)2 + a21ω

2}
and

sign

(
d(Reλ)

dτ

)−1

|τ=τ±
n

= sign(ω4 − a23).

Therefore,

d(Reλ)

dτ
|τ+

n
> 0

and

d(Reλ)

dτ
|τ−

n
< 0.

These two conditions tell us that if the real part of any
eigenvalue is zero either at τ+

n and τ−
n , then the real part of

eigenvalues becomes positive and negative when τ increases
toward τ+

n and τ−
n , respectively, and thus Hopf-bifurcation

occurs at τ±
n .

Now we want to find the number of eigenvalues that
crosses the imaginary axis of λ. For this purpose, we will
prove the following lemma.

Lemma 1 The characteristic equation F(λ, τ ) = λ2+a1λ+
a2λe−λτ + a3 = 0, where a1 < 0, a2 > 0, and a3 > 0, has
simple roots on the imaginary axis.

Proof If possible let λ = iω is the root of F(λ, τ ) = 0 and
all roots are not simple. So ∂F

∂λ
|λ=iω = 0 i.e., 2λ + a1 +

a2e−λτ (1 − λτ) = 0. Substituting the value of λ = iω and
e−λτ in F(λ, τ ) = 0, we obtain a1 = 3

τ
> 0. This leads to

the contradiction of our assumption that roots are not simple.
Hence the roots are simple. ��

It also follows from the above lemma that the eigenvalues
pairwise cross the imaginary axis at each τ+

n and τ−
n .

Remark 1 As ω− < ω+, τ−
n+1 − τ−

n = 2π
ω− > 2π

ω+ = τ+
n+1 −

τ+
n for n = 0, 1, 2, ...
The above condition shows that at least one of the τ+

series will be less than from τ− series for an unharvested
system.

Theorem 1 If a1 + a2 > 0 and τ+
0 < τ+

1 < τ−
0 , then the

system shows stable nature in [0, τ+
0 ), and Hopf-bifurcation

occurs at τ+
0 and unstable for all τ > τ+

0 .

Proof Assume the condition a1 + a2 > 0 in Eq. (3), and
τ+
0 < τ+

1 < τ−
0 holds. When there is no delay, system (2)

is stable since both the eigenvalues will have a real negative
part. Now if we increase the delay, then λ = iω+ will be
the simple eigenvalue at τ = τ+

0 (see Lemma 1). Since the
eigenvalues will be in the complex conjugate, there exists a
pair λ = ±iω+ at τ+

0 .
When the transversality condition is satisfied at τ = τ+

0 ,
above-mentioned pair of eigenvalues crosses the imaginary
axis and consists positive real part for increasing delay toward
τ+
0 , and the system turns unstable.
Corresponding to delay at τ+

1 , there exists a pair of eigen-
valueλ = ±iω+. Here the transversality condition at τ = τ+

1
suggests that these eigenvalues cross the imaginary axis pair-
wise. Thus, when the delay is greater than τ+

1 , the pair of
eigenvalues have the positive real part, so the systembecomes
unstable.
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As discussed above, a pair of eigenvalue λ = ±iω− exists
at τ−

0 . Due to the transversality condition, the pair of eigen-
values cross the imaginary axis, and the real part becomes
negative. However, the eigenvalues stay with a positive real
part when increasing delay passes through τ = τ+

1 and insta-
bility occurs.

At every τ+
n or τ−

n , the imaginary axis is crossed by only
one pair of eigenvalues, and there is no possibility of occur-
rence of two successive τ−

n (seeRemark 1); instability always
occurs for delay τ > τ+

0 . ��
Example 2.1 Now taking parameter set as: r = 0.007, k1 =
157, k2 = 5, a = 9, b = 0.007,m = 0.13, α = 0.6, β =
0.02 in system (1), the interior steady state of the system
becomes (105.50,3.74). Here the values of τ+

0 = 2.17, τ+
1 =

15.95 and τ−
0 = 16.26. It is observed that the system is stable

for τ ∈ [0, 2.17) and unstable for all τ > 2.17.

Theorem 2 If a1 + a2 > 0 and 0 < τ+
0 < τ−

0 < τ+
1 <

τ−
1 < ... < τ+

k < τ+
k+1 < τ−

k < ... for some k ∈ Z
+,

then switching occurs in k times from stable to unstable, then
stable and finally for τ > τ+

k system moves to unstable state.
Also at τ = τ±

n , Hopf-bifurcation occurs.

Proof Let us first consider three orders in given inequality
τ+
0 < τ−

0 < τ+
1 , where τ+

0 , τ−
0 and τ+

1 are the Hopf-
Bifurcation points. The system exhibits stable behavior at
τ = 0 since the real part of the eigenvalue is negative.
When delay is increased, a pair of purely imaginary roots
λ = ±iω+ of (5) exists at τ+

0 . At τ+
0 , the transversality con-

dition determines the positive real part of the eigenvalues
appeared for the pair mentioned above with increasing delay
through τ+

0 . So, the system will no longer persist in a stable
state. Again for increasing τ , there corresponds to a purely
imaginary root at τ−

0 . The transversality condition at τ−
0 sug-

gests two eigenvalues with positive real part, which possess
purely imaginary eigenvalue at τ−

0 . But it has a negative real
part when τ crosses τ−

0 . This leads to the stability of the
model. So, stability switching occurs (i.e., stable to unstable
and then stable) at the positive equilibrium of system (1) with
increasing delay.

