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Abstract
In this paper, new simple tuning rules for the fractional order PID controller cascaded with a first order lead compensator
are extracted analytically for standard transfer functions of time delay systems. The proposed direct synthesis controller is
designed to achieve exact desired frequency domain specifications with guaranteed iso-damping property. Furthermore, the
effect of the pure time delay is compensated locally around the gain crossover frequency point ωc using a direct inversion
of the proposed time delay approximation. In addition, the flexibility of the fractional order PID controller is exploited by
using specific structures that allow simplifying the derivation of explicit expressions of the five parameters from desired
specifications and the plant’s model. These special structures can be used either by deleting the proportional action or by
adding another integral or derivative action depending on the process transfer function. Tuning formulas are summarized for
ten types of standard transfer functions with illustrative examples which demonstrate the implementation simplicity of the
proposed tuning method with significant robustness and performance improvement.

Keywords Analytical design · Fractional order PID controller · Bode’s ideal loop transfer function · Iso-damping property ·
Time delay systems

1 Introduction

In recent years, fractional order control has attracted great
interest from the research community. In fact, several works
have proved that the use of the fractional concept in the
control systemfield offersmore improvement in terms of per-
formance and robustness of the closed-loop systems [1, 2].
The success achieved by the fractional order PID controller,
which is a generalization of the classical PID, is mainly due
to its flexibilitywhere it has twomore degrees of freedom that
can extend the control region. In addition, different approx-
imations techniques have been proposed to approximate the
fractional order operator by a rational transfer functions [3],
such as the two commonly used continuous approximations
proposed in [4] and [5],which allows an easy analog or digital
implementation of the fractional order controller. However,
the usage of the PIλDμ controller faces a real challenge,
mainly due to the tuning complexity of its parameters, where
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it has five instead of three as in the classical case. During the
last two decades, a lot of tuning methods have been proposed
in order to improve the performance and robustness of the
closed-loop system and facilitate the usage of such controller.
According to the review paper [1], these tuning methods are
divided into three categories: rules-based as in [6] and [7],
numerical as in [8–10], and analytical design techniques as
in [11, 12]. Analytical design techniques that derivate the
controller parameters as an explicit expression function of
the plant and desired closed-loop are the best-required tech-
niques from practical applications [13]. The advantages of
analytical design compared to numerical design are their sim-
ple implementation which gives the possibility to implement
it as online indirect adaptive control.

Time delay systems pose a real challenge for controller
designers. Indeed, the pure time delay decreases the system
phase linearly with respect to the frequency ω which can
reduce performance or destabilize the plant in a closed-loop
configuration. In addition, this delay causes a limitation in the
desired closed-loop system bandwidth [14] which forces the
designer to decelerate the system in order to maintain its sta-
bility. In general, the main difficulty can be found precisely
in the control of dominated dead time systemswhere the time
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delay is longer than the time constant of the plant [15]. In the
literature, many works used the fractional order control for
time delay systems as in [16]. Some of thesemethods consid-
ered the iso-damping property in the controller design such
as in [8, 17–19] and [20], where authors used a flat phase con-
dition described by the open loop derivative of the argument
to be equal to zero at the gain crossover frequency. However,
analytical methods are very limited in these variants such as
[6] where the tuning rules were extracted from the numerical
design technique and otherworks are proposed in [7] and [21]
where the tuning is based on frequency domain specifications
without verifying of the iso-damping property. In addition,
the research work presented in [22] where the iso-damping
property is loosed because of using an open loop function
that include a time delay. Using the same delayed Bode’s
loop transfer function, the work [23] proposed a new design
methodology for a special fractional order model with dead
time without consideration of the iso-damping property. A
robust controller has been proposed in [19] for the first order
plus time delay processes, where the frequency domain and
the time domain specifications are taken into consideration to
achieve an optimal controller. A recent analytical controller,
designed with fulfilling five frequency domain specifications
simultaneously, including the iso-dampingproperty, has been
proposed in [20] which is dedicated to first order normal-
ized plus time delay model where the tuning procedure is
a bit complex for a less-experienced controller designer. To
the extent knowledge of authors, there has been no research
work in the literature that proposed explicit analytical tuning
rules for time delay systems with guaranteed iso-damping
property.