Likewise, for every other τ ≤ τ−
k , the stability switching

will be continued τ < τ+
k , and the number of switching is k.

If the delay parameter satisfies τ+
k < τ+

k+1 < τ−
k , the argu-

ments in Theorem 1 tell that the system is always unstable
for τ > τ+

k . ��
Example 2.2 Now we consider the parameter set as: r =
0.005, k1 = 150, k2 = 5, a = 9, b = 0.002, α = 0.7, β =
0.02,m = 0.12 in model (1). Then coexisting equilibrium
(78.49, 2.29) of the non-delayed system is asymptotically
stable. When τ increases, the system experiences five sta-
bility switching from stable to unstable and then stable, and
there exists τ+

5 such that the system becomes unstable for

all τ > τ+
5 . The delays τ±

n , (for n = 0, 1, 2, ...5) are given
below.

τ+
0 = 0.95 τ−

0 = 1.15

τ+
1 = 40.50 τ−

1 = 49.47

τ+
2 = 80.05 τ−

2 = 97.78

τ+
3 = 119.60 τ−

3 = 146.09

τ+
4 = 159.16 τ−

4 = 194.40

τ+
5 = 198.71 τ−

5 = 242.71

τ+
6 = 238.26

From the above explanation, we can state that system (1)
becomes stable for τ ∈ (0, τ+

0 ) ∪ (τ−
0 , τ+

1 ) ∪ (τ−
1 , τ+

2 ) ∪
(τ−

2 , τ+
3 ) ∪ (τ−

3 , τ+
4 ) ∪ (τ−

4 , τ+
5 ), and unstable for τ ∈

(τ+
0 , τ−

0 ) ∪ (τ+
1 , τ−

1 ) ∪ (τ+
2 , τ−

2 ) ∪ (τ+
3 , τ−

3 ) ∪ (τ+
4 , τ−

4 ) ∪
(τ+

5 ,∞), and experiences Hopf-bifurcation at τ = τ±
n , (n =

0, 1, 2, ..., 5).

The impacts of Allee threshold
The Allee threshold has different influences on dynamic
system (1). Due to the change of Allee threshold k2, the equi-
librium component of (N∗, P∗), the positive roots ω±, and
the corresponding τ±

n are changed. It is given as follows:

Let us consider K = −(a21−a22−2a3)√
(a21−a22−2a3)2−4a23

and z =
−a1

a22

√
1−(

a1
a2

)2
which are positive, since a21 − a22 − 2a3 < 0

and a1 < 0. We have da2
dk2

< 0 (from (4)).
Now,

dω+
dk2

= a2
2ω+

(1 + K )
da2
dk2

< 0,

dω−
dk2

= a2
2ω−

(1 − K )
da2
dk2

<,=, or > 0 according as

K <,=, or > 1,
dτ+

n

dk2
= 1

ω+

[
z + a2

2
(arccos(−a1/a2) + 2nπ)(1 + K )

]

da2
dk2

< 0,

dτ−
n

dk2
= 1

ω−

[
z + a2

2
(arccos(−a1/a2) + 2nπ)(1 − K )

]

×da2
dk2

{
<0, ifK <1
>0, ifz+ a2

2 (arccos(−a1/a2)+2nπ)(1−K )<0

}
.

Thus, from the above conditions, we can say that ω+ and
τ+
n will always decrease with the Allee threshold. But, the
increase or decrease ofω− and τ−

n depends on the conditions
as given above.
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2.2 Harvesting impacts on delaymodel

Harvesting has a strong impact on the dynamics of any
ecological system of interacting species. Depending on the
harvesting strategy on different trophic level, the long-run
stationary biomass of the coexisting population may be
unstable and ultimately goes to extinction. But most of the
ecological models of interacting species with time delay
are analyzed, taking delay as a control parameter. Being
time delay is an inherent factor and changes on a very slow
timescale, especially for harvested systems, we should con-
sider harvesting effort as a control parameter to regulate the
system. We will study the harvesting impacts on the delay
system with this motivation.

2.2.1 Prey harvesting

Considering the harvesting of prey species, the model
becomes

dN

dt
= r N

(
1 − N (t − τ)

k1

)
(N − k2) − αN P

a + bN
− E1N

dP

dt
= βαN P

a + bN
− mP (12)

where E1 is the harvesting effort of the prey species.
The steady states are (0, 0), (N∗, P∗)
where N∗ = ma

αβ−mb , P
∗ = (a+bN∗)

α
{ r
k1

(k1 − N∗)(N∗ −
k2) − E1}.

Now (N∗, P∗) exists if αβ − mb > 0 and 0 < E1 <
r
k1

(k1 − N∗)(N∗ − k2).
Linearize system about the equilibrium point becomes

u̇ =
{
r N∗

(
1 − N∗

k1

)
+ αbN∗P∗

(a + bN )2

}
u − αN∗

a + bN∗ v

−r N∗(N∗ − k2)

k1
u(t − τ)

v̇ = βαaP∗

(a + bN∗)2
u. (13)

Considering

a1 = −
{
r N∗

(
1 − N∗

k1

)
+ αbN∗P∗

(a + bN )2

}
,

a2 = r N∗(N∗ − k2)

k1
,

a3 = aα2βN∗P∗

(a + bN∗)3
, (14)

we get

ω±(E1)=

√√√√−(a21 − a22 − 2a3) ±
√

(a21−a22−2a3)2−4a23
2

,

(15)

if the conditions a21 − a22 − 2a3 < 0 and (a21 − a22 − 2a3)2 −
4a23 > 0 are satisfied,

τ±
n (E1) = 1

ω±
arccos

(
−a1
a2

)
+ 2nπ

ω±
, n = 0, 1, 2, 3, ...

(16)

Theorem 3 If τ+
n (E1) is increasing function of effort and

unharvested system (1) incorporates delay T in the range
(0, τ+

0 (0)), then harvesting of prey species cannot effect the
stability of the model system.

Proof Let τ+
n (E1) is an increasing function of harvesting

effort. If we consider a delay T ∈ (0, τ+
0 (0)), the sys-

tem remains stable. Since τ+
0 (E1) is increasing function

with increasing harvesting effort E1, T ∈ (0, τ+
0 (0)) ⊆

(0, τ+
0 (E1)). Thus, harvesting effort cannot break the sta-

bility nature of the system. ��
Now if we take a parameter set satisfying the condition

τ+
0 (0) < τ+

1 (0) < τ−
0 (0), then the system cannot experience

stability switching. So we may state that delay is the cause of
instability of the unharvested system. The above description
gives a clear notion that for the delay T ∈ (0, τ+

0 (0)), prey
harvesting does not affect its stability. Sowe need to study the
stability behavior for delay exceeding τ+

0 (0) due to harvest.
The related results are stated in the following theorem.

Theorem 4 If τ+
n (E1) is an increasing function, then for the

above parametric restrictions, two cases arise as follows:
(i) If the delay T ∈ (τ+

0 (0), τmax ), the instability of the
system can be removed with an appropriate harvesting effort,
and further increase of effort keeps the system stable. Here
τmax = limE1→E∗ τ+

0 (E1) and E∗ = r
k1

(k1−N∗)(N∗−k2),
where N∗ = ma

αβ−mb .
(ii) If the delay T > τmax , any harvesting effort cannot

stabilize the system.

Proof (i) When population of prey species is subject to
harvesting, system shows stability for every (E1, T ) ∈
(0, E∗)×(0, τ+

0 (E1)) and instability for (E1, T ) ∈ (0, E∗)×
(τ+

0 (E1),∞). Now, consider the delay T ∈ (τ+
0 (E1), τmax ).

As τ+
0 (E1) increases with increasing effort E1, the co-

ordinate (E1, T ) in the region (0, E1) × (τ+
0 (E1), τmax ),

may move to the region (0, E∗)× (0, τ+
0 (E1)), for any small
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Fig. 1 Depicted increasing effort curves τ = τ±
n (E1). Stability region

shown in E1 − τ±
n plane with respect to harvesting effort

change of effort, beyond the critical level (i.e., the effort for
which just cross the curve τ = τ+

0 (E1)). Thus the system
has a stable state.

(ii) If we consider delay T > τmax , then the arbitrary co-
ordinate cannot enter into the region (0, E∗)×(0, τ+

0 (E1) by
changing harvesting effort. Thus the system stays unstable
state for any effort. ��

Consider the parameter set as in Example. 2.1. For the
existence of interior equilibrium, effort must lie in the range
(0, 0.23). The horizontal black line specifies τ = τmax . The
red dashed curves are plotted for τ = τ−

0 (E1) in Fig. 1.
Remaining solid curves represent τ = τ+

0 (E1),τ = τ+
1 (E1).

The region enclosed by τ = τ+
0 (E1) and E1-axis is the sta-

bility region, and the whole region after τ = τ+
0 (E1) is

the instability region. It is seen that if T lies in the inter-
val (0, τ+

0 (0)), then the coordinate (E1, T ) always be in
the region of stability for any effort E1 lies in (0, 0.23)
(as Theorem 3). Here τmax = 2.54. It is seen that for
T ∈ (τ+

0 (0), τmax ), the co-ordinate (E1, T ) lies in the unsta-
ble region bounded by τ = τ+

0 (E1) and τ = τmax for a
smaller effort level. However the co-ordinate enters into the
stability region for increasing effort as stated in Theorem
4(i) and for T > τmax , the point (E1, T ) lies in the unstable
region for all possible harvesting effort as stated in Theorem
4(ii).