In the present work, an analytical tuning method of the
fractional order controller for time delay systems is proposed.
This method consists in one hand, of compensating the sys-
tem poles by using the flexibility of the fractional PIλDμ

controller for the purpose of setting the closed-loop system
equivalent to the Bode’s ideal transfer function, and in the
other hand to compensate the pure time delay effect by using
a first order lead compensator in series with the PIλDμ con-
troller. The compensationof thepure timedelay is carriedout,
for the first time, using the direct inversion of a novel ratio-
nalminimumphase approximation around the gain crossover
frequency of the projected feedback system. The validity of
this approximation has been studied and a validity condi-
tion has been derived as a function of the selected system
bandwidth.

2 Bode’s Ideal loop transfer function
as referencemodel

Consider the fractional order system given by the following
transfer function [24]:

Fig. 1 Bode’s ideal loop

Gd(s) = 1

1 +
(

s
ωc

)m (1)

wherem andωc are real positive that gives the system’s order
and the gain crossover frequency.

This system includes several dynamics behaviors depend-
ing on its fractional order m, in the case of 1 < m < 2 its
presents an oscillation mode. System (1) is the closed-loop
transfer function of the fractional order integratorwith a static
gain equal to ωc

m as shown in Fig. 1.
The open loop transfer function L(s) is given as:

L(s) = 1(
s

ωc

)m (2)

Bode called the transfer function L(s), the ideal open loop
transfer function [25]. In the Bode diagram, themagnitude of
L(s) is a straight line with constant slop of -20mdB/dec, and
its phase curve is a horizontal line at −20mπ/2 rad, which
indicates that L(s) has important robustness against the static
gain variation (called the iso-damping property) where the
phase is independent to the gain crossover frequency. This
important characteristic motivated the majority of proposed
works in the literature, starting with the CRONE controller
[5], to use the system (1) as a reference system during the
fractional order controller design. This robustness property
is the main additional tangible advantage given by using the
fractional order control compared to the classical control con-
cept.

3 Problem formulation

Figure 1 shows the conventional control scheme of the SISO
system with unity feedback.

Gp(s) and C(s) are the transfer functions of the plant and
the fractional order controller, respectively.

The considered plant transfer function is given as:

Gp(s) = Gf(s) e
−θs (3)

where Gf(s) is the delay-free part of the plant transfer func-
tion, θ is time delay of the considered plant.

In order to design a closed-loop system has the iso-
damping property, it is necessary to satisfy the following

123



2412 N. Fergani et al.

Fig. 2 Unity feedback control system

desired open loop transfer function:

Go(s) = C(s)Gf(s)e
−θ s ≈ 1

(s/ωc)
m (4)

Mathematically, an equivalent open loop such as (2) needs
a special structure of the controller C(s) that can compensate
the effect of the exponential term. Unfortunately, the term of
exp (+ θs) is not realizable which imply that the design of
the exact Bode’s open loop cannot be achieved for time delay
systems.

Model-based tuning methods, which are divided into
the internal model (IMC) and the direct synthesis (DS)
approaches, are widely approximates the time delay part
either by the Padè approximation as in [26]:

e−θ s = 1 − θ/2 s

1 + θ/2s
(5)

or by the first order Taylor series approximation which is
given by:

e−θ s = 1 − θ s (6)

These two approximations has been used in [27] and [28]
where the IMC controller has not satisfied a flat phase due to
no minimum phase part which gives an unstable controller.
This problem has been avoided in [27] and [28], where the
IMC technique has been used and only the minimum phase
part has been taken in controller design (Fig. 2).

The commonly used Padé approximation (5) gives an
exactmagnitude for all frequency ranges but not for the phase
where the argument is an arctangent function of ω which
approximates the exact phase -θω around 0. Indeed, there is
no rational approximation that can give the exact phase of
-θω for all the frequency ranges.

The problem investigated in this paper consists of the
direct conception of the desired open loop of (4) for gen-
eral stable minimum phase plant given by (3).

4 Proposed controller design:

The condition (4) can be partially satisfied as follows:

The proposed controller is composed of two cascaded
parts as:

C(s) = Cm(s) Cn(s) (7)

The open loop transfer function is designed as:

(Cm(s)Gf(s))︸ ︷︷ ︸
≈ 1

(s/ωc)
m

(
Cn(s)e

− θs)
︸ ︷︷ ︸

≈1

≈ 1(
s/ωc

)m (8)

The first part Cm(s) is the fractional order controller that
satisfies the Bode’s ideal open loop for the delay-free sys-
tem Gf (s) and the second part Cn(s) is a rational minimum
phase transfer function that compensates the time delay effect
around the specific point s = jωc.