This analysis states that when the system is harvested, it
cannot change stable behavior if the unharvested system is
stable. Also, when the delay is more significant than τmax

(i.e., T > τmax ), prey harvesting cannot change the insta-
bility behavior. But, when the delay is of moderate length

(i.e., τ+
0 (0) < T < τmax ), the system becomes stable when

the effort crosses the critical level, i.e., the effort for which
coordinate (E1, T ) moves from unstable to stable region.

Now we will seek the effect of harvesting when an
unharvested system leads to stability switching. We set the
parameters as in example 2.2 for system (12). We show that
there are having five stability switching (stable to the unsta-
ble region then back to stable region) due to delay of the
unharvested system. The system becomes unstable if we
increase the delay after five stability switches (see exam-
ple 2.2). The equilibrium will coexist if the effort E1 is in
the range (0, 0.17). Like previous analysis different curves
τ = τ±

n (E1) are shown in Fig. 2.
The dashed and solid curves in Fig. 2, respectively, rep-

resent τ = τ−
n (E1) and τ = τ+

n (E1), (n = 0, 1, 2, ...).
The region enclosed by first solid curve and E1− axis is
the stable region. The region between any solid curve and
the next dashed curve is the instability region. The region
between the dashed curve and the next solid curve is the sta-
ble region until they cut each other for increasing effort E1.
After crossing two curves, two solid curves will be appeared
simultaneously. These successive appearances of two solid
curves result in instability regions between the curves and
the regions above the curves, in this particular range of E1.
Let S1 is the region between E1− axis and τ = τ+

0 (E1),
the region between τ = τ+

n (E1) and τ = τ−
n (E1) named as

Un+1, the region between τ = τ−
n (E1) and τ = τ+

n+1(E1)

named as Sn+2(n = 0, 1...). We show the regions S1, S2, S3
are stable region andU1,U2 are unstable region until the two
τ = τ+

n (E1) and τ = τ+
n+1(E1) occurs successively giving

the instability regions.
The following stability nature is observed in Fig. 2 for

varying harvesting efforts with a fixed delay in system (12).
(a) If delay T ∈ (0, τ+

0 (0)) = (0, 0.95), the co-ordinate
(E1, T ) stays in the region S1 for any harvesting effort level.
Hence the system will be stable in that region.

(b) If delay T ∈ (τ+
0 (0), τ−

0 (0)) = (0.95, 1.15), the co-
ordinate (E1, T ) lies in the regionU1 till the harvesting effort
becomes large enough to force it for entering U1 region to
S1 region. Henceforth, when the harvesting effort is large,
it can remove the instability, and a simultaneous population
will exist at equilibrium.

(c) If delay T ∈ (τ+
0 (0), τ−

1 (0)) = (1.15, 40.50), the co-
ordinate (E1, T ) moves from stable region S2 to unstable
region U1 and then it is back to stable region S1 with the
increase of harvesting effort. The coordinate enters into the
region S1 when the harvesting effort is sufficiently close to
maximum effort E∗. Such kind of harvesting effort shows
a stable, steady state with low predator density. This kind
of region shifting signifies unharvested stable system can
be destabilized due to harvesting, but when effort further
increases back to a stable region. Thus one stable switching
arises for the increase of harvesting effort.
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Fig. 2 Region between τ = τ+
n (E1) (solid) curve and τ = τ−

n (E1)

(dashed) curve is the stable region Sn and unstable region Un

(d) If delay T ∈ (τ+
1 (0), τ−

1 (0)) = (1.15, 40.50), the
co-ordinate (E1, T ) moves from unstable region U2 to sta-
ble region S2 and then back to unstable region U1 with the
increase harvesting effort. This kind of region shifting sig-
nifies an unstable unharvested system that can be stabilized
due to harvesting, but when effort further increases back to
an unstable region. Thus one unstable switching arises with
increasing harvesting effort.

(e) If delay T ∈ (τ−
1 (0), τ+

2 (0)) = (40.50, 49.47), suc-
cessive moving of the coordinate (E1, T ) passes through the
regions S3,U2, S2 and U1 as the harvesting effort increases.

(f) If T > τ+
max (E

′) where E
′ ∈ (0, E∗), then the sys-

tem remains in unstable state for all harvesting effort. Here
τ+
max (E

′) is themaximumof all τ+
k (E ′) for k ≤ 5, the switch-

ing number of the system for every E1. It is the case that is
observed in Theorem 4(ii).

2.2.2 Influence of Allee threshold on prey harvesting

The Allee effect makes the dynamics more sensitive and
accurate to understand the dynamical configuration better.
The conditions of local stability with an analytical approach
show that all are a function of the Allee threshold in prey
harvesting. From Eq. (4), (10), and (11), we must say τ±

n =
τ±
n (k2). We are considering the same parameter set as in
Example 2.2 and observe the dynamical changes with the
Allee threshold k2 = 0.001, 2, 3, 4.5, 5, 5.5 in Fig. 3.

When Allee threshold k2 increases (or decreases) for the
above parameter set as in example 2.2, the pre-harvested sys-
tem shows the following observations:

(i) Both τ+
0 and τ−

0 decreases (or increases).

(ii) Each τ+
n , n ∈ N increases (or decreases) and τ−

n , n ∈
N decreases (or increases).

(iii) The length of harvesting effort decrease (or increase).
Thus, we can say that when the Allee threshold increases,

then each of τ+
0 and τ−

0 decreases for the pre-harvested sys-
tem. Also, fromFig. 3, we observe that all the curves increase
when the harvesting effort range increases. It means first sta-
ble region in between E1−axis and curves τ = τ+

0 (E1) and
the first unstable region enclosed by the curve τ = τ+

0 (E1)

and τ = τ−
0 (E1) are decreased for increasing threshold.

When delay change is very less, then the area of the first sta-
ble region of the system decreases for increasing the Allee
threshold. In other words, when the Allee threshold is very
less or closer to zero, the first stable regionwill be greater than
the other region for different thresholds. Again when Allee
threshold increases then τ+

n , n ∈ N increases and τ−
n , n ∈

N decreases for pre-harvested system. It means the traps
between the region enclosed by τ = τ−

n (E1), n ∈ N∪{0} and
τ = τ+

n (E1), n ∈ Nwill decrease up to a certain value of E1

where curves cross each other. Also, the number of switching
increases for increasing the Allee threshold. Since switching
times increase, the system becomes more sensitive, i.e., if we
choose a particular delay value and increase the effort range,
then for a slight change of effort system moves from stable
to unstable back to a stable region or unstable to stable back
to the unstable region.

2.2.3 Predator harvesting

In this section, we study the impact of predator harvesting
on model system (1). The model takes the form:

dN

dt
= r N

(
1 − N (t − τ)

k1

)
(N − k2) − αN P

a + bN
dP

dt
= βαN P

a + bN
− mP − E2P (17)

where E2 is the harvesting effort on the predator population.
The equilibrium points are (0, 0), (k1, 0), (k2, 0),

(N∗, P∗),
where N∗ = (m+E2)a

αβ−(m+E2)b
, P∗ = (a+bN∗)

α
{ r
k1

(k1 −
N∗)(N∗ − k2)}.

Coexisting equilibrium (N∗, P∗) exists if E2 <
αβ
b − m

and k2αβ
a+bk2

− m < E2 <
k1αβ
a+bk1

− m. But, k1αβ
a+bk1

− m =
αβ
b

a
bk1

+1 − m <
αβ
b − m.

Thus, the coexistence depends only on k2αβ
a+bk2

−m < E2 <
k1αβ
a+bk1

−m. Since the harvesting effort cannot be negative, the

conditions become max{0, k2αβ
a+bk2

− m} < E2 <
k1αβ
a+bk1

− m
and k1 > ma

αβ−mb .
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Fig. 3 Stability switchings are shown for different Allee thresholds k2 = 0.001, 2, 3, 4.5, 5, 5.5 due to an increase in harvesting effort

The linearized form of model (17) about the coexisting
equilibrium takes the form:

u̇ =
{
r N∗

(
1 − N∗

k1

)
+ αbN∗P∗

(a + bN )2

}
u − αN∗

a + bN∗ v

−r N∗(N∗ − k2)

k1
u(t − τ),

v̇ = βαaP∗

(a + bN∗)2
u. (18)

Assuming

a1 = −
{
r N∗

(
1 − N∗

k1

)
+ αbN∗P∗

(a + bN )2

}
,

a2 = r N∗(N∗ − k2)

k1
,

a3 = aα2βN∗P∗

(a + bN∗)3
,

(19)

we find

ω±(E2)=

√√√√−(a21−a22−2a3) ±
√

(a21−a22−2a3)2−4a23
2

,

(20)

if the conditions a21 − a22 − 2a3 < 0 and (a21 − a22 − 2a3)2 −
4a23 > 0 are satisfied,

τ±
n (E2) = 1

ω±
arccos

(
−a1
a2

)
+ 2nπ

ω±
, n = 0, 1, 2, 3, ...

(21)

Here,we obtain separate set of valuesω±(E2) and τ±
n (E2)

based on the harvesting effort level E2. Now the impact of
predator harvesting is considered in two separate cases.

Case 1: When stability switching does not happen in
unharvested system

In this case, if the delayed, unharvested system experi-
ences instability, the system cannot regain its stability for
increasing delay. In other words, there exists a τ+

0 (0), such
that system remains stable for τ < τ+

0 (0) and unstable for
τ > τ+

0 (0) through a Hopf-bifurcation at τ = τ+
0 (0). We

observe from Fig. 4 that the curve τ = τ+
0 (E2) decreases for

coexisting effort range.
For the parameter set as in example 2.1, it results as

τ+
0 (0) < τ+

1 (0) < τ−
0 (0). The coexisting equilibrium exists

in the harvesting effort range (0, 0.06). The blue curve in
Fig. 4 represents τ = τ+

0 (E2), which decreases with the
increasing harvesting effort. The black curves represent τ =
τmax and τ = τ+

0 (0), where τmax = limE2→0.06 τ+
0 (E2).