The proposed controller is designed using two steps:
Step1:Design q rational minimal phase approximation of

the pure time delay f(s) ≈ e-θs then, the compensator Cn(s)
is obtained as:

Cn(s) = 1

f(s)
(9)

in section (4.1) the details of this proposition is presented
with an illustrative simulation.

Step 2:Design the controller Cm(s) for the delay-free sys-
tem as follows:

Form equation (8), the controller Cm(s) is derived as:

Cm(s) = 1

(s/ωc)
m

1

Gf(s)
(10)

For a stable plant, this controller has a structure similar to
the fractional PID controller defined by [29]:

Cm(s) = kc + Ti

sλ
+ Tds

μ (11)

In Sect. (4.2), a general study of different cases for the
linear system Gf(s) will be presented with extraction of ana-
lytical tuning formulas of the five parameters (Kc, Ti, Td, λ
and μ) that satisfy equivalence between Cm(s)Gf(s) and the
fractional order integral 1/(s/ωc)m.

4.1 Design of the time delay compensator Cn(s)

4.1.1 Main result:

Theorem 1. Consider the following transfer function:

f (s) = g

(
1 + as

1 + bs

)
(12)

With b > a
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This transfer function is a lag compensator which gives a
negative phase in a specific frequency band (inferior to -45°
in [1/b 1/a]). Indeed, the pure time delay system e−θscan be
approximated around the specific point s= jωcby the rational
minimal phase transfer (12).

where the three parameters a, b and g are given by:

⎧⎪⎪⎨
⎪⎪⎩

a is chosen as 1/a >> ωc

b = 1
ωc
tan

{
tan−1(aωc) + θ ωc

}

g =
√

1+tan2{tan−1(aωc)+θ ωc}√
1+(aωc)

2

(13)

In order to obtain the same phase slope, the specific fre-
quency ωcmust be chosen with the following condition:

θ ωc ≤ 0.5 (14)

Proof. The transfer function of Eq. (12) is a lag compen-
sator, then it gives a negative phase inferior of -π/4 between
[1/b 1/a]. For this reason, the parameter a is a positive param-
eter chosen as 1/b<<1/a where the parameter b is generally
obtained around ωc, so the parameter a must satisfy the con-
dition.

The equivalence between the pure time delay e-θs and its
approximated function around s = jωc can be obtained by
satisfying the following three conditions:

⎧⎪⎨
⎪⎩

∣∣ f ( jωc)
∣∣ = ∣∣e− jωcθ

∣∣ = 1 (i)
� f ( jω)|ω=ωc

= � e− jωθ
∣∣
ω=ωc

= −θωc (ii)
d
dω

� f ( jω)
∣∣
ω=ωc

= d
dω

� e− jωθ
∣∣
ω=ωc

= −θ (iii)

(15)

Analytical resolution of condition (i) and (ii) allow to
obtain the two parameters b and g, the third condition (iii)
is considered as a constraint for choosing specific frequency
ωc.

Let two functions of ω A1(ω) and A2(ω), which are argu-
ment of (5) and (12), respectively, given as:

{
A1(ω) = arg(e−θ ω j) = − θ ω

A2(ω) = arg( f (ω j)) = tan−1(aω) − tan−1(bω)
(16)

The parameter b is chosen such as the following condition
is satisfied (ii):

A1(ω) |ω=ωc = A2(ω) |ω=ωc (17)

So:

tan−1(aωc) − tan−1(bωc) = −θωc (18)

⇒ b = 1

ωc
tan

{
tan−1(aωc) + θ ωc

}
(19)

Then, the parameter g is calculated for first condition (i):

| f ( jω)||ω=ωc
= 1 ⇔ g

(√
1 + (aωc)

2

√
1 + (bωc)

2

)
= 1

(20)

Which allow to derivate the parameter g as:

g =
(√

1 + (bωc)
2

√
1 + (aωc)

2

)
(21)

The condition (iii) must be verified for two reasons:

• The lead compensator gives a maximum negative phase
equal to -π/2 which imposes a first limitation in as θ ωc

≤ 1.57 where the slop in the phase curve at the limitation
point 1.57 is equal to 0.