The region between E2− axis and τ = τ+
0 (E2) is stable, and

the region exceeding upward after τ = τ+
0 (E2) is unstable.
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Fig. 4 Stability and instability region separated by the curve τ =
τ+
0 (E2). Stable to unstable change is shown with increasing effort

The simulated results on the above example are discussed
below based on the range of T .

(a) If delay T exists in the region (0, τmax ), the co-ordinate
(E2, T ) lies in the stability region for all harvesting effort,
as shown in Fig. 4. Hence harvesting can not destabilize the
system.

(b) If delay T ∈ (τmax , τ
+
0 (0)), the co-ordinate (E2, T )

lies in a stable region for a small harvesting effort. But with
the increased effort, it will enter the unstable region. Thus,
a stable unharvested system forever moves to an unstable
region with increasing harvesting effort.

(c) If delay T > τ+
0 (0), the co-ordinate (E2, T ) will

always remain in unstable region. Hence, forever instabil-
ity will occur in this region with increasing effort.

The above analysis shows that we cannot stabilize the
system when the unharvested system is in an unstable mode.
Unlike in the case of prey harvesting in Fig. 1, where an
unstable system can be stabilized, predator harvesting shows
destabilizing effects.

Case II:When the unharvested system shows the stability
switching

Now we intend to study the harvesting effect in the case
when an unharvested system shows stability switching. Con-
sidering the same set of parameters as in example 2.2 for
unharvested system (1), five stability switchings are observed
due to delay. For harvested system, the harvesting effort E2

must lie in the range (0, 0.10) for coexisting equilibrium.
The solid and dashed curves represent τ = τ+

n (E2) and
τ = τ−

n (E2), (n = 0, 1, 2, ...), respectively, for increas-
ing harvesting effort (see Fig. 5). The region S1 enclosed by

Fig. 5 Only the curve τ = τ+
0 (E2) increases up to certain E2 and then

decreases, and the curve τ = τ+
n (E2), n > 0 (solid) is decreasing and

τ = τ−
n (E2), n ≥ 0 (dashed) is increasing with increasing effort and

stability switching occurs

E2−axis and the solid blue curve τ = τ+
0 (E2) is the sta-

ble region for all harvesting effort. The region covered by
any solid curve and succeeding dashed curve is the region
of instability. The region covered by the dashed curve and
succeeding solid curve is the stable region till they intersect
with increasing effort. After the intersection of two curves,
there simultaneously present two solid curves. This succes-
sive presence of two solid curves is the instability region
between the curves and regions above the curve for increas-
ing effort E2. The explicit discussion follows in Figs. 5 and
6.

In Fig. 5 the closed regions S1,U1,S2,U2, U3 are defined
as follows.

(a) S1 is the stable region enclosed by E2−axis and τ =
τ+
0 (E2). (b) U1 is the unstable region between τ = τ+

0 (E2)

and τ = τ−
0 (E2). (c) S2 is the stable region enclosed by

τ = τ−
0 (E2) and τ = τ+

1 (E2) up to crossing each other. (d)
U3 is the region of instability as it is the region above the
crossing of curves τ = τ−

0 (E2) and τ = τ+
1 (E2). (e) U2 is

the unstable region enclosed by τ = τ+
1 (E2),τ = τ−

0 (E2),
τ = τ+

2 (E2), and τ = τ−
1 (E2).

In Fig. 6 the closed regions S21, U11, S22,U12, S12 are
defined as follows. (a) S21 is the stable region enclosed by
τ±
n − axis, τ = τ+

0 (E2), and τ = τmax . (b)U11 is the unstable
region enclosed by τ±

n − axis, τ = τ+
0 (E2), τ = τ−

0 (E2),
and τ = τmax . (c) S22 is the stable region enclosed by τ±

0 −
axis, τ = τ−

0 (E2), τ = τmax , and τ = τpeak . (d) U12 is the
unstable region enclosed by τ = τ+

0 − axis, τ = τ−
0 (E2),

τ = τmax , and τ = τpeak . (e) S12 is the stable region enclosed
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Fig. 6 The curve τ = τ+
0 (E2) increases up to τpeak and decreases up

to τmax with increasing effort. The different harvesting effort induces
switching of stability

by τ = τ+
0 (E2) and τ = τmax ; U13 is the unstable region

enclosed by τ = τ+
0 (E2) and τ = τpeak .

Nowwe observe in Fig. 6 that if the delay T ∈ (0, τ+
0 (0)),

the system always experiences stable behavior, which is also
observed in the previous case of predator harvesting (see
Fig. 4).

Harvesting-induced stability switching may be described
as follows:

(a) If delay T ∈ (τ−
0 (0), τmax ), where τmax =

limE2→0.10 τ+
0 (E2), the co-ordinate (E2, T )moves from sta-

ble region S21 to unstable region U11 with increasing effort;
further, increase of effort enters to stable region S11. So, a
switching of stability occurs for effort increasing (see Fig. 6).