• The objective of taking the same slop in the phase between
the pure time delay and its approximation.

LetA1’(ω) andA2’(ω) derivatives of tow functions of (16)
with respect to ω.

⎧⎪⎨
⎪⎩

A
′
1(ω) = − θ

A
′
2
(ω) = a

1 + (aω)2
− b

1 + (bω)2

(22)

A
′
2
(ωc) = a

1 + (aωc)
2 − b

1 + (bωc)
2

= − b

1 + (bωc)
2

(23)

⎧
⎨
⎩

b = 1

ωc
tan

{
tan−1(aωc) + θ ωc

}

aωc << 1
⇒ b ≈ 1

ωc
tan{ a ωc + θ ωc}

(24)

aωc << θ ωc ⇒ b ≈ 1

ωc
tan( θωc) (25)

The function tan(x) has a linear characteristic for a small
value of x.

With θωc ≤ 0.5 ⇒ b ≈ θ, we have: tan(x) = x for x <
0.5 as it shown in Fig. 3

Finally:

⎧⎨
⎩
A

′
2
(ωc) = − θ

1 + (θωc)
2

θωc ≤ 0.5
⇒ A

′
2
(ωc) = −θ = A

′
1
(ωc)

(26)
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Fig. 3 Curve of the tangent function

4.1.2 Illustrative example

Let the pure time delay transfer function given by:

f1(s) = e−50 s (27)

The rational first order Padé approximation of f1(s) is
given by:

f2(s) = 1 − 25s

1 + 25s
(28)

The minimal phase part of this rational function is given
by:

f3(s) = 1

1 + 25s
(29)

The proposed approximation around s = 0.008j (ωc =
0.008) is given by:

f4(s) = 1.0861

(
1 + 0.1s

1 + 52.8609s

)
(30)

Figure 4 shows the Bode diagrams of the four functions
(27)-(30). It is clear that the Padè approximation gives an
exact value of magnitude in all frequency range in addition it
is the most large approximation around zero point for argu-
ment, but the proposed one gives amore exact approximation
around its specific point ωc = 0.008.

In order to show the effect of condition (14), the specific
point ωc is changed from 0.002 to 0.018 which equivalent
to 0.1 ≤ θ ωc ≤ 0.9. The phase of approximated function is
shown in Fig. 5. It is clear that for ωc increase the slop of
argument (f(s)) decrease and the condition (iii) is looses.

4.2 Tuning of the fractional order controller Cm(s)
for delay-free system

In this section, a simple analytical tuning method for frac-
tional order PID controller is proposed. The controller Cm(s)

Fig. 4 Bode diagrams of the four functions (27)-(30)

Fig. 5 Argument of f4(s) for different values of ωc (red lines)

is derived from Eq. (10) in order to taking the open loop
equivalent to the Bode’s transfer function. Different standard
transfer functions are considered in the present study.

4.2.1 Generalized first order system

The general form transfer function of the fractional first order
system is known as following:

Gf(s) = k

1 + Tα
s

(31)

0 < α < 2

where k andT are, respectively, the static gain and the time
constant of the considered system. This system is delay-free
part of the One Non-Integer Order plus Time Delay sys-
tem (NIOPTD-I) proposed in [30]. In addition, the model of
Eq. (31) included the conventional first order system is case
of α = 1.
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Using the fractional order PIλDμ controller of Eq. (11),
the open loop transfer function is given as:

Go(s) =
(
kc + Ti

sλ
+ Tds

μ

)
k

(1 + Tsα)
(32)

= Ti

(
1 + kc

Ti s
λ + Td

Ti
sμ+λ

sλ

)
k

(1 + Tsα)

in order to take the loop transfer function Go(s) equal to
the fractional order integrator (8), the controller (11) is
designed such that it compensate the process denominator
by its numerator as following:

- The proportional action is set to zero (kc = 0) than the
open loop will be:

Go(s) = Ti

(
1 + Td

Ti
sμ+λ

sλ

)
k

(1 + Tsα)
(33)

From Eq. (33), the function Go(s) can be equal to the
desired function (8) if we choose the controller’s parameters
as follows:

λ = m

Tik = ωm
c ⇒ Ti = ωm

c /k

Td/Ti = T ⇒ Td = TTi

μ + λ = α ⇒ μ = α − m

(34)

Finally, for any generalized first order system, the FOPID
controller can be tuned by Eq. (34) to satisfy equivalence
between the open loop transfer function and the Bode’s ideal
transfer function (8). Hence, for a required dynamics speci-
fication given in terms of unity gain crossover frequency ωc

and phase margin ϕm the five parameters of FOPID are given
by:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kc= 0
Ti= ωm

c /k
Td = T2ω

m
c /k

λ = m
μ = α − m

(35)

The last formulas is valid for the integer order system by
taking α = 1 in (35).

4.2.2 Generalized first order system plus fractional
integrator

Consider the fractional order system defined by the following
transfer function:

Gf(s) = k

sα
(
1 + Tsβ

) (36)

where α, β are positive real gives the orders of the plant.
Using the fractional order PID controller of Eq. (11), the

open loop transfer function is given as:

Go(s) = Ti

(
1 + kc

Ti
sλ + Td

Ti
sμ+λ

sλ

)
k

sα
(
1 + Tsβ

) (37)

In order to take the function (37) to be equivalent to the
desired function of Eq. (8), the following considerations are
taking:

kc = 0

λ + α = m ⇒ λ = m − α

Tik = ωm
c ⇒ Ti = ωm

c /k

Td/Ti = T ⇒ Td = TTi

μ + λ = β ⇒ μ = β + α − m

(38)

So, the tuning formulas of the fractional PIλDμ controller
are given by:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kc = 0

Ti = ωm
c /k

Td = T2ω
m
c /k

λ = m − α

μ = β + α − m

(39)

The last formulas is valid for the integer first order plus
integrator system by taking α = 1 and β = 1 in (39).

4.2.3 Generalized second order system

Consider the fractional order system defined by the following
transfer function:

Gf(s) = k

a1sβ + a2sα + 1
(40)

wherea1 and a2 are real coefficients parameters and k is the
static gain of the plant.

This last is delay-free part of the Two Non-Integer Order
plus TimeDelay system (NIOPTD-II) proposed in [30]. Note
that this model included the ordinary second order system in
the special case where α = 1 and β = 2. In this case the
system parameters are given as

ωn = 1/
√
a1

ξ = 0.5 a2/
√
a1

(41)

where ωn and ζ are the parameters of the ordinary second
order system.
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Using the fractional order PID controller of Eq. (11), the
open loop transfer function is given as:

Go(s) = Ti

(
1 + kc

Ti
sλ + Td

Ti
sμ+λ

sλ

)
k(

a1sβ + a2sα + 1
)

(42)

In order to set the loop transfer function equivalent to
desired one of Eq. (8), the numerator of Eq. (42) must be
equal to its denominator except the term of sα. This can be
satisfied by taking the following conditions:

λ = m

Tik = ωm
c ⇒ Ti = ωm

c /k

Td/Ti = a1 ⇒ Td = a1Ti

μ + λ = β ⇒ μ = β − m

(43)

It is clear that it still one term which is the terms of sα that
must be satisfying the condition:

kc
k

ωc
sλ ≈ a2s

α (44)

This condition is realized by using a special structure of
controller as follows:

Cm(s) = kc
sλ−α

+ Ti

sλ
+ Tds

μ (45)

By using this controller, the open loop transfer function
will be as follows:

Go(s) = Ti

(
1 + kc

Ti
sα + Td

Ti
sμ+λ

sλ

)
k(

a1sβ + a2sα + 1
)

(46)

This function can be set equivalent to the desired function
(8) by taking the parameters values of Eq. (43) with choosing
the proportional action kc = Ti a2.

The tuning formulas of FOC defined by Eq. (45) are sum-
marized by:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kc = a2ω
m
c /k

Ti = ωm
c /k

Td = a1ω
m
c /k

λ = m

μ = β − m

(47)

4.2.4 Generalized second order plus integrator system

Consider the fractional order system defined by:

Gf(s) = k(
a1sβ + a2sα + 1

)
sγ

(48)

wherea1 and a2 are real coefficients parameters and (α, β and
γ) are positive real orders.