(b) If delay T ∈ (τmax , τpeak), where τpeak =
max(τ+

0 (E2)), the co-ordinate (E2, T ) moves from stable
region S22 to unstable region U12 for a small increase of
effort. Then, it enters a stable region S12 for further increase
of effort. So, stability switching occurs for a certain value of
E2 between the maximum effort. Again if effort increases
the co-ordinate fall on unstable region U13, also a unsta-
ble switching U12 to S12 to U13 occurs. In this effort, the
range system becomes unstable with the combination of sta-
ble and unstable switching with increasing harvesting effort
(see Fig. 6).

2.2.4 Influence of Allee threshold on predator harvesting

Like prey harvesting, as mentioned earlier, the Allee effect
has an important role in dynamics, making the model more
sensitive and accurate to understand the dynamical configu-

ration much better for predator harvesting. In the analytical
approach to local stability, all the conditions are functions
of the Allee threshold for predator harvesting. We are con-
sidering the same parameter set as in example 2.2 and
observe dynamical changes with the Allee threshold k2 =
0.001, 1, 3, 4, 5, 5.5. We obtain the same length of harvest-
ing effort as the co-existing equilibrium exists for harvesting
effort E2 ∈ (0, k1αβ

a+bk1
− m), independent of k2. Also, obtain

the same set of switching times for the pre-harvested sys-
tem discussed in the influence of prey harvesting. For the
pre-harvested system, all τ±

n start from the same position.
Here we get the harvesting effort E2 ∈ (0, 0.10). All the

curves τ = τ+
n (E2), n ∈ N (see Fig. 7) decrease, while the

curve τ = τ+
0 (E2) first increases up to certain level of effort

E2 and then decreases with further increase of effort. Also
the curves τ = τ−

n (E2), n ∈ N∪{0} (see Fig. 7) increase for
increasing harvesting effort. For k2 = 0.001, 1, 3, 4, 5, 5.5,
we get different number of switching 2, 2, 3, 3, 5, 8 respec-
tively in Fig. 7 respectively. But when k2 increases with
increasing harvesting effort, we observe that region of traps
between τ = τ−

n (E2), n ∈ N ∪ {0} and τ = τ+
n (E2), n ∈ N

decreases. When the Allee threshold is closer to the ori-
gin, the area of the region between E2− axis and curve
τ = τ+

0 (E2) increases in Fig. 7. Also, when the Allee thresh-
old k2 increases, the switching number increases, and the
system becomes more sensitive. Thus increasing the Allee
threshold makes the sensitivity of the system of predator
harvesting very high rather than prey harvesting. However,
the trapping region is closer to the τ±

n axis for increasing
the threshold. So in the case of predator harvesting, the
whole switching region is significantly less compared to prey
harvesting when k2 increases. Hence for increasing k2, the
system always moves to the instability region very fast.

2.2.5 Maximum sustainable yield

MSY is a maximum sustainable level of yield and exceeds
of which reduces population level and ultimately population
goes to extinction. The existence ofMSY is possiblewhen the
equilibrium point is a function of effort as N∗ = N∗(E1) for
prey harvesting and P∗ = P∗(E2) for predator harvesting.
However, in the case of prey harvesting, N∗ is not a function
of E1. Hence MSY does not exist for prey harvesting. Only
predatorMSY is possible. In this section,we study the impact
of MSY policy on the system due to predator harvesting.

For interior steady state of system (17), the effort E2 must
lie in the range (0, k1αβ

a+bk1
− m).

The yield at that equilibrium is:

y(E2) = E2P
∗ = E2

(
a + b (m+E2)a

αβ−(m+E2)b

)
α
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Fig. 7 Impacts of Allee threshold k2 on stability switching for k2 = 0.001, 1, 3, 4, 5, 5.5

(
r

k1

(
k1− (m+E2)a

αβ−(m+E2)b

) (
(m+E2)a

αβ−(m+E2)b
−k2

))
.

We determine the EMSY
2 for which both the species coexist.

Themain goal is to determinewhether the system’s dynamics
will be stable in (0, EMSY

2 ) or not. We plot a vertical line
with numeric value EMSY

2 = 0.03 in E2 − τ± plane along
the curve τ = τ+

0 (E2).
The line EMSY

2 = 0.03 and curve τ = τ+
0 (E2) intersect

at (EMSY
2 , τ ∗) as shown in Fig. 8. The stability phenomenon

is discussed as follows:
(i) If delay T < τ ∗ in an unharvested system, then positive

equilibriumwill be stable. For such a case, harvesting atMSY
produces a stable stock.

(ii) If delay T lies in the range (τ ∗, τ+
0 (0)) in the unhar-

vested system, then the positive equilibrium is stable also.
In such a case, harvesting at MSY does not produce a stable
stock.

(iii) If delay T > τ+
0 (0) in the unharvested system, the

positive steady state will be in an unstable region, and the
equilibrium stock toward the MSY level will be unstable.