Using the same structure of FO controller of Eq. (45), the
loop transfer function is given as:

Go(s) = Ti

( kc
Ti
sα + 1 + Td

Ti
sμ+λ

sλ

)
k(

a1sβ + a2sα + 1
)
sγ

(49)

Similar to the previous subsection, the controller’s param-
eters are given by:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kc = a2ω
m
c /k

Ti = ωm
c /k

Td = a1ω
m
c /k

λ = m - γ

μ = β + γ − m

(50)

4.2.5 Fractional order systemwith two times constant

Consider the fractional order system defined by the following
transfer function:

Gf(s) = k

(1 + T1sα)
(
1 + T2sβ

) (51)

whereT1 and T2 are the time constants and (α, β) are positive
real orders.

In this case, a special structure of FO-PID controller is
used as:

Cm(s) = kc
sλ−α

+ Tb

sλ−β
+ Ti

sλ
+ Tds

μ (52)

By using this controller, the open loop transfer function
will be as following:

Go(s) = Ti

(
1 + kc

Ti
sα + Tb

Ti
sβ + Td

Ti
sμ+λ

sλ

)

k(
T1T2sα+β + T1sα + T2sβ + 1

) (53)
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Table 1 Explicit expressions of
controller’s parameters for
delay-free systems

Gf(s) Cm(s) kc Ti Td λ μ Tb

k
(1+Ts) kc + Ti

sλ
+ Tdsμ 0 ωm

c
k Tωm

c
k m 1-m

k
s(1+Ts) kc + Ti

sλ
+ Tdsμ 0 ωm

c
k Tωm

c
k m-1 2-m

k(
s

ωn

)2+ 2ξ
ωn

s+1

kc
sλ−1 + Ti

sλ
+ Tdsμ

2ξωm
c

kωn

ωm
c
k

ωm
c

kω2
n

m 2-m

k((
s

ωn

)2+ 2ξ
ωn

s+1

)
s

kc
sλ−1 + Ti

sλ
+ Tdsμ

2ξωm
c

kωn

ωm
c
k

ωm
c

kω2
n

m-1 3-m

k
(1+T1s)(1+T2s)

kc
sλ−1 + Ti

sλ
+ Tdsμ

(T1+T2)ωm
c

k
ωm
c
k

T1T2ωm
c

k m 2-m

k
1+Tsα kc + Ti

sλ
+ Tdsμ 0 ωm

c
k Tωm

c
k m α-m

k
sα

(
1+Tsβ

) kc + Ti
sλ

+ Tdsμ 0 ωm
c
k Tωm

c
k m-α β +

α-
m

k
a1sβ+a2sα+1

kc
sλ−α + Ti

sλ
+ Tdsμ

a2ωm
c

k
ωm
c
k a1

ωm
c
k m β-m

k
(a1sβ+a2sα+1) sγ

kc
sλ−α + Ti

sλ
+ Tdsμ

a2ωm
c

k
ωm
c
k a1

ωm
c
k m-γ β +

γ-
m

k
(1+T1sα)(1+T2sβ)

kc
sλ−α + Tb

sλ−β + Ti
sλ

+Tdsμ T1
ωm
c
k

ωm
c
k T1T2

ωm
c
k m β +

α-
m

T1
ωm
c
k

This function can be set equivalent to the desired function
(8) by taking the following controller parameters:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kc = T1ω
m
c /k

Ti = ωm
c /k

Td = T1T2ω
m
c /k

Tb = T2ω
m
c /k

λ = m

μ = α + β − m

(54)

Table 1 summarizes the results of thisworkwhere towcase
of the plant are considered (fractional and integer order). As
it shown in subSects. 4.2, all analytical controllers presented
for delay-free systems can be cascaded with the inverse of
proper filter f(s) of Eq. (12) for controlling the same system
with dead time θ. For example, if the first order plus dead
time system (FOPDT) is considered, the analytical controller
is obtained as:

C(s) =
(
Ti

sλ
+ Tds

μ

)
1

f(s)
(55)

where Ti,Td, λ and μ are given from Table 1 and f(s) is
computed from Eqs. (12) and (13).

5 Simulation results

5.1 Example 1: Dominated dead time system

Consider the system given by the following transfer function

Gp(s) = 1

1 + 0.05s
e−s (56)

This system has dominated dead time (θ > > T) which
take its control more difficult compared with lag dominated
system (T > > θ) [15]. Usually, this type of system is decel-
erating in closed-loop configuration. In the work presented
in [31], authors are proposed the following controller:

Cph(s) =
(
0.41 + 0.24

s

)(
1 + 0.1439 s0.666

s0.666

)
(57)

This controller was satisfied the following dynamics spec-
ifications:

{
ωc = 0.521 rad/sec

φm = 44.8◦ (58)

For a fairly comparison, the proposed controller is
designed for the same specification and its transfer function
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Fig. 6 Bode diagrams of open loops with the two controllers of example
1

Fig. 7 Step responses of plant (56)with proposed controller for different
static gains k

is given by:

C(s) = 0.8544

(
1 + 1.169 s

1 + 0.05 s

) (
0.3755

s1.5
+ 0.0188 s−0.5

)

(59)

Figure 6 shows the Bode diagram of open loop system
obtained by two controllers (57) and (59). It is clear that
the two controllers are satisfies the desired dynamic perfor-
mances with a flat phase around the gain crossover frequency
ωc.

Figures 7 and 8 show, respectively, the step response of
the two feedback systems by the controllers (57) and (59),
when the plant’s static gain changed about ± 25% from its
nominal value. It is clear that the iso-damping property is
assured by the two feedback controllers.

Table 2 shows the different characteristics of the closed-
loop systemwith the tow controllers compared to the desired
specifications where the third column gives the phase open
loop derivative atωc, FISEm andFISEph gives, respectively, the

Fig. 8 Step responses of plant (56) with controller (57) for different
static gains k

integral square error ISE between desired and achieved val-
ues of the magnitude and phase. tISE is the time ISE between
desired and achieved responses.
ov is the sum of variations
in overshot in case of static gain change.

From Table 2 it is clear that the proposed controller gives
more equivalent characteristics to the desired one than the
controller (57).

5.2 Example 2: Second order plus dead time system

Let the second order system given by the following transfer
function:

Gp(s) = 0.0015

s2 + 0.1547 s + 0.004357
e−8 s (60)

The required specifications are given by:
ωc = 0.01 rad/sec and ϕm = 70°
The controller obtained using the proposed designmethod

is given by:

C(s) = 0.9964

(
1 + 8.5205 s

1 + 0.5 s

)

(
0.3706

s0.222
+ 0.0104

s1.222
+ 2.3959 s0.78

)
(61)

This last is compared with a fractional PIλDμ designed
for the same specification using an optimization technique in
[17], its transfer function is given as:

CFOPID(s) = 1.1030 + 0.0141

s1.1741
+ 18.1322s1.2893 (62)

For a fair comparison, another analytical controller (63) is
designed for the same specification using method proposed
in [28] where the internal model control is used to extract an
analytical formulas for conventional controller. Not that this
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Table 2 Frequency and time
domain characteristics of
example 1

ωc ϕm Darg/dω|ωc FISEm FISEph tISE 
ov

Desired 0.521 44.8 0 0 0 0 0

Proposed controller 0.521 44.8 −0.013 1.160 7.8684 0.0027 7.487 10–5

Controller (57) 0.521 44.8 −0.00013 0.954 25.379 0.0031 34.868 10–5

Fig. 9 Bode diagrams of open loops with the three controllers for exam-
ple 2

Fig. 10 Step responses of plant (60) with proposed controller for dif-
ferent static gains k

technique use the well-known Padè and Taylor approxima-
tions for time delay system.

CIMC(s) =
(

25.7833

1 + 69.56s0.22

) (
1 + 1

35.5061 s
+ 6.4641 s

)

(63)

Figure 9 shows the Bode diagram of the open loop system
obtained by three controllers (61)-(63). It is clear that two

Fig. 11 Step responses of plant (60) with controller (62) for different
static gains k

Fig. 12 Step responses of plant (60) with controller (63) for different
static gains k

controllers (61) and (62) satisfy the desired dynamic per-
formances with a large flat phase around the gain crossover
frequency ωc. The step responses of the closed-loop system
for a large change in static gain with three used controllers
are shown in Figs. 10, 11 and 12.