So, we cannot assert that the system will sustain stable
behavior toward the maximum yield when the pre-harvested
system is stable. In other words, MSY does not exist stable
state when the pre-harvested system is unstable. The same
kind of scenario happens when we treat a more complex
parametric situation corresponding to Fig. 6. Although, for
a more complex case, we show that predator harvesting at
MSYmoves into stabilitywhenever the pre-harvested system

Fig. 8 The solid blue curve represents τ = τ+
0 (E2), and the red vertical

line represents E2 = EMSY
2 . The below portion of curve τ = τ+

0 (E2) is
the stability region. It shows that system may lose stability at the MSY
level

experiences unstable behavior. Here the yield is at EMSY
2 =

0.06. If the delay T lies in the range (τ+
0 (0), τ−

0 (0)), then
the system moves from unstable region to stable region up
to stable stock. Also one interesting result observed here is
that, if delay T lies in (τ−

0 (0), τmax ), the co-ordinate (E2, T )
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moves from the stable region S21 to unstable region U11 and
again reaches to stable region S11 up to EMSY

2 for employing
effort. If delay T is in the range (τmax , τpeak) then the co-
ordinate (E2, T ) moves from stable region S22 to unstable
regionU21 and ultimately reaches to stable region if T < τ ∗,
but for T > τ ∗ will be unstable stock.

3 Discussion and conclusion

In this study, we investigate the explicit impact of harvesting
on a delayed predator–preymodel with theAllee effect. First,
we study the dynamics of unexploited system (1). The delay
parameter τ is taken to investigate the impacts on the stabil-
ity of system (1). Subsequently, we study the dynamics of
the delay model with individual harvesting, namely systems
(12) and (17). Two classic properties of real-life populations
are the Allee effect and time delay. Most of the theoretical
studies were done using instantaneous non-delayed models
[25, 64] neglecting the interplay between the time delay and
the Allee effect which is poorly understood. In our research,
we found that the interplay between the Allee effect and time
delay can result in complex dynamics.Herewe have explored
how the interplay between the effects of delay and the Allee
effect can shape the population dynamics in a predator–prey
system with harvesting. Our model shows that prey exploita-
tion has different influences depending on the delay-induced
dynamics mode for the pre-harvested system. Some explicit
impacts are as follows.

i In case of smaller time delay, when the pre-harvested
system is stable, harvesting cannot destabilize the system.

ii In case of a moderate time delay, when the pre-harvested
system is unstable, a significant harvesting effort may
stabilize the system.

iii In case of a higher time delay when the pre-harvested
system is unstable, the harvesting effort may not stabilize
the system.

iv In case of fixed timedelay,when the pre-harvested system
is stable, harvesting can induce stability switching.

v In case of fixed timedelay,when the pre-harvested system
is unstable, harvesting can induce instability switching.

Some explicit impacts of predator exploitation on the
delay-induced dynamic mode of the pre-harvested system
are as follows.

i In case of a smaller time delay, when the pre-harvested
system is stable, predator harvesting may not change the
stability as for prey harvesting case.

ii In the case of the moderate time delay, when the pre-
harvested system is stable, an increasing effort may

destabilize the system. In the case of prey harvesting,
such a result does not occur.

iii In case of a significant time delay when the pre-harvested
system is unstable, then harvesting may not stabilize the
system.

iv Similar to prey harvesting, predator harvesting also pro-
duces stability switching.

v In case of fixed timedelay,when the pre-harvested system
is stable, harvesting can induce stability switching aswell
as instability switching.

It is observed that prey and predator harvesting has distinct
impacts on the system.

Another important observation of prey and predator har-
vesting is in different dynamical changes with delay-induced
switching for different Allee thresholds. In both cases, the
delay-induced switching region increases with increasing the
Allee threshold. However, the prey harvesting region is more
significant than predator harvesting. So for a high threshold,
little change in predator harvesting range makes the system
unstable. Nevertheless, in the case of prey exploitation, the
system always becomes unstable after a specific range of
harvesting.

Also, we studied the MSY in the presence of the Allee
effect and delay for the non-equilibrium steady state due to
predator harvesting. We observe the following results.

i In case of smaller time delay, when the pre-harvested
system is stable, then the system moves to stable stock at
MSY level.

ii In case of a larger time delay, the system may not yield
stable stock towardMSY, while the pre-harvested system
is stable (see Figs. 6 and 8).

iii In case of a larger time delay, the systemmay yield unsta-
ble stock toward MSY, while the pre-harvested system is
unstable (see Fig. 6).

iv In case of a more significant time delay, the system
may yield stable stock at MSY by an intermediate stable
switching, while the pre-harvested system is stable (see
Fig. 6).

v In case of more considerable time delay, the system may
yield unstable stock at MSY by an intermediate stable
and unstable switching (see Fig. 6).

The future perspectives of our research may extend to the
reaction-diffusion phenomenon and stochasticity with ran-
dom parameters and a fractional approach. Also, we can use
the fear effect and different functional responses.
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