Table 3 shows the different characteristics of the closed-
loop system with the three controllers compared to the
desired specifications.
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Table 3 Frequency and time
domain characteristics of
example 2

ωc ϕm Darg/dω|ωc Fisem FISEph tISE 
�ov

Desired 0.01 70 0 0 0 0 0

Proposed
controller

0.01 70 −1.6 10–5 0.0302 0.0698 6.195
10–6

1.6758
10–4

Controller of
(62)

0.0099 69.9 2.9 10–5 0.0478 3.767 3.02
10–5

3.76
10–4

Controller of
(63)

0.0097 66.3 3.1 10–3 0.1351 60.2610 2.52
10–4

231
10–4

Fig. 13 Bode diagrams of open loops with different controllers for
example 3

Fig. 14 Step responses of plant (64) with the proposed controller for
different static gains k

From Table 3 it is clear that the proposed controller gives
more equivalent characteristics to the desired one than the
tow controllers (62) and (63).

Fig. 15 Step responses of plant (64) with controller (67) for different
static gains k

5.3 Example 3: Two non-integer order plus time
delay system (NIOPTD-II)

Consider the following high order system:

Gp(s) = 1

(1 + s)4
(64)

The transfer function Gp(s) is approximated by the fol-
lowing non-integer plus dead time model [30]:

Gp(s) = 0.22287 e−0.5532s

s2.2251 + 0.8631s1.0389 + 0.22394
(65)

The required specifications are:
ωc = 0.1 rad/sec and ϕm = 80°
The controller obtained using the proposed designmethod

is given by:

C(s) = 0.9964

(
1 + 0.6541 s

1 + 0.1 s

)

(
0.2999

s0.0722
+ 0.0778

s1.111
+ 0.3474 s1.114

)
(66)
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Table 4 Frequency and time
domain characteristics of
example 3

ωc ϕm Darg/dω|ωc Fisem FISEph tISE 
�ov

Desired 0.1 80 0 0 0 0 0

Proposed
controller

0.099 80.09 14.5 10–5 0.1712 1.0087 2.12
10–6

2.06
10–6

controller of
(67)

0.099 80.10 −130.8 10–5 0.186 76.9984 46.32
10–6

0.0209

In the work presented in [22], for the same required spec-
ifications, the following controller was proposed:

CF(s) = 0.3252

s0.0369

(
1 + 0.2594

s1.0389
+ 1.1585 s1.1862

)
(67)

Figure 13 shows the Bode diagram of open loop system
obtained by the controllers (66) and (67). It is clear that the
proposed controller gives a flat phase in a frequency band
larger than that obtained by controller (67). Figures 14 and
15 show the step responses of the closed-loop system with
static gain variation for the two used controllers. It is noted
that the proposed controller was guaranteed the iso-damping
property for a large variation in plant’s static gain.

Table 4 shows the different characteristics of the closed-
loop systemwith the tow controllers compared to the desired
specifications. It is clear that the proposed controller gives
more equivalent characteristics to the desired one than the
controller (67).

6 Conclusion

In this work, a new simple method is proposed for tuning the
parameters of fractional PID controllers. The main advan-
tage of the proposed technique is that the eight parameters of
the proposed controller, represented by the PIλDμ with the
proposed additional filter, are given with explicit formulas
function of the plant and the desired closed-loop parame-
ters. In addition, the tuning approach has been applied for
different classes of linear time delay systems and tested with
different examples where the simulation results show that the
proposed controller has the well-known iso-damping robust-
ness property. The analytical formulas obtained in this work
allow extending the proposed technique to indirect adaptive
control in order to design a closed-loop system insensitive
to the plant’s parameters change. The different simulation
examples show that the proposed tuning has the more pre-
cise results than others analytical methods.

Two new results are obtained in this work, where the first
one is that the user of the fractional controller is not restricted
by the general PIλDμ form proposed in [29]. Instead, any
form can be chosen depending on the process transfer func-
tion as in [32] where the designer can choose any controller

structure that simplify its analytical tuning with the proposed
method. The second one is that although most existing direct
synthesis-based methods use a reference closed-loop model
that involve the same time delay of the plant [21] [22] [33],
the present work proved that a delay-free model can be used
as reference desiredmodel to produce an analytical controller
where the equivalence between the closed-loop system and
desired model can be only assured in the limited frequency
band.As amain result, any stable time delay plant can be con-
trolled with the proposed controller to achieve the desired
gain crossover frequency and phase margin specifications.
This feedback system can maintain the iso-damping prop-
erty with a limitation in the closed-loop system bandwidth
where the gain crossover frequency cannot exceed the value
(0.5/θ).
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